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Ab initio simulation of non-Abelian braiding statistics in topological superconductors
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We numerically investigate non-Abelian braiding dynamics of vortices in two-dimensional topological super-
conductors, such as s-wave superconductors with Rashba spin-orbit coupling. Majorana zero modes (MZMs)
hosted by the vortices constitute a topological qubit, which offers a fundamental building block of topological
quantum computation. As the MZMs are protected by Z2 invariant, however, the Majorana qubit and quantum
gate operations may be sensitive to intrinsic decoherence caused by MZM hybridization. Numerically simulating
the time-dependent Bogoliubov–de Gennes equation without assuming a priori existence of MZMs, we examine
quantum noises on the unitary operators of non-Abelian braiding dynamics due to interactions with neighboring
MZMs and other quasiparticle states. We demonstrate that after the interchange of two vortices, the lowest
vortex-bound states accumulate the geometric phase π/2, and errors stemming from dynamical phases are negli-
gibly small, irrespective of interactions of MZMs. Furthermore, we numerically simulate the braiding dynamics
of four vortices in two-dimensional topological superconductors, and discuss an optimal braiding condition for
realizing the high performance of non-Abelian statistics and quantum gate operations of Majorana-based qubits.
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I. INTRODUCTION

A paramount challenge for realizing quantum computers
is physical implementations of fault-tolerant quantum compu-
tation because a coupling of a quantum state to environment
gives rise to unavoidable decoherence. It has been proposed
that a topological phase of matter hosting non-Abelian anyons
provides the hardware constitution of fault-tolerant quantum
computation [1,2], where topologically protected anyons lead
to degenerate ground states unaffected by local perturbations
and braiding such anyons implements noise-free quantum gate
operations.

A Majorana fermion is a self-Hermitian relativistic particle
which is equivalent to its own antiparticle [3]. Such fermion
emerges as a special kind of Bogoliubov quasiparticles bound
at defects in topological superconductors, such as vortices and
edges. The observations of Majorana zero modes (MZMs)
have been reported in superfluid 3He [4–6], unconventional
superconductors [7,8], superconducting nanowires [9–22],
ferromagnetic atomic chains [23], quantum anomalous Hall
insulator-superconductor junction [24,25], planar Josephson
junctions [26], and so on [27,28]. Recently, Machida et al.
developed a dilution-refrigerator based STM working below
90 mK, which uncovered the existence of the zero-energy
vortex-bound states in the iron-base superconductor Fe(Se,Te)
[29]. Similar signals of Majorana bound states have also
been observed in Ref. [30]. The MZMs are protected by a
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topological invariant. The existence of 2n MZMs leads to
topologically protected ground states which span the 2n−1-
dimensional Hilbert space and can be utilized as topological
qubits. When MZMs are well isolated from other Bogoliubov
quasiparticles, they behave as non-Abelian anyons obeying
the non-Abelian statistics, i.e., braiding MZMs can implement
quantum gates to manipulate the topological qubit. This is a
unique character of MZMs, and topological superconductors
with MZMs can provide a platform for realizing topological
quantum computation [2,31–39].

MZMs in class-D topological superconductors are, how-
ever, protected by Z2 topological invariant [40,41]. When two
neighboring vortices approach, MZM hybridization between
neighboring MZMs lifts the degeneracy from zero energy to
E+ and E−, and a pair of Majorana bound states smoothly
connects to topologically trivial vortex-bound states. Thus,
a single qubit composed of four MZMs may be sensitive to
intrinsic decoherence caused by quasiparticle hybridization
[42,43]. The period of braiding operation T may satisfy the
characteristic timescale [2]

δE−1
CdGM � T � δE−1

M . (1)

In this paper, we set h̄ = 1. The lower bound δE−1
CdGM is to

avoid the nonadiabatic transition of MZMs to higher-energy
vortex-bound states [44–50], i.e., the Caroli–de Gennes–
Matricon (CdGM) states [51], where the typical level spacing
of vortex-bound states is δECdGM ∼ �2

0/EF, where �0 and
EF are the bulk superconducting gap and the Fermi energy,
respectively (see Fig. 1). The upper bound of the braiding
period is associated with the hybridization of neighboring
MZMs, which leads to the splitting and oscillation of the
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FIG. 1. Schematic of splitting MZMs embedded in quasiparticle
excitation spectrum. The splitting of MZMs and the level spacing
from the higher CdGM states are denoted by δEM and δECdGM,
respectively. These determine the lower and upper bounds of the
timescale of braiding dynamics: adiabatic condition T −1 � δECdGM

and nonadiabatic transitions between the energy levels of the hy-
bridized MZMs T −1 � δEM.

ground-state energies as a function of the inter-Majorana
distance R as δEM ≡ E+ − E− ∝ cos(kFR)e−R/ξ , where the
Fermi wavelength k−1

F and the superconducting coherence
length ξ = kF/m�0 determine the scale of the oscillation and
splitting.

Although numerical simulation of non-Abelian statis-
tics has been demonstrated in one-dimensional supercon-
ducting nanowires [52–60], the ab initio simulation of
non-Abelian braiding dynamics and phase accumulation in
two-dimensional class-D superconductors has been lack-
ing. In contrast to nanowire systems, where hybridization
between MZMs in different wires is suppressed by gate po-
tentials, MZMs in vortices in two-dimensional systems are
not immune to the hybridization effect. MZM hybridiza-
tion and nonadiabatic dynamics of MZMs may disturb
the non-Abelian statistics and give rise to intrinsic deco-
herence of Majorana qubits. It is indispensable to clarify
an optimal braiding protocol for realizing the high per-
formance of non-Abelian braiding dynamics, based on ab
initio simulations. Understanding the impact of such intrin-
sic decoherences on Majorana-based qubits is a pressing
issue.

In this paper, we present ab initio simulation of non-
Abelian statistics in two-dimensional topological supercon-
ductors, and numerically study intrinsic decoherence caused
by quasiparticle hybridization and nonadiabatic braiding
dynamics. By numerically simulating the time-dependent
Bogoliubov–de Gennes (TDBdG) equation without assuming
a priori existence of MZMs, we demonstrate the non-Abelian
statistics of quantized vortices in two-dimensional trijunction
network of s-wave superconductors with Rashba spin-orbit
coupling [61–63] and the Fu-Kane model [64]. We note that
in addition to class-D topological superconductors, our nu-
merical method is generalizable to other topological classes
which may host symmetry-protected multiple MZMs. We first
show that the particle-hole symmetry prohibits the direct tran-
sition between particle-hole symmetric MZMs. This ensures
that after the interchange of two vortices, the ground state

acquires the nontrivial geometric phase π/2, irrespective of
interactions of MZMs. Such transition rule and geometric
phase in the braiding dynamics of a two-vortex system are
confirmed by numerically solving the TDBdG equation. We
succeeded in extracting the geometric phase and dynamical
phases from ab initio simulations and evaluating quantum
noises on the braiding operators, i.e., the unitary operators
of quantum gates. Furthermore, we perform numerical simu-
lations of braiding dynamics in a four-vortex system, which
constitutes a single topological qubit. The numerical simu-
lations with an optimal braiding period clearly demonstrate
that an initially encoded ground state is transferred to another
nearly degenerate ground state by interchanging two vortices,
i.e., the demonstration of non-Abelian braiding statistics with
high accuracy. On the other hand, if the braiding period ap-
proaches the upper bound, the dynamical phase stemming
from the splitting of ground states causes serious quantum
errors of non-Abelian braiding dynamics and quantum gate
operations. We discuss the upper and lower bounds of the
timescale for realizing the high performance of non-Abelian
braiding statistics and quantum gate operations of Majorana-
based qubits.

The organization of this paper is as follows. In Sec. II, we
describe the theoretical framework and numerical method of
the TDBdG equation and discuss the impact of the particle-
hole symmetry on nonadiabatic transition between the energy
levels of hybridized MZMs. We also present the Hamiltonian
relevant to class-D topological superconductors, and present a
protocol to implement the braiding dynamics of vortex singu-
larities in superconducting trijunction systems. In Sec. III, we
show the numerical results of braiding dynamics in two-vortex
systems, and compute the geometric phase that vortex-bound
states accumulate after the interchange of vortices. In Sec. IV,
we investigate the case of four-vortex systems and present the
numerical simulation of braiding dynamics in the trijunction
network hosting MZMs. Section V is devoted to conclusions
and discussions on disturbance of non-Abelian statistics and
decoherence of Majorana-based qubits due to hybridization
and nonadiabaticty. The numerical results of braiding dynam-
ics in superconductor-topological insulator heterostructures,
i.e., the Fu-Kane model, are presented in the Appendix.

