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Robust edge states in magnetic soliton racetrack
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Precise positioning of magnetic solitons requires controllable artificial pinning, while the accurate determina-
tion of the pinning profile remains a challenge. Here, we propose a topological solution to this problem. Taking
the domain wall (DW) as a representative example, we study the collective dynamics of interacting DWs in a
magnetic racetrack with pinning sites of alternate distances. By mapping the governing equations of DW motion
to the Su-Schrieffer-Heeger model and evaluating the quantized Zak phase, we predict two topologically distinct
phases in the racetrack. A robust edge state emerges at either one or both ends depending on the parity of the
DW number and the ratio of alternating intersite lengths. We show that the in-gap DW oscillation frequency
has a fixed value which depends only on the geometrical shape of the pinning notch, and is insensitive to device
imperfections and inhomogeneities. The spring coefficient of the pinning potential can be quantified as the square
of the robust DW frequency multiplied by its constant mass. Our findings pave the way to determining the pinning
potential with high accuracy for generic magnetic solitons and suggest as well that the magnetic soliton-based
racetrack is a unique playground to study topological phase transitions.
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I. INTRODUCTION

Magnetic solitons like the vortex [1,2], bubble [3,4],
skyrmion [5,6], and domain wall (DW) [7–9] have attracted
tremendous recent attention owing to their fundamental nature
and potential applications in memories, sensors, logic gates,
and neuromorphic computing hardware [10–24]. To achieve
reliable control of the soliton position in spintronic devices,
external pinnings are often introduced by artificial notches
[25–30], protrusions [31–35], kinks [36], etc. It has been
shown that the shape and strength of the pinning potential can
strongly affect the soliton dynamics [37]. For instance, a crit-
ical current must be overcome to depin the DW [38,39]. The
depinning approach was adopted as well to quantify the spin-
transfer torque (STT) non-adiabaticity β [40,41], an important
parameter for current-induced magnetization dynamics while
its value is still highly controversial in different experiments
[40–46]. One reason is the lack of reliable determination of the
pinning potential, because the extrinsic pinning is often mixed
up with the intrinsic ones originating from materials defects
and randomness [47,48], leading to a seemingly insuperable
difficulty to distinguish the two contributions.

Topology theory can predict global properties of a physical
system, regardless of its details. One of the most outstanding
examples is the quantum Hall effect [49], which defines a
resistance that depends only on fundamental physical con-
stants due to the robust in-gap edge states, making possible an
accurate definition of the ohm. It thus motivates us to pursue
a topological method for the realization of the standardized
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magnetic-soliton frequency. Topological phases have been
studied for spin waves [50–54] and magnetic vortices [55–59].

In this work, we choose the DW as the representative
example of magnetic solitons and investigate theoretically
the collective dynamics of interacting DWs that are locally
pinned by notches in a magnetic racetrack [see Fig. 1(a)].
Without loss of generality, we consider the Néel-type DW in
the setup. The governing equation of DW motion is mapped
to the Su-Schrieffer-Heeger (SSH) model that allows a topo-
logical description. By evaluating the quantized Zak phase,
we predict two topologically distinct phases in the race-
track. The bulk-boundary correspondence dictates a robust
DW oscillation at the edges. We show that the in-gap DW
oscillating frequency manifests a constant value which de-
pends only on the geometrical shape of the pinning notch,
and is insensitive to the material imperfection and inho-
mogeneity. The spring coefficient of the pinning potential
then can be accurately quantified as the square of the ro-
bust DW frequency multiplied by its constant mass. Full
micromagnetic simulations are performed to verify our the-
oretical predictions with a great agreement. Our results offer
the standard of the soliton oscillation frequency and suggest
that the magnetic soliton racetrack is a unique playground
to study the fundamental topological phase and phase tran-
sition, in addition to its practical application in information
technology.

The paper is organized as follows. In Sec. II, we present the
theoretical model for collective DW motions in a magnetic
racetrack with periodic pinning sites. Section III A gives the
analytical derivation of the topological phases in the DW race-
track. Micromagnetic simulations are performed in Sec. III B
to verify analytical results. Our discussion and conclusion are
given in Sec. IV.
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FIG. 1. (a) Illustration of the vortex, skyrmion, and DW racetrack
with periodic pinnings. The micromagnetic structure of Néel-type
DWs pinned by cuboid notches with lx = 20 nm, ly = 9 nm, and
lz = 5 nm is plotted, with the unit cell containing two DWs at sites
A and B. d1 and d2 are the intracellular and intercellular distances
between notches, respectively. (b) The components of normalized
magnetization along the center of DW racetrack with d1 = 160 nm
and d2 = 140 nm.

