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Temperature dependence of London penetration depth anisotropy in superconductors
with anisotropic order parameters
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We study the effects of anisotropic order parameters on the temperature dependence of London penetration
depth anisotropy γλ(T ). After MgB2, this dependence is commonly attributed to distinct gaps on multiband
Fermi surfaces in superconductors. We have found, however, that the anisotropy parameter may depend on
temperature also in one-band materials with anisotropic order parameters �(T, kF ); a few such examples are
given. We have also found that for different order parameters, the temperature dependence of �(T )/�(0) can
be represented with good accuracy by the interpolation suggested by Einzel [J. Low Temp. Phys 131, 1 (2003)],
which simplifies considerably the evaluation of γλ(T ). Of particular interest are mixed order parameters of two
symmetries for which γλ(T ) may go through a maximum for a certain relative weight of two phases. Also, for
this case we find that the ratio �max(0)/Tc may exceed substantially the weak-coupling limit of 1.76. It, however,
does not imply strong coupling; rather, it is due to significantly anisotropic angular variation of �.
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I. INTRODUCTION

The London penetration depth λ is one of the major
characteristics of superconductors. Most materials studied
nowadays are anisotropic with complicated Fermi surfaces
and nontrivial order parameters �(k) (k is the Fermi momen-
tum). As a result, λ is also anisotropic; in uniaxial materials
of interest here the λ anisotropy is characterized by the
anisotropy parameter γλ = λc/λa (a and c stand for principal
crystal directions). For a long time γλ has been considered
a temperature-independent constant. With the discovery of
MgB2 [1] it was found that γλ(T ) increases on warming [2]
due to two different gaps on two groups of Fermi surface
sheets [3,4]. Since then, if a T dependence of γλ is observed,
it is commonly attributed to a multigap type of superconduc-
tivity. We show below that, in fact, γλ depends on T also in
the one-band case if the order parameter � is anisotropic even
on isotropic Fermi surfaces.

We focus on the clean limit for two major reasons. Com-
monly, after discovery of a new superconductor, an effort is
made to obtain single crystals as clean as possible since they
are better for studying the underlying physics. In addition,
in general, the scattering suppresses the anisotropy of λ, the
quantity of interest in this work.

Although our formal results are written in the form appli-
cable to any Fermi surface, we consider only Fermi spheres
to separate effects of the order parameter symmetry on the
anisotropy of λ from the effects of anisotropic Fermi surfaces.
Another reason is experimental: There are materials currently
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studied with a nearly isotropic upper critical field but with
unusual nonmonotonic γλ(T ) [5].

To our knowledge, up to now, theoretical work on the
temperature dependence of γλ has been focused on evaluation
of γλ at T = 0 and Tc [6]. Assuming monotonic behavior
of γλ(T ), the knowledge of γλ at the end points suffices for
a qualitative description of this dependence. This assump-
tion, however, is challenged by recent data on nonmonotonic
γλ(T ) [5].

To evaluate the temperature dependence of the penetra-
tion depth and its anisotropy, one first has to calculate the
equilibrium order parameter �(T ), a nontrivial and time-
consuming task because one has to solve the self-consistency
equation of the theory (the gap equation). Instead, one can
employ a version of the interpolation scheme of Einzel [7–9],
which provides an accurate representation of the BCS gap
dependence �(T ) for various order parameter symmetries.
Moreover, we show that, in fact, the reduced �(T )/�(0)
as a function of reduced temperature t = T/Tc has a nearly
universal form for all order parameters we tested. This sim-
plifies remarkably the task of evaluating �(T ). We note,
however, that all temperature-dependent results shown after
Fig. 1 were obtained using numerically exact solutions of the
self-consistency equation (8).

II. APPROACH

Weak-coupling superconductors are described by a system
of quasiclassical Eilenberger equations [10]. For a clean ma-
terial in the absence of field, the Eilenberger functions f and
g satisfy [10]

0 = � g − ω f , (1)

1 = g2 + f 2. (2)
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FIG. 1. The order parameter �(T )/�(0) according to Eq. (14).
The black curve is the isotropic s wave, � = 1. The red curve is for
the clean sample with polar nodes, � = √

3/2 sin θ , with θ being the
polar angle on the Fermi sphere. The green curve is for the d wave
with � = √

2 cos 2ϕ, and the blue one is for � ∝ (sin θ − cos 2ϕ).
The inset shows the difference between exact �(t ) obtained by
numerically solving the self-consistency Eq. (8) and interpolations
(14) for the indicated order parameters.