II. TIME-DEPENDENT BOGOLIUBOV–DE
GENNES EQUATION

The dynamics of quasiparticles in superconductors is
governed by the TDBdG equation. In this section we
first summarize the basic properties of MZMs in class-
D topological superconductors. Employing the adiabatic
approximation and utilizing the Majorana conditions and
the particle-hole symmetry, we derive the selection rules
for transition between Bogoliubov quasiparticles. We also
present trijunction systems formed by s-wave superconduc-
tors with Rashba spin-orbit interaction. The numerical results
in superconductor-topological insulator heterostructures, i.e.,
the Fu-Kane model, are shown in the Appendix, where the
impact of the chiral symmetry on the braiding dynamics is
emphasized.
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A. TDBdG equation

We start to introduce the Bogoliubov quasiparticle operator
ηn(t ) as

η̂n(t ) =
∑

i

[u∗
n,i(t )ĉi + v∗

n,i(t )ĉ†
i ], (2)

where ĉi and ĉ†
i are the annihilation and creation operators

of electrons at a site i. The time evolution of the quasipar-
ticle operator is governed by the wave functions un,i(t ) and
vn,i(t ). The TDBdG equation to describe the time evolution of
quasiparticles is derived from the equation of motion for η̂n(t ).
We suppose that at t = 0, the system is in equilibrium. The
corresponding quasiparticle energy En and wave functions
|ϕn,i〉 ≡ [un,i, vn,i]tr = [un,i(0), vn,i(0)]tr (atr is the transpose
of a matrix a) are obtained from the BdG equation

HBdG(0) |ϕn,i〉 = En |ϕn,i〉 , (3)

where i ≡ (ix, iy) and n denote a site on the two-dimensional
square lattice and the label of the quasiparticle energy En,
respectively. The BdG Hamiltonian is given by

[HBdG(t )]i j =
(

εi j (t ) �i j (t )
�

†
i j (t ) −ε∗

i j (t )

)
, (4)

where ε(t ) is the single-particle Hamiltonian density and �(t )
is the pair potential. The Hamiltonian of class-D topological
superconductors obeys only the particle-hole symmetry,

CHBdG(t )C−1 = −HBdG(t ), (5)

where C is particle-hole operator with C2 = +1. This implies
that the quasiparticle state with a positive energy En > 0 is
accompanied by the negative-energy state with −En, and the
quasiparticle operator obeys

η̂
†
En

(t ) = η̂−En (t ). (6)

The time evolution of the Bogoliubov quasiparticle operators
in Eq. (2) is governed by the TDBdG equation for the quasi-
particle wave functions

i
∂

∂t
|ψ (t )〉 = HBdG(t ) |ψ (t )〉 . (7)

The state vector is defined in the particle-hole space as
|ψ (t )〉i ≡ [ui(t ), vi(t )]tr, where we impose the initial condi-
tion |ψ (t = 0)〉 = |ϕn〉.

B. Majorana fermions in class-D superconductors

Owing to the particle-hole symmetry, the zero-energy
quasiparticle is the equal superposition of the particle and hole
components with u∗

E=0 = vE=0:

γ̂ ≡ η̂E=0 =
∑

i

u∗
E=0,i ĉi + H.c., (8)

which obeys the Majorana condition γ̂ = γ̂ †. The zero-energy
quasiparticle states appear in quantized vortices of class-D
topological superconductor, which are protected by Z2 topo-
logical number [40,41]. This implies that the pairwise zero
modes are gapped out by the hybridization of wave functions.
Suppose class-D topological superconductors with 2N vor-
tices hosting 2N MZMs, which are well separated from other

quasiparticle states. The BdG Hamiltonian then reduces to the
tight-binding model composed of 2N MZMs,

Heff = i
∑
〈i, j〉

Ji j γ̂iγ̂ j, (9)

where the Majorana operators bound at ith vortex γ̂i obey
{γ̂i, γ̂ j} = δi j . The hopping energy Ji j corresponds to the en-
ergy splitting of MZMs due to hybridization [42,43]

Ji j ∝ cos (kFRi j + α)√
kFRi j

exp

(
−Ri j

ξ

)
, (10)

where 2α = arctan(kFξ ). The rapid oscillation of MZMs in
the scale of the Fermi wavelength k−1

F represents MZM hy-
bridization and the envelope of Ji j is determined by the
superconducting coherence length ξ = kF/m�0 and the dis-
tance between γi and γ j , Ri j . This hybridization gives rise to
finite splitting of ground-state degeneracy.

In this paper, however, we discuss the non-Abelian statis-
tics of Bogoliubov quasiparticles from the direct simulation
of Eq. (7). The numerical simulation of the TDBdG equation
deals with the dynamics of Bogoliubov quasiparticles, i.e.,
complex fermions, rather than Majorana fermions γ̂ j (t ). To
demonstrate the non-Abelian braiding dynamics without as-
suming a priori existence of MZMs, we have to obtain the
Majorana fermions γ̂ 1

n (t ) and γ̂ 2
n (t ) at the energy eigenstate

En from the Bogoliubov quasiparticles ηn(t ), and map the time
evolution of ηn(t ) onto the Majorana braiding dynamics γ̂ 1

n (t )
and γ̂ 2

n (t ). For this purpose, we decompose a spinless complex
fermion η̂n(t ) associated with the energy eigenstate En into a
pair of Majorana fermions γ̂ 1

n and γ̂ 2
n as

γ̂ 1
n (t ) = 1√

2
[η̂n(t ) + η̂†

n(t )], (11)

γ̂ 2
n (t ) = − i√

2
[η̂n(t ) − η̂†

n(t )]. (12)

The Majorana operators obey

{γ̂ i
n(t ), γ̂ j

m(t )} = δi jδnm (13)

(i, j = 1, 2). In general, a system with N complex fermions
can be represented by 2N Majorana fermions {γ̂ i

n}i=1,2
n=1,...,N . The

N complex fermions allow one to introduce 2N -dimensional
Fock states

|a1a2 . . . aN 〉 =
N⊗

n=1

|an〉 ≡
N⊗

n=1

(η̂†
n )an |0〉 , (14)

where an = {0, 1} is the occupation number of the quasipar-
ticle state with En. The eigenvector |an = 0〉 is the vacuum
of the Bogoliubov quasiparticle with an eigenenergy En and
|1〉 = η̂†

n |0〉 is the occupied state. The 2N degenerate ground
states are lifted by the tunneling splitting of 2N MZMs.
We also note that although the BdG Hamiltonian violates
the particle-number conservation, the particle-hole symmetry
ensures the conservation of the fermion parity. Hence, the
Fock state is an eigenvalue of the parity operator P̂ = (−1)F̂ ,
where F̂ = ∑

i,σ c†
i,σ ci,σ is the fermion-number operator. The

fermion parity conservation splits the Fock space to the 2N−1-
dimensional subsectors of the fermion parity. In the limit of
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En → 0, the Majorana operator γ̂ i
n reduces to the MZM γ̂i

bound at a vortex core.
Let us consider a system with 2N vortices. When the

vortices are well isolated from each other, they host N
particle-hole symmetric pairs of zero-energy Bogoliubov
quasiparticles. The intervortex tunneling of the quasiparticles
leads to the dispersive bandlike structure with the bandwidth
δEM. The interchange of vortex-bound Bogoliubov quasipar-
ticles can be implemented by braiding vortices with a time
period T . As shown in Fig. 1, vortex systems in class-D topo-
logical superconductors have two typical energy scales, the
level spacing between MZMs and non-Majorana vortex states,
δECdGM ∼ O(�2

0/εF), and the splitting of MZMs, δEM ∼
cos(kFR)e−R/ξ . We assume that the “Majorana band” is well
separated from higher CdGM states, i.e., δEM � δECdGM, and
the braiding operation satisfies the adiabatic regime

T � δE−1
CdGM. (15)

To capture the braiding dynamics of vortex-bound Bogoliubov
quasiparticles, we introduce the Majorana representation of
the Bogoliubov quasiparticles in Eqs. (11) and (12), where N
Bogoliubov quasiparticle states can be represented by 2N Ma-
jorana fermions γ̂ i

n(t ). The TDBdG equation (7) describes the
unitary evolution of the Bogoliubov quasiparticles as η̂n(t ) ≡
U (t )η̂n(0)U †(t ). Within the adiabatic condition in Eq. (15),
the braiding dynamics of vortex-bound Bogoliubov quasipar-
ticles can be regarded as the unitary time evolution of the
Majorana operators,

γ̂ i
n(t ) ≡ U (t )γ̂ i

n(0)U †(t ). (16)

Following Ref. [65], we introduce the SO(2N ) matrix V
which rotates the 2N-dimensional Majorana operators as

γ̂ i
n(T ) =

∑
j,m

Vi j
nmγ̂ j

m(0), (17)

where V is subject to the conservation of the fermion parity.
An explicit expression of V is obtained from the numerical
simulation of the TDBdG equation (7). The braiding matrix
U (T ) is obtained from the computed matrix V as

U (T ) = exp

(
1

4

∑
i j

Di j
nmγ̂ i

nγ̂
j

m

)
, (18)

where e−D = V [65]. In Secs. III and IV, we evaluate quan-
tum noise effects on non-Abelian statistics by computing
the SO(2N ) matrix V from the TDBdG equation in class-D
topological superconductors with two and four vortices, re-
spectively.