II. THEORETICAL MODEL

We start with the Landau-Lifshitz-Gilbert equation that
governs the magnetization dynamics [60,61]:

∂m
∂t

= −γ m × Heff + αm × ∂m
∂t

+ �st, (1)

where m = M/Ms is the unit magnetization vector with
the saturated magnetization Ms, γ is the gyromagnetic ra-
tio, and α is the Gilbert damping constant. The effective
field Heff comprises the external field, the exchange field,
the magnetic anisotropic field, and the dipolar field. �st is
the torque due to the spin-transfer or spin-orbit effects. For
the case of STT, �st = bJ (Ĵ · ∇)m − βbJm × (Ĵ · ∇)m with
bJ = JPgμB/2|e|Ms and Ĵ being the flow direction of the
spin-polarized current. Here J is the charge current density,
P is the spin polarization, g is the g factor, μB is the Bohr
magneton, and e is the (negative) electron charge.

The collective-coordinate or {q, φ} method provides a sim-
ple yet accurate description of the motion of complex DWs
[see Fig. 1(b)] [62,63]:

(1 + α2)
dq j

dt
= γαHpin, j� j + 1

2
γ (Nz − Ny)� jMssin2φ j,

(1 + α2)
dφ j

dt
= γ Hpin, j − 1

2
γα(Nz − Ny)Mssin2φ j,

(2)
where the collective coordinates qj and φ j are the position
and tilt angle of the jth DW, respectively, Hpin, j includes
the pinning field from both the notch and the DW-DW
interaction, Ny and Nz are the demagnetizing factors
along the y and z axes of the nanostrip, respectively, and

� j =
√

2A/{2Ku + μ0M2
s [(Ny − Nx ) + (Nz − Ny)sin2φ j]}

FIG. 2. (a) Dependence of the coupling strength I on d . Black
circles denote simulation results and red solid line represents the
analytical formula. (b) The two eigenfrequencies of a DW-DW pair
varying with d .

represents the DW width with A the exchange stiffness, Ku

the magnetocrystalline anisotropy constant, and μ0 being
the vacuum permeability. Since we are interested in the
genuine oscillation of the DW near the pinning notch, we
have assumed that the spin torque is absent in Eq. (2), while it
can be straightforwardly included and analyzed (see below).

From the energy point of view, Hpin, j can be expressed as
the spatial derivative of the total potential:

Hpin, j = − 1

2μ0MsLyLz

∂U

∂q j
, (3)

where Ly and Lz are the width and thickness of the nanos-
trip, respectively, and U is the total energy of the system:
U = ∑

j Kq2
j/2 + ∑

j �=k I(d jk )q jqk/2. Here K is the spring
constant determined by the shape of the notch and I(djk ) is
the coupling constant depending on the distance djk between
DWs. Generally, the DW-DW interaction can be divided into
three parts: the monopole-monopole (∝ 1/djk), the exchange
(∝ 1/d2

jk), and the dipole-dipole (∝ 1/d3
jk) [64]. The explicit

form of I(d ) can be obtained from micromagnetic simula-
tions in a self-consistent manner. Considering a small φ and
neglecting the dissipation terms, we arrive at the linear form
of Eq. (2):

M
d2q j

dt2
+Kq j +

∑
k∈〈 j〉
I(d jk )qk = 0, (4)

where theM = 2μ0LyLz/γ
2(Nz − Ny)� is the effective mass

of a single DW with � = √
2A/[2Ku + μ0M2

s (Ny − Nx )] and
〈 j〉 is the set of the nearest neighbors of j. Here, I(d jk ) = I1

(I2) when j and k share an intracellular (intercellular) connec-
tion with I1,2 = I(d1,2) (d1 and d2 are the alternating intersite
lengths). To obtain the analytical formula of I(d ), we simu-
late the dynamic of a DW-DW pair separated by an arbitrary
distance (see Appendix A for details). Symbols in Fig. 2(a) are
numerical results and the solid curve is theoretical formula
I(d ) = c1/d + c2/d2 + c3/d3, with c1 = −9.2635 × 10−12