Here, � is the superconducting order parameter, which
might depend on the position at the Fermi surface, and ω =
πT (2n + 1) are Matsubara frequencies; hereafter h̄ = 1 and
kB = 1. This system yields

f = �/
√

�2 + ω2, g = ω/
√

�2 + ω2. (3)

All equilibrium properties of uniform superconductors can be
expressed in terms of f and g.

Within the separable model [11], the coupling responsible
for superconductivity is assumed to have the form V (k, k′) =
V0�(k)�(k′), which leads to

�(T, k) = �(T )�(k). (4)

The function �(k) is normalized [12]:

〈�2〉 = 1, (5)

where 〈· · · 〉 stands for averaging over the Fermi surface. This
normalization is convenient, enough to mention the condensa-
tion energy at T = 0 [13]:

F (0) = N (0)

2
〈�2(0)〉 = N (0)

2
�2(0), (6)

where N (0) is the density of states per spin.
The self-consistency equation which provides the

temperature-dependent order parameter �(T ) reads [4]

�

2πT
ln

Tc

T
=

∑
ω>0

(
�

ω
− 〈� f 〉

)
, (7)

with Tc being the critical temperature. The dimensionless form
of this equation is

− ln t =
∞∑

n=0

(
1

n + 1/2
−

〈
�2√

(n + 1/2)2 + �2δ2/t2

〉)
, (8)

where n is the Matsubara integer, t = T/Tc, and δ = �/2πTc.
Clearly, the solution δ(t ) depends on the anisotropy of the
order parameter given by �.

In particular, one obtains [8,13] (see also the Appendix)

�(0)

Tc
= π

eγ
e−〈�2 ln |�|〉. (9)

If T → Tc, Eq. (8) yields

�2(T ) = 8π2T 2
c

7ζ (3) 〈�4〉
(

1 − T

Tc

)
. (10)

Einzel constructed a remarkably good approximation to the
T dependence of the order parameter [7–9]:

�(t )

�(0)
= tanh

(
Tc

�(0)

√
8π2(1 − t )

7ζ (3)〈�4〉 t

)
. (11)

A more accurate interpolation can be constructed by includ-
ing terms of the order (1 − t )2 [9].

For t → 1 we readily obtain Eq. (10). If t → 0, �(t ) →
�(0) and deviates from �(0) exponentially slowly due to the
tanh function.

At low temperatures, one uses tanh x ≈ 1 − 2e−2x to ob-
tain, from Eq. (11),

�(t )

�(0)
= 1 − 2 exp

(
− Tc

�(0)

√
8π2

7ζ (3)〈�4〉 t

)
. (12)

This differs from the BCS result,

�(t )

�(0)
= 1 −

√
2πT

�(0)
e−�(0)/T . (13)

Although Eq. (11) does not reproduce correctly an exponen-
tially small deviation of � from �(0) at low temperatures, it
generates there a flat behavior so that in numerical evaluation
this difference may not matter.

Using �(0)/Tc from Eq. (9), we rewrite (11) in the form

�(t )

�(0)
= tanh

(
eγ

√
8(1 − t )

7ζ (3) t

e〈�2 ln |�|〉√
〈�4〉

)
. (14)

Hence, we can evaluate the ratio �(t )/�(0) = �(t )/�(0) for
any particular �.

The order parameter �(t )/�(0) for point polar nodes, nor-
malized to its value at T = 0, is shown in Fig. 1 by the red
curve. The isotropic case is shown in black for comparison,
the green curve is for the d wave, and the blue curve is for a
mixed order parameter. One can say that in the chosen reduced
units all these curves overlap within a few percent accuracy.
One can also say that one cannot deduce the type of order
parameter from the measured ratio �(t )/�(0).