C. Nonadiabatic transition rules and particle-hole symmetry

We start to derive a generic result that the particle-hole
symmetry (PHS) imposes selection rules on the transition
between instantaneous eigenstates of HBdG(t ). We consider
a superconducting state with 2N vortices, where each vortex
hosts a single MZM. We introduce a set of time-dependent
parameters R(t ) = (R1(t ), ..., RN (t )) as a vector in the pa-
rameter space. Let Ri(t ) be the position of the ith vortex.
The interchange of the ith vortex and the jth vortex is im-
plemented by exchanging Ri(t ) and R j (t ) to Ri(T ) = R j (0)

and R j (T ) = Ri(0), and the twice operation Ri(2T ) = Ri(0)
defines a cyclic trajectory in the parameter space. The time
dependence of the BdG Hamiltonian is described through the
parameters R(t ) as HBdG(t ) → HBdG(R). Let |ϕn(R)〉 be an
instantaneous eigenstate ofHBdG(R):

HBdG(R) |ϕn(R)〉 = En(R) |ϕn(R)〉 , (19)

where |ϕn(R)〉 satisfies the orthonormal condition

〈ϕn(R)|ϕm(R)〉 = δn,m. (20)

We now expand the time evolution of the nth eigenstate in
terms of the set of instantaneous eigenstates {|ϕm(R)〉} as

|ψn(t )〉 =
∑

m

C(n)
m (t )e−i

∫ t
0 Em (t ′ )dt ′ |ϕm(R)〉 , (21)

where e−i
∫ t

0 En (t ′ )dt ′
is the dynamical phase and we have

introduced n ∈ Z as labels of eigenstates. The state vec-
tor is assumed to obey the initial condition |ψn(t = 0)〉 =
|ϕn(R(0))〉, corresponding to

C(n)
m (t = 0) = δnm. (22)

Substituting Eq. (21) to Eq. (7), the equation for the coefficient
C(n)

m (t ) ∈ C is given as

i∂tC
(n)
m (t ) +

∑
k

�mk (t )e−i
∫ t

0 �Ekm (t ′ )dt ′
C(n)

k (t ) = 0. (23)

The Hermitian matrix �mk (t ) = �∗
km(t ) represents the tran-

sition probability between mth and kth instantaneous eigen-
states, which is given as

�nm(t ) ≡ i 〈ϕn(R)|∂tϕm(R)〉 . (24)

Under the adiabatic approximation, �nm reduces to an ele-
ment of the Berry connection matrix.

We consider the braiding dynamics that the operation pe-
riod T satisfies the adiabatic approximation in Eq. (15), which
implies that the higher CdGM states are outside the ground-
state (i.e., Majorana fermions) subspace. Consider a class-D
topological superconductor with 2N vortices. When the inter-
vortex distance is sufficiently large, tunneling probability of
quasiparticles between neighboring vortices is negligible, and
each vortex hosts an exactly zero-energy state. In such ideal
situation, the braiding rule is governed by the matrix D and
the unitary matrix in Eq. (18) reduces to U (T ) = exp( π

4 γ̂iγ̂ j ),
implying that the MZMs obey non-Abelian statistics. In
finite-size systems, however, quasiparticle tunneling between
vortices always leads to a nonzero splitting of zero-energy
states ±δEM as in Eq. (10). The Bogoliubov quasiparticle op-
erator after the interchange operation is given by substituting
Eq. (21) into Eq. (2) as

η̂n(T ) =
∑
m,k

C(n)
m (T )e−i

∫ T
0 Em (t )dt Bmk η̂k (0). (25)

Here we have introduced the matrix element Bmk ≡
〈ϕm(R(0))|ϕk (R(T ))〉, which describes the transformation of
the quasiparticle basis η̂n(0) to

∑
m Bnmη̂m(0) after braid-

ing operation. The expression of matrix U (T ) in Eq. (18)
can be directly read off from Eq. (25). Cheng et al. [65]
found that tunneling splitting of zero-energy states gives rise
to the nonuniversal contributions of dynamical phase and
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non-Abelian Berry phase, and the resulting braiding matrix
contains a non-negligible error as

U (T ) = exp

[(
π

4
− ET

2

)
γ̂ 1γ̂ 2

]
, (26)

where E ∼ |δEM|. As ET/2 = O(1) for T � δE−1
M , the noise

error induced by tunneling splitting becomes significant when
the braiding operation is slow compared to the timescale due
to tunneling splitting of MZMs. Such serious error can lead to
bit-flip error and parity error [65,66].

Therefore, we consider nonadiabatic transitions between
splitting MZMs, where the period T of braiding vortices is
much faster than the timescale associated with the splitting of
degenerate ground states δEM, i.e.,

T � δE−1
M . (27)

As R � ξ and �0 � εF in a realistic situation, the energy
scales satisfy δECdGM � δEM, and the operation period obeys
the conditions in Eqs. (15) and (27). We also note that within
the condition in Eq. (27), �EnmT � 1 and the dynamical
phase due to splitting of MZMs is negligible, e−i

∫ t
�Enm (t ′ )dt ′ ≈

1. Thus, Eq. (23) is recast into

i∂tC
(n)
m (t ) +

∑
k

�mk (t )C(n)
k (t ) = 0. (28)

As the differential equation for C(n)
m (t ) is determined by the

Berry connection matrix �(t ), we clarify the roles of the
symmetry and Majorana condition on the matrix �(t ). Let us
consider Bogoliubov quasiparticles with the energy En > 0
and the eigenvector |ϕn(R(t ))〉. The particle-hole symmetry
in Eq. (5) ensures that the positive-energy eigenstate is
always accompanied by a negative-energy eigenstate
with −En and |ϕ−En〉 = C |ϕ+En〉. The Berry connection
matrix �(t ) is subject to the particle-hole symmetry in
Eq. (5) and the orthonormal condition in Eq. (20). These
lead to 〈ϕ−En (R)|∂tϕ+En (R)〉 = 〈ϕ−En (R)|∂tCϕ−En (R)〉 =
1
2∂t 〈ϕ−En (R)|Cϕ−En (R)〉 = ∂t 〈ϕ−En (R)|ϕ+En (R)〉 = 0.
Hence, the symmetry prohibits direct transition between
the particle-hole symmetric eigenstates

�+En,−En (t ) = �−En,+En (t ) = 0. (29)

In the same manner, one reads from Eqs. (5) and (20)

�∓Em,−En (t ) = − �∗
±Em,+En

(t ). (30)

The property of the Berry connection matrix described above
indicates that transition between particle-hole symmetric
MZMs is forbidden by the particle-hole symmetry. Such
particle-hole symmetric transition violates the fermion parity.
In Sec. III, we demonstrate that the numerical simulation of
braiding dynamics is consistent to the transition rules, and
the prohibition of particle-hole symmetric transition ensures
the acquisition of the geometric phase π/2, irrespective of the
splitting of MZMs, δEM �= 0.

D. s-wave superconductors with Rashba spin-orbit interaction

As a model of class-D topological superconductors, we
consider an s-wave superconductor with spin-orbit interaction

(SOI) [61–63]. The Hamiltonian is given by

H = HK +HZ +HSOI +HSC. (31)

The model is composed of the simple building blocks, such as
the hopping term (HK), the magnetic Zeeman term (HZ), the
Rashba SOI (HSOI), and the s-wave pairing term (HSC):

HK = − t0
∑

〈i, j〉,σ
ĉ†

i,σ ĉ j,σ − μ
∑
i,σ

ĉ†
i,σ ĉi,σ , (32)

HZ = − μBHz

∑
i,σ,σ ′

(σz )σ,σ ′ ĉ†
i,σ ĉi,σ ′ , (33)

HSOI = − λ
∑

i

[(ĉ†
i−x̂,↓ĉi,↑ − ĉ†

i+x̂,↓ĉi,↑)

+ i(ĉ†
i−ŷ,↓ĉi,↑ − ĉ†

i+ŷ,↓ĉi,↑) + H.c.], (34)

HSC =
∑

i

�se
iθi ĉ†

i,↑ĉ†
i,↓ + H.c. (35)

Here, ĉ†
i,σ (ĉi,σ ) is a creation (annihilation) operator of elec-

trons with spin σ = (↑,↓) at site i = (ix, iy). In numerical
calculations, we set the parameters as t0 = 1.0, μ = −6.2,
μBHz = 5.0, λ = 2.0, and �s = 2.5 and scaled with t0. This
choice of parameters ensures that odd number of MZMs exist
in a vortex core.