J m−1, c2 = 2.294 × 10−18 J, and c3 = −1.0111 × 10−25 J m.
Figure 2(b) plots the d dependence of the out-of-phase and
in-phase DW-oscillation frequencies, that is, ω1 and ω2, re-
spectively, in the simple two-DW system. It shows that ω1
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increases while ω2 decreases for an increasing d . One nat-
urally expects that ω1 = ω2 = ω0 when d → ∞, with ω0 =√
K/M corresponding to the oscillation frequency of an iso-

lated DW. By measuring ω0 in experiments, one can determine
the pinning-potential stiffness K . This approach, however,
suffers from an issue that the dynamics of a single DW can be
easily modified by structure defects and material randomness,
and it thus cannot precisely determine the genuine profile of
the pinning potential. Below, we propose a topological method
to overcome this problem.

III. RESULTS

A. Topological phase in DW racetrack

We consider a one-dimensional DW lattice, as plotted in
Fig. 1(a), where the dashed red rectangle represents the unit
cell and the basis vector is a = ax̂ with a = d1 + d2. The band
structure of the collective DW oscillations can be computed by
a plane wave expansion qj = q j exp [i(ωt + nka)], where j =
A, B for different sublattices, n is an integer, and k is the wave
vector. Substituting the Fourier transformation into Eq. (4),
we obtain the Hamiltonian expressed in the momentum space
as

H =
( K I1 + I2e−ika

I1 + I2eika K

)

= [I1 + I2cos(ka)]σx + I2sin(ka)σy +Kσ0,

(5)

where σx = (0 1
1 0), σy = (0 −i

i 0 ), and σ0 = (1 0
0 1) are the

Pauli matrices. Comparing Eq. (5) with the Hamiltonian of
the SSH model [65,66], one can see that our model contains
an extra constant diagonal term Kσ0, which represents the on
site energy and is independent of the wave vector. It only shifts
the position of the band center (zero-energy point) while the
topological feature of the system remains identical by setting
it to be zero. I1 and I2 in (5) represent the alternating hopping
amplitudes between the “A” and “B” sites of the diatomic
lattice. We therefore conclude that our Hamiltonian is mapped
to the SSH model.

Solving (5) gives the dispersion relation:

ω±(k) =

√√√√K ±
√
I2

1 + I2
2 + 2I1I2 cos ka

M
, (6)

where + (−) represents the optical (acoustic) branch. The
bulk band structures for different geometric parameters are
plotted in Fig. 3(a), where d2 is fixed to 140 nm if not
stated otherwise and magnetic parameters of Ni are adopted.
For d1 = d2, the two bands merge together [black curve in
Fig. 3(a)], while a gap opens at k = π/a when d1 �= d2 [red
and blue curves in Fig. 3(a)], leading to an insulating phase.
To judge whether these insulating phases are topological, we
consider the Zak phase [67], a topological invariant that is
evaluated by integrating the Berry connection over the first
Brillouin zone:

Z = i
∫ 2π/a

0
�†(k)∇k�(k)dk (mod 2π ), (7)

FIG. 3. (a) Band structure of an infinite DW racetrack for differ-
ent intracellular lengths: d1 = 120, 140, and 160 nm, with d2 being
fixed to 140 nm. (b) Dependence of the Zak phase on the ratio d1/d2.

where �(k) is the Bloch wave function of the energy band.
Figure 3(b) shows the dependence of the Zak phase Z on
the ratio d1/d2. It is observed that Z is quantized to 0 when
d1/d2 < 1 and to π otherwise, indicating two topologically
distinct phases in the two regions. We point out that this
conclusion is independent of the choice of d2.

Bulk-boundary correspondence indicates the existence of
robust edge states. To verify this point, we compute the spec-
trum of a finite racetrack containing an odd number (e.g., 39)
of DWs. Numerical results are shown in Fig. 4(a), where the
in-gap state (red line) emerges for all ratios d1/d2 �= 1. We
first consider the case d1/d2 = 8/7 (> 1). Figure 4(b) plots
the eigenfrequencies of the system, showing that there is one
in-gap mode marked by the red dot. Further, it is found that
its spatial distribution is highly localized at the left end of the
racetrack [see Fig. 4(c)], in contrast to its bulk counterpart
shown in Fig. 4(d). We adopt the Ansätze for the localized
mode as qj = q jexp(iω0t )zn with |z| < 1. The edge state then
can be solved by the equations