III. γλ(T )

To consider the system response to a weak field, one turns
to the full set of Eilenberger equations:

v� f = 2�g − 2ω f , (15)

−v�∗ f + = 2�∗g − 2ω f +, (16)

g2 = 1 − f f +. (17)
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Here, v is the Fermi velocity, � = ∇ + 2π iA/φ0, A is the
vector potential, and φ0 is the flux quantum; f and g now
depend on coordinates.

Weak supercurrents and fields leave the order parameter
modulus unchanged but cause the condensate to acquire an
overall phase χ (r). We therefore look for perturbed solutions
of the Eilenberger system in the form

� eiχ , ( f0 + f1) eiχ , ( f0 + f +
1 )e−iχ , g0 + g1, (18)

where f0 and g0 refer to the uniform zero-field state discussed
above and the subscript 1 marks corrections due to small
perturbations v�. In the London limit, the only coordinate
dependence is that of the phase χ ; that is, f1 and g1 are r
independent too.

The Eilenberger equations (15)–(17) provide the correc-
tions among which we need only g1:

g1 = i f 2
0 vP

2(�0 f0 + ωg0)
= i f 2

0

2β0
vP. (19)

Here, the supermomentum P = ∇θ + 2πA/φ0 ≡ 2π a/φ0,
with the “gauge-invariant vector potential” a, and β2

0 = ω2 +
�2

0. Substituting this in the general expression for the current
density

j = −4π |e|N (0)T Im
∑
ω>0

〈vg〉 (20)

and comparing the result with the London current 4π ji/c =
−(λ2)−1

ik ak , we obtain [4]

(λ2)−1
ik = 16π2e2N (0)T

c2

∑
ω

〈
�2vivk

β3

〉
. (21)

Since only unperturbed values of � and β enter this expres-
sion, the subscript 0 is omitted.

Hence, we have for the T dependence of the anisotropy
γ 2

λ (T ) = λ2
cc/λ

2
aa of uniaxial materials

γ 2
λ (t ) =

〈
�2v2

a

∑
ω[ω2 + �2(t )�2]−3/2

〉
〈
�2v2

c

∑
ω[ω2 + �2(t )�2]−3/2

〉 . (22)

In particular, we have

γ 2
λ (0) =

〈
v2

a

〉
〈
v2

c

〉 , γ 2
λ (Tc) =

〈
�2v2

a

〉
〈
�2v2

c

〉 . (23)

The result for γ 2
λ (Tc) is originally due to Gor’kov and Melik-

Barkhudarov [14].
Thus, the general scheme for evaluation of λ(T ) consists

of two major steps: first, evaluate the order parameter �0(T )
in the uniform zero-field state, then use Eq. (21) with a proper
averaging over the Fermi surface. The sum over Matsubara
frequencies is fast convergent and is done numerically, except
in limiting situations for which analytic evaluation is possible.

We now consider a few cases of different order parameters
on a one-band Fermi sphere and show that, depending on the
order parameter, the anisotropy γλ(T ) might increase or de-
crease monotonically on warming or even be a nonmonotonic
function of T .

FIG. 2. Anisotropy parameters γλ vs the reduced temperature t
for the order parameter with polar point nodes � = √

3/2 sin θ (blue
line), the equatorial line node

√
3 cos θ (green line), and the d wave√

2 cos 2ϕ (dashed red line). The curve 1 + cos 2ϕ for mixed s and
d order parameters increases with t , despite the fact that s and d
separately have t-independent γλ = 1.

A. d wave

For the d wave � = √
2 cos 2ϕ. We find 〈�2 ln |�|〉 =

(1 − ln 2)/2 and �(0)/Tc = √
2πe−0.5−γ ≈ 1.513, whereas

�max(0)/Tc = (�(0)/Tc)
√

2 = 2.14. The ratio that enters in-
terpolation (14) is

ρ = e〈�2 ln �2〉/2

〈�4〉 ≈ 0.78. (24)

To evaluate γλ(t ), we need the t dependence of the order
parameter given in Eq. (14). The numerical evaluation then
gives γλ(t ) = 1, in agreement with earlier calculations of end
points γλ(0) = γλ(Tc) = 1 [6].