E. Numerical method

To demonstrate the braiding dynamics of vortices and non-
Abelian statistics, we numerically solve the TDBdG equation
(7) for two (N = 1) and four (N = 2) MZMs in Secs. III and
IV, respectively. The time evolution of the quasiparticle state
from |ψ (t )〉 to |ψ (t + �t )〉 is governed by the time-evolution
operator Û (t + �t ; t ):

|ψ (t + �t )〉 = Û (t + �t ; t ) |ψ (t )〉 . (36)

In general, the time-evolution operator is given by

Û (t + �t ; t ) = T̂ exp

[
−i

∫ t+�t

t
dt ′HBdG(t ′)

]
, (37)

which is approximately reduced to Û (t + �t ; t ) ≈
exp [−iH (t )�t] for small �t . We expand the time-evolution
operator in terms of the Chebyshev polynomials [67]. The
similar method is utilized for the simulation of the braiding
dynamics in one-dimensional superconducting nanowires
[52,55]. We numerically simulate the Majorana braiding
dynamics in a two-dimensional network of trijunctions
as shown in Fig. 2. This was first proposed by Fu and
Kane [64]. Each superconducting island has different U(1)
phase, φ = 0,±2π/3, and the intersection is regarded
as a phase singularity, i.e., a vortex singularity hosting a
single MZM. As shown in Fig. 2, the braiding operation of
vortices is implemented by changing the U(1) phase φ in
a superconducting island, which is induced by “quantum”
phase slips φ → φ + 2π . The quantum phase slip has already
been observed in a superconducting nanowire [68], and
a crossover between quantum and thermal quantum slips
has also been realized with changing temperatures [69].
The junction system can be applied as surface code for
fault-tolerant quantum computation [70,71].
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FIG. 2. (a) Schematic of a trijunction hosting a single MZM.
Each superconducting island has different phase φ = 0, ±2π/3 and
the intersection is regarded as a phase singularity, i.e., a vortex
singularity. (b) Two-dimensional network of trijunctions. The braid-
ing of MZMs is implemented by rotating the U(1) phase φ, where
the dashed lines indicate the motion of the phase singularities with
changing φ from 0 to 2π .

III. BRAIDING DYNAMICS IN TWO-VORTEX SYSTEMS

In this section, we consider Majorana braiding dynamics in
the Rashba model in Eq. (31) with two vortices, i.e., N = 1.
When two vortices are well separated and host exactly zero-
energy states, the braiding of vortices transforms the Majorana
operators γ̂ 1 and γ̂ 2 to γ̂ 2 and −γ̂ 1. The transformation γ̂ j →
U (T )γ̂ jU †(T ) is compactly represented by the unitary matrix
in Eq. (18):

U (T ) = exp [ϑ (T )γ̂ 1γ̂ 2], (38)

with ϑ = π/4. When tunneling splitting of MZMs is not
negligible, however, the angle ϑ (T ) is deviated from the ideal
value by quantum noises arising from the extra contributions
of the dynamical phase and Berry phase as shown in Eq. (26).
Here, we will clarify the conditions in which intrinsic noise
effects are negligible, and ϑ (T ) approaches π/4.

Solving the TDBdG equation (7) without assuming a
priori existence of MZMs, we obtain the information of
the transformation of quasiparticles after braiding η̂n(T ) =∑

m Vnmη̂m(0), where Vnm is composed of the transition coef-
ficient (C(n)

m ), the dynamical phase, and the transformation of
the quasiparticle basis (Bmk) as in Eq. (25). We compute the
transition probability of the initial state |ψn(0)〉 = |ϕn(R(0))〉,

P(n)
m (T ) ≡ |〈ϕm(R(0))|ψn(T )〉|, (39)

and the accumulation of the geometric phase φgeo,

φgeo(T ) ≡ arg 〈ψn(0)|ψn(T )〉 − φdyn(T ), (40)

after the interchange of vortices, where φdyn(T ) is the dy-
namical phase which the wave function accumulates after
the interchange of vortices. From P(n)

m (T ) and φgeo(T ), we
obtain the explicit expression of the braiding matrix U (T ),
and extract the effect of nonadiabaticiy and tunneling splitting
on quantum noise.

For a class-D superconductor with 2N vortices, as shown
in Eq. (14), N particle-hole symmetric vortex-bound states
ηn construct the 2N -dimensional Fock space spanned by
|a1 . . . aN 〉 (a j = {0, 1}). The 2N degeneracy of the ground
states are lifted by the tunneling splitting of 2N MZMs. For
N = 1, the hybridization of two MZMs leads to the energy

splitting ±E+, where E+ = J12 in Eq. (10). Two Fock states
are introduced as the even-parity state |0〉 and the odd-parity
state |1〉 ≡ η̂

†
+ |0〉 with η̂

†
+ being the creation operator of the

energy eigenstate with +E+. These two states belong to the
different parity eigenstate and thus the transition is prohibited
unless the particle-hole symmetry is broken.

Here, we would like to mention two fundamental proper-
ties of braiding two vortices in class-D topological supercon-
ductors. First, the particle-hole symmetry prohibits transition
between particle-hole symmetric MZMs. This can be ob-
served by considering the case of two vortices in Eq. (29).
Owing to the localized nature of the zero-energy vortex-bound
states, the diagonal matrix elements �nn are exponentially
small with respect to R/ξ . In the case of two vortices, the
Berry connection matrix results in

�nm(t ) = 0, (41)

i.e., i∂tC(n)
m (t ) = 0. This implies that the fluctuation of the

fermion parity P̂ is prohibited by the particle-hole symmetry.
Another fundamental property is that when two vortices

are braided, the MZM acquires both the geometric phase and
dynamical phase. The former represents the transformation
of the quasiparticle basis [the B matrix in Eq. (25)]. The
latter is attributed to the effect of tunneling splitting of MZMs
and results in an extra phase, which may generate a non-
negligible error during braiding protocols [65]. According to
the braiding rule of strict MZMs, the wave function of the
MZM acquires the π/2 phase shift due to the geometric phase
〈ψ (0)|ψ (T )〉 = e±iπ/2, which is independent of the detail of
braiding operation such as period and trajectories of vor-
tices. This can be obtained by introducing a complex fermion
composed of two hybridized MZMs (γ̂ 1

+, γ̂ 2
+) as η̂+ = (γ̂ 1

+ +
iγ̂ 2

+)/2. A vortex is accompanied by the branch cut which
defines the 2π phase jump of the order parameter attaching to
the vortex singularity. In exchanging two vortices, the MZM
moving across the branch cut experiences the phase shift by
π and the Majorana operators are transformed as γ̂ 1

+ → γ̂ 2
+

and γ̂ 2
+ → −γ̂ 1

+. The complex fermion then changes from
η̂+(0) = (γ̂ 1

+ + iγ̂ 2
+)/

√
2 to η̂+(T ) = e−iπ/2η̂+(0), which is

accompanied by the extra phase factor e−iπ/2. Hence, the
accumulation of the U(1) phase after braiding operation

|φgeo(T )| = π/2 (42)

serves as a direct signature that the braiding dynamics is
governed by Eq. (38) with ϑ = π/4. The deviation of the
accumulated quasiparticle phase from Eq. (42) implies that
ϑ (T ) in the braiding matrix is deviated from π/4, and the
accumulation of extra phases due to the adiabaticity and
quasiparticle tunneling gives rise to intrinsic errors in the
non-Abelian statistics.

To evaluate the geometric phase φgeo and the braiding
matrix in Eq. (38), we perform the numerical simulation of
the TDBdG equation (7). We also compute Eq. (19) to obtain
the instantaneous eigenstates at t . We impose the open bound-
ary conditions at the edges of the two-dimensional lattice.
Figures 3(a) and 3(b) show the two-dimensional network of
the trijunctions, where � denotes the phase of the supercon-
ducting order parameter. As shown in Fig. 3(c), the braiding
operation can be implemented by linearly changing � in the
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FIG. 3. (a) Schematics of the U(1) phase configuration of the
superconducting order parameter for two-vortex simulation. (b) Do-
main size of calculated systems. (c) Motion of vortex singularities
with changing �. (d), (e) Spatial profiles of quasiparticle wave
functions

∑
σ [|ui,σ |2 + |vi,σ |2], in the |ϕ−E1 〉 and |ϕ−E2 〉 states when

� = 0. The former (latter) is identified as the vortex (edge) bound
state.

central island from 0 to 2π , as

�(t ) = 2πt/T . (43)

We first prepare the initial state |ψn(t = 0)〉 by diagonaliz-
ing HBdG in Eq. (19) with the order-parameter configuration
in Fig. 3(a) with �(t = 0) = 0. Figures 3(d) and 3(e) show
the wave functions of the lowest (E1/t0 = 1.643 × 10−6)
and second lowest eigenstates (E2/t0 = 2.061 × 10−2), which
are tightly bound at the vortex and edge, respectively. Nu-
merically solving the TDBdG equation (7) with the given
initial state |ψn(t = 0)〉, we simulate the braiding dynam-
ics of two vortices. The spatial profiles of the quasiparticle
wave functions during braiding operation,