(I1 + I2z)qA(n) = 0, for n = 1, 2, 3, . . . ,

(I1 + I2z−1)qB(n) = 0, for n = 2, 3, . . . ,
(8)

with the boundary condition I1qB(1) = 0 (A-site DW is in
the outmost left boundary). Because I1,2 �= 0, we obtain
qB(n) = 0 ∀n and z = −I1/I2. The wave function of A-site
DWs therefore follows an exponentially decaying formula
|qA| = |q0|(I1/I2)n for n = 1, 2, 3, . . .. The analytical result
agrees excellently with numerical calculations, as plotted in
the inset of Fig. 4(c). We point out that the edge state becomes
localized in the right end instead if d1/d2 < 1 (not shown).
Interestingly, the localized modes emerge in both ends as the
magnetic racetrack contains an even number of DWs (detailed
calculations can be found in Appendix B).

To verify the topological robustness of the edge states, we
calculate the spectrum of the DW racetrack including disorder
and defects, with results presented in Figs. 4(e) and 4(f),
respectively. Here the disorder is introduced by assuming that
the coupling parameters I1 and I2 have a random variation,
i.e., I1 → I1(1 + δN ), I2 → I2(1 + δN ), with δ the disor-
der strength and N a uniformly distributed random number
between −1 and 1. As to the defects, we assume I1 and
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FIG. 4. (a) Spectrum of a finite DW racetrack for different d1/d2.
The dotted blue line denotes the boundary separating two topologi-
cally distinct phases; the red segment represents the in-gap mode.
(b) Eigenfrequencies of the DW lattice with d1/d2 = 8/7. The spatial
distribution of DW-oscillation amplitude for the edge (c) and bulk
(d) states. Inset: Comparison between analytical and numerical re-
sults. (e) Spectrum of disordered DW racetracks. (f) Spectrum with
(red dots) and without (black dots) defects.

I2 suffering from a shift (I1 → 10I1, I2 → 0.1I2) on the
second and fourth DWs. From Figs. 4(e) and 4(f), we observe
that the edge state is very robust against the disorder and
defects, while the bulk states are sensitive to them. It is worth
noting that for the SSH model, the topological robustness
of edge states is protected by the chiral symmetry. In other
words, if the introduced disorder or defects respect the chiral
symmetry, the edge states are still robust. The topological
edge states become fragile if the disorder or defects break the
chiral symmetry. In the above calculations, the disorder and
defects are introduced into the off-diagonal elements of the
Hamiltonian, which do respect the chiral symmetry, and the
edge states are thus robust. However, if we consider disorder
in the parameter K , the chiral symmetry is broken and the
edge states are no longer topologically protected (not shown).

B. Micromagnetic simulations

To confirm our theoretical predictions, we use the micro-
magnetic package MUMAX3 [68] to simulate the dynamics
of 39 interacting DWs in a Ni nanostrip of length 7000 nm,

FIG. 5. (a) Schematic plot of a finite racetrack containing 39
DWs, with d1 = 160 nm and d2 = 140 nm. (b) The temporal Fourier
spectra of the DW oscillations at edge (1st DW) and bulk (20th DW)
positions. The spatial distribution of amplitude of DW oscillations
for edge (c) and bulk (d) states.

as shown in Fig. 5(a). To obtain the spectra of DW oscilla-
tions, a sinc-function magnetic field H (t ) = H0 sin[2π f0(t −
t0)]/[2π f0(t − t0)] is applied for 1 μs along the x axis with
H0 = 10 mT, f0 = 20 GHz, and t0 = 1 ns. The position of
all DWs qj is recorded every 100 ps, where we define q j =∫

x |my|2dx/
∫ |my|2dx with the integration confined at the jth

DW. Here, |my| is adopted as the weight function based on
the fact that the closer to the center of DW, the greater the y
component of the magnetization.