B. Polar nodes on the Fermi sphere

We model this case by setting � = √
3/2 sin θ . We readily

find γ 2
λ (Tc) = 2. Further, we obtain

1

2
〈�2 ln �2〉 = ln 216 − 5

6
≈ 0.0626 (25)

and the parameter ρ ≈ 0.89. The anisotropy parameter eval-
uated numerically as described above is shown by the blue
curve in Fig. 2, which shows that γλ(t ) increases. If � ∝
cos θ , the same numerical procedure yields the decreasing
γλ(t ). Interestingly, a pure d-wave order parameter � =√

2 cos 2ϕ as well as pure s-wave order parameter � = 1
produce a temperature-independent γλ(t ) = 1, whereas their
mixture, e.g., 1 + cos 2ϕ, gives an increasing γλ(t ).

To check the accuracy of Einzel’s approximation for �(T )
we did all the calculations based on Eilenberger’s theory per
se, and we found no noticeable differences.

C. Equatorial line node

This type of line node was suggested as possible in some
Fe-based materials [15,16] and observed in angle-resolved
photoemission spectroscopy (ARPES) experiments [17]. For

054502-3



V. G. KOGAN AND R. PROZOROV PHYSICAL REVIEW B 103, 054502 (2021)

FIG. 3. γλ(Tc ) vs a for the order parameter � = �0(a + cos 2ϕ).

the order parameter � = √
3 cos θ we evaluate

1

2
〈�2 ln �2〉 = ln 27 − 2

6
≈ 0.216, (26)

and the parameter ρ ≈ 0.69 . The corresponding γλ(t ) is
shown by the green curve in Fig. 2. Thus, on the basis of
this and the previous example we conclude that, depending on
the order parameter, γλ may increase or decrease on warming
even in one-band systems.

D. � = �0(a + cos 2ϕ)

� = �0(a + cos 2ϕ) corresponds to a mixed s- and d-
wave order parameter, a possibility considered for cuprates
(see, e.g., [18,19]).

The anisotropy parameter γλ(Tc) vs a is shown in Fig. 3.
Since on a Fermi sphere γ 2

λ (0) = 1, we see that for a > 0
the anisotropy γλ(T ) grows on warming, whereas for negative
a it decreases. Surprising at first sight, this means that for
mixed order parameters γλ(T ) depends on relative phases of
the order parameters in the mixture; in this case for a < 0 the
phase difference is π .

The top curve in Fig. 4 shows the parameter 〈�4〉, which
affects the specific heat jump [9,18,19],

�C

Cn(Tc)
= 12

7ζ (3)〈�4〉 ≈ 1.426

〈�4〉 . (27)

The bottom curve is the parameter 〈�2 ln |�|〉, which enters
the ratio �(0)/Tc, Eq. (9). Since this parameter is small at all
a, one has

�(0)/Tc ≈ 1.76(1 − 〈�2 ln |�|〉). (28)

In fact, 〈�2 ln |�|〉 < 1 in all examples we have considered.

E. � = �0(a + sin θ)

� = �0(a + sin θ) corresponds to a mixture of the s wave
and the phase with polar nodes. It is instructive to study this
case because positive a’s make the condensate a nodeless
anisotropic s wave, whereas a < 0 turns the polar nodes into
line nodes along certain altitude circles. We start with the

FIG. 4. The top curve is 〈�4〉 vs a, and the bottom curve is
〈�2 ln |�|〉 for the order parameter � = �0(a + cos 2ϕ).

normalization 〈�2〉 = 1, which yields

�2
0 = 2

4/3 + πa + 2a2
. (29)

Next, we calculate

〈�4〉 = 4

(4/3 + πa + 2a2)2
〈(a + sin θ )4〉

= 2
16/15 + 8a2 + 2a4 + 3πa/2 + 2πa2

(4/3 + πa + 2a2)2
. (30)

This function is plotted in Fig. 5. The maximum of this curve
at am ≈ −0.888 means that the order parameter near Tc in
Eq. (10) along with the specific heat jump is suppressed at
am by about a factor of 5 relative to the pure s wave.