∑
σ |ui,σ (t )|2 +

|vi,σ (t )|2, are displayed in Fig. 4(c), where |ψ (t )〉 =
[ui,↑(t ), ui,↓(t ), vi,↑(t ), vi,↓(t )]T. The two pronounced peaks
follow the time evolution of the vortex singularities generated
by the evolution of �(t ). At t = T , the positions of two peaks
return to the original positions of vortex singularities, while
we will show below that the wave functions acquire an extra
phase, and cannot return to the original form. In Fig. 4(a),
we plot the low-lying quasiparticle spectrum of the instanta-
neous HBdG[R(t )] as a function of t . The vortex-bound states
stay around the zero energy in the whole t , and the nonzero
energy states correspond to the edge bound states. We note
that the edges are well spatially separated from the vortex

FIG. 4. (a) Evolution of the instantaneous eigenenergies with
respect to the phase change of the center domain �(t ). (b) In-
stantaneous eigenenergies of splitting MZMs, where the maximum
splitting occurs at � = π . (c) Time evolution of the quasiparticle
wave functions

∑
σ [|ui,σ (t )|2 + |vi,σ (t )|2], obtained by solving the

TDBdG equation (7). This can be seen in the Supplemental Material
[72].

singularities, and the hybridization is negligible during the
braiding dynamics. Figure 4(b) shows the enlarged spec-
trum within |E | < 3.0 × 10−6 corresponding to the splitting
energies +E+ and −E+ induced by quasiparticle tunneling
between two vortex singularities.

In the numerical simulation, we take the period T of the
braiding protocol to satisfy the adiabatic process in Eq. (15)
and the nonadiabatic process in (27) within the splitting
MZMs. Thus, the braiding period T must satisfy the condition

max [δEM(t )] � 1/T � min [δEexc(t )], (44)

where δEM(t ) is the scales of the splitting energies of MZMs,
and δEexc(t ) is the energy difference between the lowest-
energy (splitting MZM) state and lowest non-Majorana state
(the higher CdGM state or edge state). The upper and lower
bounds of the braiding period are determined from the in-
stantaneous quasiparticle spectrum. As seen in Fig. 4(a), the
energy difference between the Majorana band and excited
states is almost constant on t . As the splitting of MZMs has
the maximum value when � = π , the upper bound of T is
set to the maximum splitting energy. Therefore, the condition
of T is given by 50 � T � 6.1 × 105, and T in the numerical
simulation is set to T = 1500t−1

0 , where dt = 0.003t−1
0 . We

set |ϕ−E1 (R(0))〉 as the initial state at t = 0. The numeri-
cal result of the interchange of two vortices shows that the

054504-7



SANNO, MIYAZAKI, MIZUSHIMA, AND FUJIMOTO PHYSICAL REVIEW B 103, 054504 (2021)

FIG. 5. Time evolution of the phase difference ψdiff (t ) in the
|ϕ−E1 〉 state (a) and the |ϕ+E1 〉 state (b) in the clockwise (green) and
counterclockwise (purple) interchange operation of two vortices.

transition probability from the initial (−E1) state to the
particle-hole symmetric (+E1) states is found to be

P(−)
+ = | 〈ϕ+E1 |ψ (T )〉 |2 = O(

10−16t−1
0

)
, (45)

P(−)
− = | 〈ϕ−E1 |ψ (T )〉 |2 = 0.997. (46)

This result is consistent with the transition rule in Eq. (29),
where the direct transition between splitting MZMs in N = 1
is protected by the particle-hole symmetry.

We now extract the dynamical and geometric phases from
the numerical simulation of braiding vortices. The accumula-
tion of the phase in braiding dynamics is given as

φdiff (t ) = arctan

{
Im 〈ψ (0)|ψ (t )〉
Re 〈ψ (0)|ψ (t )〉

}
. (47)

Figures 5(a) and 5(b) show the time evolution of the phase
difference φdiff (t) in |ϕ−E1〉 and |ϕ+E1〉, respectively. Here,
we plot φdiff (t ) for the counterclockwise (purple) and clock-
wise (green) rotation of vortices, which can be implemented
by changing the phase �(0) = 0 → �(T ) = 2π and �(0) =
0 → �(T ) = −2π in Fig. 3(a), respectively. We find that
after interchange operation the vortex-bound states accumu-
late the phase |φdiff (T )| = 1.572 ≈ π/2, which contains the
contributions of both the geometric phase and the dynam-
ical phase. From the energy spectrum and braiding period
T = 1500t−1

0 , the contribution of the dynamic phase factor to
φdiff (T ) is estimated as O(10−3). As T increases, the braiding
dynamics approaches the adiabatic regime T � δE−1

M , and
the noise effect φdiff (T ) − π/2 is induced by the dynamical
phase. In Fig. 5, it is seen that φdiff (t ) abruptly jumps around
t = 3T/2. This is attributed to the peculiarity of the trijunction
model in Fig. 3(a), where the signs of vorticities of both vortex
singularities after the period are inverted from those in the
initial state. However, it turns out that the sign flip of vorticity
does not affect the phase accumulation of vortex-bound states.

The counterclockwise motion of vortices is the time-
reversal symmetric operation of the clockwise one. The
quasiparticles along the two trajectories acquire geometric
phase with opposite sign while accumulating the same dy-
namical phase. To extract the geometric phase from φdiff ,
therefore, we decompose φclock

diff (T ) and φcount
diff (T ) accumu-

lated by the clockwise and counterclockwise interchange

FIG. 6. Transition probabilities P(−)
± (a) and the geometric phase

φgeo (b) as a function of the period of the braiding operation T . In
Sec. III, we have discussed the numerical simulation of braiding
vortices with T = 1500t−1

0 which is denoted by the dashed line in
(a).

as

φclock
diff (T ) = φgeo + φdyn, (48)

φcount
diff (T ) = −φgeo + φdyn. (49)

The numerical simulation of braiding two vortices shows that
the accumulated geometric phase coincides with the expected
value π/2 within numerical accuracy,

φgeo = [φclock
diff (T ) − φcount

diff (T )]/2 = −1.570 79. (50)

Hence, the deviation of the accumulated phase from π/2
is attributed to the dynamical phase stemming from the hy-
bridization of MZMs.

After the interchange of two vortices, the lowest vortex-
bound quasiparticle state accumulates the geometric phase
φgeo ≈ π/2 and the dynamical phase η̂+(T ) = ieiδφη̂+(0).
The deviation of the accumulated phase δφ ≡ φdiff (T ) −
π/2 ≈ φdyn is attributed to the dynamical phase due to the in-
teraction of MZMs. The interchange of vortices generates the
transformation of the Majorana operators γ̂ 1

+(t ) ≡ [η̂+(t ) +
η̂

†
+(t )]/

√
2 and γ̂ 2

+(t ) ≡ −i[η̂+(t ) − η̂
†
+(t )]/

√
2 as

γ̂ 1
+(T ) = − cos(δφ)γ̂ 2

+(0) − sin(δφ)γ̂ 1
+(0), (51)

γ̂ 2
+(T ) = cos(δφ)γ̂ 1

+(0) − sin(δφ)γ̂ 2
+(0). (52)

This braiding dynamics of quasiparticles is represented by the
braiding matrix U (T ) in Eq. (38) with

ϑ (T ) = π

4
− δφ. (53)

Hence, δφ is a possible source of quantum disturbance of non-
Abelian braiding dynamics.

In Fig. 6, we compute the transition probability P(−)
± and

the noise of the accumulated phase δφ as a function of the
braiding period T . We find that the transition probabilities are
P(−)

− ≈ 1 and P(−)
+ ≈ 0, and the the noise of the accumulated

phase is negligible δφ � 1, when the braiding period satisfies
1000t−1

0 � T 10 000t−1
0 . For T � 1000t−1

0 , however, P(−)
− sig-

nificantly decreases with increasing the speed of the braiding
operation. The depletion of the norm P(−)

− ≡ | 〈ϕ−E1 |ψ (t )〉 |2
is attributed to the nonadiabatic transition to the higher CdGM
states. These results numerically demonstrate that when the
braiding operation satisfies the conditions in Eqs. (15) and
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(27), the noise effect due to the interaction of neighboring
MZMs is negligible, and the non-Abelian braiding dynamics
can be successfully accomplished as in Eq. (38) with ϑ (T ) ≈
π/4. We also note that for T � 10 000t−1

0 , the transition
probability between the particle-hole symmetric states P(−)

+ ≡
| 〈ϕ+E1 (0)|ψ (t )〉 |2 exponentially increases with respect to T .
This corresponds to the adiabatic regime that the braiding
period is slower than the timescale of the energy splitting of
MZMs, T � δE−1

M ∼ O(105t−1
0 ). As the adiabatic regime is

approached, the braiding dynamics of quasiparticles signifi-
cantly accumulates the dynamical phase, which gives rise to
serious errors in the braiding matrix U (T ) from ϑ (T ) = π/4.