To find the frequency range of the edge and bulk states,
we analyze the temporal Fourier spectra of the DW racetrack
at two different positions (DW 1 and DW 20, for example).
Figure 5(b) shows the results, with peaks of the red and
black curves denoting the positions of edge and bulk bands,
respectively. We then apply a sinusoidal magnetic field h(t ) =
h0 sin(2π f t )x̂ with h0 = 0.05 mT over the whole system to
excite the edge and bulk modes by choosing two frequen-
cies f = 1.863 and 2.145 GHz, respectively, as marked in
Fig. 5(b). The spatial distributions of the DW-oscillation am-
plitudes for these two modes are plotted in Figs. 5(c) and 5(d),
respectively, from which one can clearly identify the localized
and extended nature of the edge and bulk states, respectively.
Full micromagnetic simulations are thus well consistent with
the analytical results but with the following discrepancies: (i)
The oscillation of B-site DWs does not vanish as dictated
by the analytical theory. We attribute it to the anharmonic
DW-DW interaction between A-B sites (see Appendix C for
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details). (ii) A finite DW oscillation is observed in the deep
bulk of the racetrack, as opposed to an exponential decay to
zero. However, we note that the amplitude in such case is
smaller than the mesh size (2 nm) adopted in micromagnetic
simulations. It is thus still within the numerical accuracy.

IV. DISCUSSION AND CONCLUSION

By including the STT term in Eq. (2), we find that it does
not change the spectrum of the collective DW oscillations,
but causes a global shift X = βγ (Ny − Nz )MsbJ/ω

2
0 to the

equilibrium DW position (detailed analysis can be found in
Appendix D). It is noted that the imaging of the DW position
is already within current technology reach. Since the DW
oscillation frequency ω0 can be standardized by the topo-
logical method, we are able to accurately quantify the STT
non-adiabaticity coefficient β by experimentally measuring
the slope of the X -bJ curve.

It is worth mentioning that chapters 2 and 3 of Ref. [69]
studied the edge states of a one-dimensional diatomic lattice
of coupled masses. The wave function of edge modes with an
exponential decay can be obtained by considering the bound-
ary conditions. However, the topology of the diatomic lattice
is not clear. Chen et al. investigate the 1D and 2D mechanical
lattice by adopting the topological method [70]. They identify
topological edge states by directly evaluating the Zak phase
(the topological invariant) in a periodic spring-mass lattice
without explicitly solving the boundary problem in the fi-
nite chain. The principle allowing doing so is the bulk-edge
correspondence. Furthermore, from the state-of-the-art point
of view, there are two different kinds of surface/edge states,
namely, the topologically trivial and nontrivial surface/edge
state. The former one is described by the Tamm-Shockley pic-
ture [71,72] which predicts that the periodicity breaking of the
crystal potential at the boundary can lead to the formation of
a conducting surface/edge state. However, this surface/edge
state is trivial because it is sensitive to impurities, defects,
and disorder. The latter one is described by a few topologi-
cal invariants, such as the Chern number, Berry/Zak phase,
etc. Because of the topological protection, it is quite robust
against external disturbances. Sometimes, these two types
of surface/edge modes exist simultaneously [73]. Without
adopting the topological method, one can hardly distinguish
them.

In summary, we studied the Su-Schrieffer-Heeger problem
in a one-dimensional DW racetrack with periodic pinning
notches. The Zak phase was evaluated to derive the phase di-
agram that allows two topologically distinct phases separated
by the phase transition point at an identical intercellular and
intracellular length between neighboring DWs. The emerg-
ing edge state dictated by the bulk-boundary correspondence
was shown to be particularly robust against moderate defects
and disorder. Analytical results were well supported by full
micromagnetic simulations. We propose that the uncovered
topological feature can be utilized as the DW frequency stan-
dard, which shall encourage our experimental colleagues to
accurately measure the pinning profile and to finally resolve
the controversy about the β parameter. For application, our
model has some limitations and practical difficulties. On the
one hand, the topologically stable edge states are protected by

the chiral symmetry, which indicates that these edge states are
only immune from the disorder and defects to the coupling
between domain walls but sensitive to them for the notch
geometries. The superiority of our topological method thus
depends on the technological level of notch fabrications in
DW racetracks. On the other hand, the demagnetizing factors
depends on the geometry of the system, the determination
of which requires independent anisotropic ferromagnetic res-
onance measurements. Our general results are applicable to
other types of solitons (e.g., magnetic vortex, skyrmion, bob-
ber, meron, hopfion, etc). Our findings suggest as well that
the magnetic soliton racetrack offers a unique playground
to explore the fundamental topological phase, such as the
topological corner (hinge) states in two- (three-) dimensional
structures, and the nonlinear effect on topological phase tran-
sitions, which are interesting subjects for future study.
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APPENDIX A: THE DETERMINATION OF I (d )