It is instructive also to plot the ratio �(0)/Tc, which is
traditionally considered a distinguishing parameter for weak
and strong couplings. If the order parameter is anisotropic,
�(0)max/Tc is usually measured. Using Eq. (9), we obtain

�(0; a, θ )

Tc
= �(0)�(a, θ )

Tc
= π�

eγ
e−〈�2 ln |�|〉. (31)

FIG. 5. 〈�4〉 and �2 ln |�| vs a for the order parameter
� = �0(a + sin θ ).
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FIG. 6. |�max(0)|/Tc vs a for θ = 0 (red dashed curve) and
θ = π/2 (black curve).

The absolute value of this ratio as a function of a is plotted for
θ = 0 and π/2 in Fig. 6.

After straightforward algebra we obtain for the anisotropy
of penetration depth at Tc

γ 2
λ (Tc) =

〈
�2v2

a

〉
〈
�2v2

c

〉 = 64 + 45πa + 80a2

120(4/15 + πa/4 + 2a2/3)
. (32)

This function is plotted in Fig. 7. The reason for the asymme-
try of this plot relative to a = 0 is clear: For a > 0 the polar
nodes no longer exist, and the phase becomes an anisotropic
s. A similar situation takes place for a � −1, where the s part
acquires a minus sign (or an extra phase shift of π ). The most
interesting part corresponds to the sharp drop in the curve
in the interval −1 � a � −0.5, where the point polar nodes
transform to line circular nodes on the altitude θ = − arcsin a.

Since on the Fermi sphere γλ(0) = 1, Fig. 7 gives an idea
of how γλ(T ) may behave when the temperature varies from
zero to Tc. We can see that for a > −0.68, where the curve
of γλ(t ) (shown in red) crosses the line, γλ = 1; that is, in the
anisotropic nodeless s phase γλ(0) < γλ(Tc).

FIG. 7. γ 2
λ (Tc ) vs a for the order parameter � = �0(a + sin θ ).

γ 2
λ (Tc ) = 1 at a = −0.68.

FIG. 8. γλ vs t for the order parameter � = �0(a + sin θ ) for a
set of a’s indicated.

In a relatively narrow interval of values of the parameter
a near a ≈ −0.7, (γλ − 1) changes quickly from positive
to negative values, i.e., from increasing γλ(t ) to decreas-
ing. The question then arises whether in this transformation
domain γλ(t ) remains monotonic. Examples in Fig. 8 for
a = −0.75,−0.68, and −0.65 show that this is not the case;
γλ(t ) clearly has a well-pronounced maximum. Figure 8
demonstrates the evolution of the shape of γλ(t ) with chang-
ing weight a of the s-wave fraction in the order parameter
� = �0(a + sin θ ).

Thus, depending on the relative weight of two phases in-
volved, we can have γλ increasing or decreasing on warming,
the features commonly associated with multigap supercon-
ductivity.

F. � = �0(a cos 2ϕ + sin θ)

This mixture of the d-wave order parameter with line nodes
at two meridians on the Fermi sphere and the polar point nodes
differs from the previous example because polar nodes remain
in the presence of the d wave, whereas line nodes do not
survive due to the term sin θ . The treatment of this situation is
similar to the cases considered, so we show only the results.

The anisotropy parameter γλ(Tc) for this case is shown in
Fig. 9. A sharp drop in the interval −1 � a � 0.4 resembles
a similar drop for � = �0(a + sin θ ), the mixture of the s
wave and polar nodes. We expect a nonmonotonic γλ(t ) in the
vicinity of a ≈ −0.4, where γ 2

λ (Tc) − 1 changes sign. Indeed,
we see this in Fig. 10. Hence, the maximum of γλ(t ) which we
found for another mixed order parameter, � = �0(a + sin θ )
(Fig. 8), was not accidental.

G. On the ratio of the experimental energy gap to T c

The ratio R = �(0)/Tc is one of the fundamental super-
conducting parameters that can be measured experimentally.
However, there is a great deal of confusion in experi-
mental literature as to what one should expect within the
weak-coupling BCS theory (which differs from the “strong-
coupling” Eliashberg approach). Often this ratio, deter-
mined from spectroscopic measurements (scanning tunneling
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FIG. 9. γλ(Tc ) vs a for the order parameter � = �0(a cos 2ϕ +
sin θ ).

microscopy, ARPES, optical reflectivity), is larger than that
determined from thermodynamic experiments (the thermo-
dynamic critical field Hc, the specific heat jump at Tc, the
superfluid density). We have shown, however, that this ra-
tio may exceed the BCS prediction of R ≈ 1.76 within
weak-coupling BCS models for anisotropic order parameters.
Hence, the measured R > 1.76 might not serve as evidence of
strong coupling.