IV. BRAIDING DYNAMICS IN FOUR-VORTEX SYSTEMS

In this section, we consider the braiding dynamics of sys-
tems with four vortices. Let us first consider an ideal situation
that vortices are well separated from each other, and each
vortex hosts a single MZM. Let γ̂ i be the Majorana opera-
tor bound at the ith vortex (i = 1, 2, 3, 4), and ĉ12 = (γ̂ 1 +
iγ̂ 2)/

√
2 and ĉ34 = (γ̂ 3 + iγ̂ 4)/

√
2 be the operators of com-

plex fermions. The two-dimensional Fock space is spanned
by the degenerate ground states |00〉 and |11〉 = ĉ†

12ĉ†
34 |00〉,

which defines a single qubit. The manipulation of the qubit
can be implemented by the interchange of ith and jth vortices
Ui j , which is defined in Eqs. (18) and (38). The operation
U12(T ) leads to the π/4 phase rotation of the qubit, while the
operations U13(T ) and U13(2T ) = [U13(T )]2 implement the
Hadamard gate |00〉 → (|00〉 + |11〉)/

√
2 and the NOT gate

|00〉 → |11〉, respectively.
Here, we examine the noise effect on non-Abelian statistics

of vortices and quantum gates by numerically simulating the
TDBdG equation with four vortices. In this section we present
the numerical simulation in the junctions of s-wave supercon-
ductors with the Rashba SOI. The braiding dynamics in the
Fu-Kane model, which is the heterostructure of a topologi-
cal insulator and an s-wave superconductor, is shown in the
Appendix. As the zero-energy vortex-bound states in class-D
topological superconductors are protected by a Z2 invariant,
and the quasiparticle tunneling between neighboring vortices
during braiding operation causes the non-negligible splitting
of the ground states. To address the effect of quasiparticle
hybridization, we consider the four-vortex system shown in
Fig. 7(a), which is composed of a two-dimensional array of
the superconducting domains with different U(1) phases. To
exclude the contribution of edge states, we impose the peri-
odic boundary condition. The size of the unit cell is Lx × Ly

and the periodic boundary conditions along the x and y direc-
tions are imposed as

�̂(ix = Lx, iy) = �̂(ix = 1, iy = iy + Ly/2), (54)

�̂(ix, iy = Ly) = �̂(ix, iy = 1), (55)

respectively. Below we mainly show the numerical results
for Lx = 52 and Ly = 104 [see Fig. 7(b)]. As shown in
Fig. 7(c), the phase configuration at � = 0 hosts the four
vortex singularities labeled by “1,” “2,” “3,” and “4.” Without
loss of generality, we take the condition D12, D34 < D13, D24,
where 1-2 and 3-4 vortices are tightly paired. In the numeri-
cal calculation, we set D12 = D34 = 20 and D13 = D24 = 32,

FIG. 7. (a), (b) Configuration of four vortices made from super-
conducting junctions for numerical simulation of braiding dynamics.
The lines with same color are identified by the periodic boundary
conditions in Eqs. (54) and (55). The dashed region is the unit cell
of trijunction network and its numerical setup in (b) satisfies the
condition D12, D34 < D13, D24. (c) The advance of � in a supercon-
ducting domain interchanges vortex singularities labeled by “1” and
“3.” (d), (e) Spatial profiles of the quasiparticle wave functions with
the energy −E1 and −E2,

∑
σ [|ui,σ |2 + |vi,σ |2], where the U(1) phase

is set to be � = −2π .

where D12 and D34 (D13 and D24) are the intrapair (interpair)
distance. Without loss of generality, we take the condition
D14, D23 < D13, D24. The set of other parameters is same as
that in Sec. III. The rotation of the superconducting phase �

interchanges the interpair vortex singularities labeled by “1”
and “3” in a counterclockwise direction. We start with � =
−2π and evolve � to 2π to implement the twice interchange
of “1” and “3” vortex singularities.
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FIG. 8. (a) Evolution of the instantaneous eigenenergies with
respect to the U(1) phase �. The lower bound of the braiding period
T is determined by the inverse of the minimum splitting between
MZMs and the higher CdGM states around � = ±π , δE−1

CdGM(t ).
(b) Instantaneous eigenenergies of splitting MZMs (Majorana band),
where the inverse of the maximum splitting occurs around � =
±π/150, δE−1

M (t ), determines the upper bound of T . (c) Time evolu-
tion of the quasiparticle wave functions

∑
σ [|ui,σ (t )|2 + |vi,σ (t )|2] is

obtained by solving the TDBdG equation (7). This can be seen in the
Supplemental Material [72].

When the intervortex distance is macroscopically large, the
ground states are doubly degenerate and the braiding of inter-
pair vortices can manipulate the degenerate ground states. In
numerical calculation, however, the finite-size effect gives rise
to the quasiparticle tunneling between neighboring vortices
and the hybridization of MZMs hosted by each vortex. The
splitting energy levels of four MZMs are referred to as ±E1

and ±E2, where E1 < E2. Figures 7(d) and 7(e) show the
quasiparticle wave functions of the lowest (E1/t0 = 6.118 ×
10−5) and second lowest (E2/t0 = 6.155 × 10−5), which are
tightly bound at vortex singularities. Figure 8(a) also shows
the instantaneous eigenenergies of the BdG Hamiltonian with
varying � from −2π to 2π . When � = ±π , the energy-
level spacing between the Majorana band and higher CdGM
states, δECdGM(t ), has the minimum value, which defines the
lower bound of the braiding period T . Figure 8(b) shows
the quasiparticle energy spectrum around zero energy, i.e.,
the Majorana band. The energy width of the Majorana band
δEM(t ) becomes maximum at � = ±π/150. This determines
the upper bound of T . Hence, the condition of the braiding
period T is evaluated as 1.77t−1

0 < T < 2.7 × 106t−1
0 . In nu-

merical simulation of the TDBdG equation (7), we take the
braiding period as T = 1440t−1

0 and dt = 0.003t−1
0 .

We now present the numerical simulation of the braid-
ing dynamics of η̂

†
E−1

η̂E−2 . We compute the TDBdG equation
(7), with the initial conditions |ψ (t = 0)〉 = |ϕE−1〉 and
|ψ (t = 0)〉 = |ϕE−2〉. The U(1) phase is evolved from �(t =

FIG. 9. (a), (b) Projections of |ψ (t )〉 onto the instantaneous
eigenstates |ϕEn (�(t ))〉, where the initial states in (a) and (b) are
|ϕ−E1 (�(0))〉 and |ϕ−E2 (�(0))〉, respectively. (c), (d) Projection of
|ψ (t )〉 onto the encoded state |ϕ−E1 (�(0))〉 (c) and |ϕ−E2 (�(0))〉
(d). The twice interchange of vortices (t = 2T ) causes the transition
of the quasiparticle states with −E1 and −E2 to the eigenstates
with +E2 and +E1, respectively. This transition implies the unitary
transformation of the encoded state |00〉 to |11〉 ≡ η̂†

E1
η̂†

E2
|00〉.

0) = −2π to �(t = 2T ) = 2π linearly on time, �(t ) =
−2π + 2πt/T . Figure 8(c) shows the time evolution of the
quasiparticle wave functions from t = 0 to T . The peaks of
the quasiparticle wave functions trace the motion of vortex
singularities driven by the U(1) phase rotation. The numerical
results thus demonstrate that the interchange of vortices can
be implemented by the rotation of the U(1) phase �.

To unveil the quasiparticle dynamics during the braiding
of vortices, we compute the projection of the time evolution
of the encoded (initial) state |ϕEn (�(0))〉 onto the instanta-
neous eigenstates. Figures 9(a) and 9(b) show the projections
of |ψ (t )〉 onto the instantaneous eigenstates |ϕEn (�(t ))〉,
| 〈ϕEn (�(t ))|ψEm (t )〉 |2, where the initial states in (a) and (b)
are |ϕ−E1 (�(0))〉 and |ϕ−E2 (�(0))〉, respectively. The quasi-
particle during the braiding operation is composed of the
instantaneous eigenstates with −E1 and +E2 (−E2 and +E1).
The direct transition to the particle-hole symmetric eigenstate
+E1 (+E2) is never observed, and the eigenstate with the
energy +E1 (+E2) does not contribute to the dynamics of −E1

(−E2). This observation is understandable from the differen-
tial equation with the Berry connection matrix

i∂tC(t ) = B̂(t )C(t ), (56)
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where C(t ) is (C+E1 ,C−E1 ,C+E2 ,C−E2 ) and B̂(t ) is

B̂(t ) ≡
(

0̂2×2 ÂE2,E1

Â†
E2,E1

0̂2×2

)
.

As mentioned in Sec. II C, Eq. (41) indicates that direct tran-
sition between pairs is suppressed by PHS, which can be
confirmed by projecting the evolution state |ψ (t )〉 to instan-
taneous eigenstates.