The energy gap that enters the thermodynamics cannot
exceed the isotropic s-wave BCS value of �(0)/Tc ≈ 1.76.
Specifically, one can measure Hc, the specific heat jump at Tc,
or the superfluid density to determine this gap. The condensa-
tion energy at T = 0

F (0) = H2
c

8π
= N (0)

2
〈�2(0)〉 = N (0)

2
�2(0), (33)

which gives �(0) = Hc(0)/
√

4πN (0). According to Eq. (9)
�(0)/Tc = 1.76 exp(−〈�2 ln �2〉/2). In all cases we have
studied 0 < 〈�2 ln �2〉 < 1, so that �(0)/Tc does not exceed
the weak-coupling value of 1.76. Hence, if we extract the
gap from the data on Hc, the ratio R is expected to be less

FIG. 10. γλ vs t for the order parameter � = �0(a cos 2ϕ +
sin θ ) with a = −0.45.

FIG. 11. (a) �(0)/Tc vs a, the weight parameter of admixture
s phase, for order parameters � = �0(a + cos 4ϕ) which describe
ARPES data for KFe2AS2 [21]. (b) |�max(0)|/Tc vs a for order
parameters indicated.

than 1.76. Also, measurements of the superfluid density [20]
provide the magnitude of the order parameter �(T ).

The specific heat jump is given in Eq. (27). In all cases we
have considered 〈�4〉 � 1 (see Figs. 4 and 5), so that the jump
is smaller than the isotropic value of 1.43.

The spectroscopic gaps (actually, the gaps in the quasipar-
ticle spectrum) determined in ARPES, optical reflectivity, and
tunneling experiments are a different story. Here, experiments
give the maximum value of the superconducting gap:

�max(0) = |�(0)�max(k)|. (34)

The normalization 〈�2〉 = 1 implies that �max � 1, i.e.,
�max(0) � �(0). It is shown in Figs. 6 and 11 that, indeed,
the ratio �max(0)/Tc differs from the thermodynamic ratio
�(0)/Tc.

To conclude, the “thermodynamic” gap ratio is less than
or equal to the isotropic weak-coupling BCS value of 1.76,
whereas the maximum gap from spectroscopic experiments
over Tc is greater than that. This difference led to often erro-
neous assignment of the larger than BCS values to the strong
coupling. But the arguments we present here are developed, in
fact, on the basis of the weak-coupling Eilenberger theory for
anisotropic order parameters.

These arguments can be extended to multiband systems.
Specifically, within the weak-coupling model of two-band
superconductors, one gap will always be greater than the BCS
value, and the other will always be smaller.

Thus, experimental ratios �max(0)/Tc cannot be used to
claim strong coupling without knowledge of the order param-
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eter anisotropy. On the other hand, comparative analysis of
thermodynamic and spectroscopic gaps may be used, if not to
determine, definitely to restrict the possible order parameters
for a particular material.

IV. DISCUSSION

The separable coupling model for one-band Fermi surfaces
not only reproduces weak-coupling isotropic BCS thermody-
namics but allows one to incorporate anisotropies of Fermi
surfaces and of condensate order parameters. In particular,
it provides a relatively straightforward procedure to obtain
the temperature dependence of penetration depth and its
anisotropy. As is the case in BCS, this procedure involves
determination of the equilibrium order parameter �(T ) by
solving the self-consistency equation (the gap equation), a
“labor-intensive” part in the anisotropic case. An alternative
approach was given in Refs. [7–9], where an accurate analytic
interpolation for �(T ) was offered that could be used instead
of solving the self-consistency equation.

We have verified this procedure for a number of different
order parameters by comparing it with the numerical solutions
of the self-consistency equation, and we found only small
differences in the results that are insignificant as far as the
accuracy of existing experimental data is concerned.