As an important consequence, it can be seen from
Figs. 9(a) and 9(b) that the transition from −E1 (−E2)
to +E2 (+E1) achieves | 〈ϕ+E2 (�(t ))|ψ−E1 (t )〉 |2 =
| 〈ϕ−E1 (�(t ))|ψ−E1 (t )〉 |2 = 0.5 [| 〈ϕ+E1 (�(t ))|ψ−E2 (t )〉 |2 =
| 〈ϕ−E2 (�(t ))|ψ−E2 (t )〉 |2 = 0.5] at t ∼ 3T/4 before the
interchange operation of vortices completes at t = T . Around
t ∼ T/4, the interchanging vortex moves across the branch
cut associated with another interchanging vortex. It is also
seen from Figs. 9(a) and 9(b) that the transition probabilities
| 〈ϕ+E2 (�(t ))|ψ−E1 (t )〉 |2 and | 〈ϕ+E1 (�(t ))|ψ−E2 (t )〉 |2 tend
to be saturated to 1 before t = 2T . These results indicate that
the Hadamard and NOT gates may be accomplished with
small error even if the interchanged vortices do not precisely
return to the initial positions.

We also compute the transition probability of the encoded
(initial) state |ψm(t = 0)〉 = |ϕm(�(t ))〉 to the initial state

P(m)
n (t ) ≡ | 〈ϕn(�(0))|ψm(t )〉 |2, (57)

which is the projection of |ψ (t )〉 onto the encoded state.
Figures 9(c) and 9(d) show the projection of |ψm(t )〉 onto
the quasiparticle states |ϕn(�(0))〉 at t = 0, P(m)

n (t ). The
interchange of vortices at t = T leads to the equal superpo-
sition of the encoded −E1 (−E2) state with the +E2 (+E1)
state. Another interchange operation completely transforms
the encoded −E1 (−E2) state to the +E2 (+E1) state. The
braiding dynamics of “1” and “3” vortices generates the trans-
formation of Bogoliubov quasiparticles as η̂+E1

→ (η̂+E1 +
eiαη̂

†
+E2

)/
√

2 and η̂+E2
→ (η̂+E2 + eiαη̂

†
+E1

)/
√

2. Hence, the
twice interchange operation of the vortices transforms

η̂+E1
η̂+E2

→ η̂
†
+E1

η̂
†
+E2

, (58)

which implies that braiding vortices generate the unitary evo-
lution of the encoded state |00〉 → |11〉.

In Fig. 10, we compute the transition probabilities P−E1
E as

the function of the twice braiding period 2T . Twice braiding
of MZMs shows the transition from initial state to another
degenerate states. We find that the transition probabilities
P−E1

+E2
≈ 1, P−E1

−E1
≈ 0, when the twice braiding period 2T sat-

isfies 1000t−1
0 � 2T � 10 000t−1

0 . For 2T � 1000t−1
0 , P−E1

+E2

remarkably decreases with increasing the speed of the braid-
ing operation. This is caused by the nonadiabatic transition
to the higher vortex-bound states. For 2T > 10 000t−1

0 , P−E1
+E1

is gradually decreasing, while P−E1
−E1

is gradually increasing.
This implies that the braiding dynamics approaches the adia-
batic limit, where the twice braiding period 2T is slower than
the timescale of the energy splitting of MZMs. Thus, in the
adiabatic limit T → ∞, the braiding dynamics does not show
non-Abelian statistics due to the effect of MZM hybridization.

The condition of the braiding operation period T is
1.77 t−1

0 � T � 2.7 × 106 t−1
0 . If one takes spin-orbit coupling

constant as λ = 50 meV, the condition leads to 55.7 fs � T �

FIG. 10. Transition probabilities P−E1
E as the function of the

period of the twice braiding operation 2T . The solid lines with
different colors correspond to the projection onto the eigenstates with
E = ±E2 and ±E1, where the color is same as that in Fig. 9. The
dashed line denotes T = 1440t−1

0 which is the braiding period taken
in Figs. 8 and 9.

85.1 ns. The lower bound represents the condition to avoid
the nonadiabatic transition to the higher CdGM states, which
is determined by the level spacing between CdGM states
δECdGM ∼ �2

0/EF. As an example, we take the values of
the superconducting gap and the Fermi energy in Fe(Se,Te)
as �0 = 1.5 meV [73] and EF ∼ 10 meV [74], which leads
to the level spacing �2

0/EF ∼ 0.23 meV. With these energy
scales, the lower bound in Eq. (1) is estimated as the order of
δE−1

CdGM ∼ 10 ps. In contrast, the upper bound exponentially
increases as a function of the ratio of the intervortex distance
and the superconducting coherence length, and depends on an
applied magnetic field. For the intervortex distance 100 nm
and the vortex core radius 10 nm at B = 1 T in Ref. [29], the
upper bound is estimated as the order of 0.48 s. These two
bounds are well separated and different by several orders of
magnitude with realistic material parameters.

V. CONCLUDING REMARKS

In conclusion, we have demonstrated non-Abelian statis-
tics of vortices in two-dimensional class-D topological
superconductors. An s-wave superconductor with Rashba
spin-orbit coupling, which we mainly consider here, is known
as a prototype of class-D topological superconductors hosting
MZMs. However, such zero-energy states are protected by
a Z2 invariant and fragile against the hybridization due to
the overlap of the wave functions. In this work, we have
numerically solved the TDBdG equation which incorporates
the effect of the quasiparticle tunneling between neighboring
vortices. This calculation does not assume a priori existence
of MZMs. In addition to s-wave superconductors with the
Rashba spin-orbit coupling, we have also presented the nu-
merical simulation of non-Abelian braiding statistics in the
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heterostructure of an s-wave superconductor and a topological
insulator in the Appendix.

In Sec. III, we have demonstrated that the interchange
of two vortices can be implemented by rotating the U(1)
phase in trijunction systems and extracted the geometric phase
from the numerical simulation of braiding dynamics. Owing
to the suppression of direct transition between particle-hole
symmetric eigenstates, the vortex-bound quasiparticles accu-
mulate the nontrivial geometric phase π/2 in the interchange
of two vortices. We have presented the upper and lower
bounds of the braiding timescale, within appropriate period
the non-Abelian braiding statistics obeys U (T ) in Eq. (38)
with ϑ = π/4, irrespective of MZM hybridization.

In Sec. IV, we have also performed the numerical simula-
tion of braiding dynamics in topological superconductors with
four vortices. It has been demonstrated that the quasiparticle
dynamics hosted by vortex singularities obey the non-Abelian
statistics. The numerical simulation shows that the twice inter-
change operation of two vortices gives rise the the transition
of quasiparticle operators η̂+E1

η̂+E2
→ η̂

†
+E1

η̂
†
+E2

, which is
the nature of non-Abelian statistics: |00〉 → |11〉. From the
numerical simulation, we have evaluated the adiabatic and
nonadiabatic errors due to the energy splitting of MZMs and
interactions to the higher-energy CdGM states. The braiding
timescale is determined by the energy gap between MZMs
and CdGM and the energy splitting of MZMs. We find that
the twice interchanging operation of the two vortices does not
show non-Abelian statistics in the region where the braiding
period T is close to the upper limit. This leads to the se-
rious error when the implementation of quantum gate using
Majorana-based qubits.

We would like to point out some issues on the configuration
of superconducting junctions for realizing braiding dynamics
in experiments. The U(1) phase � in the superconducting
island (see Figs. 3 and 7) may be controlled by changing an
external voltage or phase slip [68]. In s-wave superconduc-
tors, however, Josephson current due to the phase difference
between islands flows across domain walls, which may make
such junction thermodynamically unstable. Here, we would
like to mention that Majorana fermions exist in a vortex core
of a d-wave superconductor with an antisymmetric spin-orbit
interaction and a nonzero magnetic field [75], which is pro-
tected by a topological invariant in spite of the presence of
bulk gapless nodal quasiparticles. In high-Tc superconductors,
it has been reported that integer and half-integer Josephson
vortices are trapped in grain boundaries and tricrystal points
[76–78]. Although a d-wave superconductor offers a poten-
tial platform for realizing non-Abelian braiding statistics,
the contribution of gapless nodal quasiparticles may signifi-
cantly disturb the braiding dynamics of MZMs. In addition
to superconducting heterostructures, the iron-based supercon-
ductor Fe(Se,Te) is a prime candidate of bulk topological
superconductors hosting Majorana bound states in vortices
[29,30]. Motion of vortices hosting MZMs might be manip-
ulated by using a spin-polarized STM tip [79] or magnetic
force microscopy [80]. Another important issue, which has
not been discussed here, is the decoherence of the Majorana
qubit due to interaction with thermal environment [81,82],
where the fermion occupation in the Majorana qubit may leak
into the thermal bath. How nodal quasiparticles and thermal

excitations disturb non-Abelian braiding dynamics remains
issues for future research.