To separate possible effects of the order parameter
anisotropy from those of Fermi surfaces, we considered only
the Fermi sphere. We found that the anisotropy parameter
of the penetration depth increases on warming for the order
parameter with point nodes at the poles of the Fermi sphere,
� = √

3/2 sin θ . However, for the order parameter with a line
node on the equator, � = √

3 cos θ , γλ(t ) decreases. We have
confirmed that for the d wave, � = √

2 cos(2ϕ), γλ(T ) = 1 at
all temperatures, in agreement with previously calculated end
point values γλ(0) = γλ(Tc) = 1 [6]. Thus, a common way
to attribute the T dependence of γλ(T ) to different gaps at
multiband Fermi surfaces is clearly questionable.

The possibility of a mixture of order parameters of
different symmetries has been discussed for cuprates and
other superconductors (see, e.g., [18,19,21]). Our analysis
of the order parameter � = �0(a + cos 2ϕ) showed that the
anisotropy γλ(T ) depends on the relative phase of the consti-
tutive order parameters (π for a < 0).

We have considered � = �0(a + sin θ ), where a is the
relative weight of the s-wave phase compared to the order
parameter with polar nodes. First, we find that the ratio
�max(0)/Tc may exceed considerably the standard weak-
coupling value of 1.76 in a certain region of the parameter
a (see Fig. 4). Second, it turned out that γλ(T ) may monoton-
ically increase or decrease and even go through a maximum
depending on the relative weight a of the two order parameters
involved.

We have also tested the order parameter � =
�0(a cos 2ϕ + sin θ ), i.e., a mixture of the d wave with
the phase having polar nodes. Again, we see a maximum in
γλ(t ) for the weight a near the value which corresponds to the
end values γλ(0) = γλ(Tc) ≈ 1 (Fig. 10). We speculate that
if the experiment shows a nonmonotonic anisotropy of λ, the
likely reason is a mixed order parameter. The last feature is
intriguing in particular because we have an experimental

example of SrPt3P in which γλ(T ) goes through a
maximum [5].

As a by-product of our results we show in Fig. 11 the ratio
|�(0)|/Tc vs the weight a of an admixture s phase for the order
parameter � = �0(a + cos 4ϕ) (the candidate for KFe2As2

[21]) for ϕ = 0 and π/4. It is worth noting that this ratio
differs from the isotropic weak coupling BCS πe−γ = 1.76;
in fact, this ratio at certain admixtures of the s wave phase
can be bigger or smaller than the BCS number. This, however,
does not mean the coupling in these cases is strong or it is
“weaker than weak”; rather, it is caused by the order parameter
anisotropy. Note that the experimentally measured ratio is
usually |�max(0)|/Tc = |�(0)|�max/Tc.
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APPENDIX: CLEAN CASE ORDER
PARAMETER AT T = 0

Commonly, the effective coupling V is assumed to be fac-
torizable [11], V (v, v′ ) = V0 �(v) �(v′ ). One then looks for
the order parameter in the form �(r, T ; v) = �(r, T ) �(v).
The coupling constant V0 is chosen to get the isotropic BCS
result for � = 1:

1

N (0)V0
= ln

2ωD

πTce−γ
, (A1)

where ωD is the energy scale of the “glue” excitations (of
phonons in conventional materials) and γ ≈ 0.577 is the Euler
constant.

The self-consistency equation can be written in the form

�(r, T ) = 2πT N (0)V0

ωD∑
ω>0

〈�(v) f (v, r, ω)〉. (A2)

Since in the clean case f = �/
√

�2 + ω2, we have, at
T = 0,

1

N (0)V0
= 2πT

ωD∑
ω>0

〈
�2

√
�2 + ω2

〉

=
〈
�2

∫ ωD

0

dω√
�2 + ω2

〉
=

〈
�2 ln

2ωD

|�|
〉
. (A3)

Hence, as follows from (A3) and (A1) [9,13],

�(0)

Tc
= π

eγ
e−〈�2 ln |�|〉. (A4)

Clearly, for s-wave gaps, � = 1 (at any Fermi surface) this
gives �(0)/Tc = πe−γ ≈ 1.76.
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