Lastly, we would like to mention that the numerical method
presented here is generalizable to the other systems, includ-
ing superconducting nanowires, planar Josephson junctions,
and the other topological classes with symmetry-protected
MZMs [83–85]. In particular, the topological superconduct-
ing phase in proximitized semiconductor nanowires provides
more promising platform for topological quantum compu-
tation. However, the braiding dynamics in the T junction
network of nanowires may suffer intrinsic and extrinsic dis-
turbances. This includes a nonuniformity of the proximitized
superconducting gap introducing geometric dependence to
the dynamical phase, thermally excited quasiparticles, the
fluctuation of fermion parity to the ancilla nanowires, and
gate voltage fluctuations. If a system maintains an antiuni-
tary symmetry T 2 = −1, processing quantum information
with Majorana Kramers pairs is sensitive to local perturba-
tions that cause local mixing of degenerate ground states via
time-dependent symmetry-preserving coupling to bulk quasi-
particles [86,87]. All these may be harmful for the coherence
of Majorana qubits and quantum gates. The ab initio simula-
tion on such decoherence remains as future works. In addition,
another fundamental question arises. How does the particle-
number conservation affect the braiding dynamics and the
performance of topological quantum computation with Majo-
rana zero modes? In accordance with the number-conserving
theory [88,89], the dynamics of Bogoliubov quasiparticles is
inevitably accompanied by the dynamics of Cooper pairs. This
is also a fundamental and important issue to be addressed in
the future.
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APPENDIX: NON-ABELIAN STATISTICS IN THE
FU-KANE MODEL

In this Appendix, we demonstrate non-Abelian statistics in
the Fu-Kane model [64]. The model comprises a topological
insulator with an s-wave superconductor layer, yielding a
proximitized two-dimensional Dirac fermion. This can be a
prototypical system of a topological superconductor hosting
MZMs.

Here we start with the effective Hamiltonian of the Fu-
Kane model HFK [90,91], which is written in the momentum
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space as

HFK =

⎛
⎜⎜⎝

gk − μ Mk �k 0
Mk −gk − mσz 0 0
�∗

k 0 −gtr
−k + μ −Mk

0 0 −Mk gtr
−k + mσz

⎞
⎟⎟⎠,

(A1)
where

gk = 2λ(σy sin kx − σx sin ky), (A2)

Mk = 2τ (2 − cos kx − cos ky), (A3)

δk = iσy�0. (A4)

The Hamiltonian acts on an eight-component Nambu spinor
(c†

↑,1,k, c†
↓,1,k, c†

↑,2,k, c†
↓,2,k, c↓,1,−k,−c↑,1,−k, c↓,2,−k,−c↑,2,−k ),

where c†
σ,i,k is a creation operator of a fermion with spin

σ =↑,↓ and momentum k on the surface i = 1, 2 of the
topological insulator. The diagonal blocks describe the
gapless surface Dirac fermions on the two surfaces of
the topological insulator, and Mk generates an energy gap
in all the Dirac nodes except those at k = (0, 0). An s-wave
superconductivity is induced in one of the surfaces, the
surface “1,” by proximity effect. To study vortex dynamics,
we transform the effective Hamiltonian in the momentum
space to a two-dimensional square lattice in the real space.
The Hamiltonian in Eq. (A1) includes an exchange interaction
on the surface “2,” mσz, which induces a gap in the surface
states. The term is necessary to remove unwanted gapless
excitations from the surface “2” [91].

At μ = 0, the Fu-Kane model maintains the chiral symme-
try with γ 5, and the MZMs have a well-defined chirality. The
symmetry prohibits the hybridization of MZMs with same
chirality, and rigidly protects MZMs with Z topological in-
variant rather than Z2 [92]. The index theorem [93,94] also
ensures that N singly quantized vortices host N MZMs, and
the chiral symmetry prevents MZMs from hybridization. The
deviation from μ = 0 breaks the chiral symmetry, and gives
rise to the hybridization. The MZMs bound at vortices start to
form a band structure.

Here, we discuss braiding dynamics in the Fu-Kane model
with four vortex singularities, where the configuration of four
vortices is same as superconducting junctions in Fig. 7. For
the numerical simulation, we set the parameter τ = 0.9, μ =
4.8, λ = 2.0, m = 0.5, and �0 = 1.6. We consider a system
with four vortices, which hosts two particle-hole symmet-
ric vortex-bound states ±E1 and ±E2 as a consequence of
the hybridization of four MZMs. Figures 11(a) and 11(b)
show the wave function of the lowest (E1/τ = 9.616 × 10−7)
and second lowest (E2/τ = 9.678 × 10−7),

∑
σ [|ui,σ (t )|2 +

|vi,σ (t )|2].
For numerical simulation of braiding vortices, we start with

the initial state |ϕ−E1〉. The braiding period is determined in
the same manner as that in the main text, i.e., the appropriate
period must obey 1.40 × 10τ−1 � T � 2.94 × 105τ−1. The
lower bound is set to prevent MZMs from nonadiabatic cou-
pling to other quasiparticle states with higher energies, while
the upper bound is necessarily to protect non-Abelian braiding
dynamics from errors due to dynamical phase accumulation.
Numerical simulation demonstrates non-Abelian braiding

FIG. 11. (a) The lower bound of the braiding period T is de-
termined by the inverse of the minimum splitting between MZMs
and the higher CdGM states around � = ±π , δE−1

CdGM(t ). (b) In-
stantaneous eigenenergies of Majorana band, where the inverse
of the maximum splitting occurs around � = ±16π/25, δE−1

M (t ),
determines the upper bound of T . (c), (d) Spatial profiles of the quasi-
particle wave function with the energy −E1 and −E2,

∑
σ [|ui,σ |2 +

|vi,σ |2], where the U(1) phase is set to be � = −2π .

dynamics with high accuracy as long as the braiding operation
satisfies the condition.

In Fig. 12(a), we plot the projection of the time-evolved
eigenvector |ψ (t )〉 onto the instantaneous eigenstates and

FIG. 12. Projection of |ψ (t )〉 onto the instantaneous eigenstates
(a) and the encoded state |ϕ−E1 (�(0))〉 (b). where the period T
is fixed to T = 7500τ−1. The twice interchange operation of two
vortices generates the transition of the quasiparticle states with −E1

to the eigenstate with +E2.
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FIG. 13. Transition probabilities P−E1
E as the function of the pe-

riod of the twice braiding operation 2T . The numerical simulation
with T = 7500t−1

0 , which is shown in Fig. 12, is denoted by dashed
line.

the encoded state |ϕ−E1 (�(0))〉 [Fig. 12(b)]. Figure 12(b)
also shows the projection of |ψ (t )〉 onto the encoded state
|ϕ−E1 (�(0))〉, revealing the transition from initial state to
another degenerate ground state: P−E1

E (T ). Similarly with
the numerical simulation in the Rashba model, both figures
demonstrate that the interchange of two vortices in four
vortices gives rise to the transition from −E1 to +E2. The
time-evolved eigenvector is composed of equal contributions

of the −E1 and +E2 instantaneous eigenstates around t =
T/2. This implies that one of the interchanging vortices moves
across the branch cut around t = T/2 and experiences the
abrupt 2π -phase rotation.

In Fig. 13, we compute the transition probabilities P−E1
E

as the function of the twice braiding period 2T . Similarly
with Fig. 10, P−E1

+E2
remarkably decreases for 2T � 10 000τ−1.

This deviation is attributed to the nonadiabatic transition from
MZMs to the higher-energy quasiparticle states, i.e., nonadi-
abatic interaction to environment induces the decoherence of
the Majorana-based qubit. P−E1

−E1
is not gradually decreasing

in Fig. 13. Our numerical results in the Fu-Kane model do not
show the deviation of P−E1

+E2
in the adiabatic limit T � δE−1

M ∼
105. The numerical simulation with the much slower braiding
operation T � 105 is required to realize the adiabatic errors
of non-Abelian braiding statistics in the Fu-Kane model.

Let us discuss the timescale of the braiding dynamics in
iron-based superconductors Fe(Se,Te). The superconducting
gap � of Fe(Se, Te) is observed as � ≈ 1.5 meV [73] and its
Fermi energy EF is EF ≈ 10 meV [74]. By using these values,
the typical energy spacing between the CdGM states is es-
timated as δECdGM ≈ �2/EF = 0.23 meV. The level spacing
determines the lower bound of the braiding period T . In con-
trast, the upper bound exponentially increases as a function of
the ratio of the intervortex distance and the superconducting
coherence length, and depends on an applied magnetic field.
For the intervortex distance 100 nm and the vortex core radius
10 nm at B = 1 T in Ref. [29], MZM hybridization can be
approximated as δEM ∼ � exp(−R/ξ )/R1/2 since topological
surface states of Fe(Se, Te) are observed around the � point
[95]. As shown in Fig. 11(a), the minimum gap from MZMs in
instantaneous energy spectrum is min[δECdGM(t )] = 6.56 ×
10−2 meV. The condition of the braiding period T is given
by 10 ps � T � 0.48 s. The braiding timescale might be
feasible.
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