The d dependence of I is the key for evaluating the
band structures of the DW racetrack. To determine this func-
tion, we consider the dynamics of both a single DW and a
DW-DW pair confined by notches in nanostrip, as shown in
Figs. 6(a) and 6(b), respectively, where the distance between
two DWs is set to be 144 nm. The following material param-
eters of Ni are used in the simulations [64]: the saturation
magnetization Ms = 0.477 × 106 A m−1, exchange stiffness
A = 1.05 × 10−11 J m−1, and Gilbert damping constant α =
10−3. The length Lx = 7000 nm, width Ly = 60 nm, and
thickness Lz = 5 nm. The cell size is 2 × 3 × 5 nm3. We
apply a sinc-function magnetic field H (t ) = H0 sin[2π f0(t −
t0)]/[2π f0(t − t0)] along the x axis for 1 μs with H0 = 10 mT,
f0 = 20 GHz, and t0 = 1 ns. This sinc function decays very
fast with time. So, even with the amplitude H0 is as high as
100 Oe, all physics is still in the linear region in the long run.
Figures 6(c) and 6(d) plot the Fourier spectra of the oscilla-
tions for the single DW and the DW-DW pair, respectively.
The frequencies of the peaks read ω0/2π = 1.794 GHz,
ω1/2π = 1.71 GHz, and ω2/2π = 2.033 GHz. From Eq. (4)
in the main text, we obtain the relations K =Mω2

0 and I =
M(ω2

2 − ω2
1 )/2. The effective mass of a single DW is evalu-

ated as M = 2μ0LyLz/γ
2(Nz − Ny)� = 5.2097 × 10−25 kg,

where the demagnetizing factors Nx = 0, Ny = 0.106, and
Nz = 0.894. Analytically, the demagnetizing factor can be
calculated for a rectangular ferromagnetic prism once the
geometry of the system is given [74]. Experimentally, the
demagnetization factor can be measured by the ferromagnetic
resonance spectrum along different directions of the device
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FIG. 6. Schematic plot of a single DW (a) and a DW-DW pair
(b). The Fourier spectra of the DW oscillation for a single DW (c) and
a DW-DW pair (d). (e) The DW position as a function of time for
different modes.

[75,76]. Finally, we obtain K = 6.6194 × 10−5 J m−2 and
I = 1.2433 × 10−5 J m−2 for d = 144 nm. In these simula-
tions, we did not consider any extrinsic disorder and defects,
such that the obtained K purely reflects the spring constant of
the extrinsic pinning potential. By systematically varying the
DW-DW distance, one can obtain the dependence of I on d ,
as shown in Fig. 2(a) in the main text.

APPENDIX B: THE EDGE STATE CALCULATIONS FOR
AN EVEN NUMBER OF DWs

In the main text, we have discussed the edge state of a finite
racetrack with odd number of DWs, which shows that the
in-gap state emerges for all ratios as long as d1/d2 �= 1. These
edge states are localized in the left or right end depending on
the value of d1/d2. Interestingly, when the system contains an
even number (e.g., 40) of DWs [see Fig. 8(a)], the outcome
is different and the localized modes appear in both ends.
The band structure is shown in Fig. 7(a), from which one
can see that the in-gap state can only exist when d1/d2 > 1.

FIG. 7. (a) Spectrum of a finite racetrack containing 40 DWs
for different d1/d2. The red segment represents the in-gap mode.
(b) Eigenfrequencies of the DW lattice with d1/d2 = 8/7. The spatial
distribution of DW-oscillation amplitude for the edge (c) and bulk
(d) states. (e) Spectrum of disordered DW racetracks. (f) Spectrum
with (red dots) and without (black dots) defects.

In the following calculations, we consider d1/d2 = 8/7 as a
representative example. Figure 7(b) plots the eigenfrequencies
of the system, showing that there are two degenerate modes
marked by the red balls. Further, we find that the spatial
distribution of these degenerate modes is highly localized at
both ends of the racetrack [see Fig. 7(c)], while the oscillation
of bulk modes is spreading over the whole racetrack [see
Fig. 7(d)]. In addition, we confirm as well that the edge states
are very robust against disorder and defects, while the bulk
states are not [see Figs. 7(e) and 7(f)].

Micromagnetic simulations are used to verify the theo-
retical predictions. The illustration of the system is shown
in Fig. 8(a). By using the same method mentioned in the
main text, we obtain the temporal Fourier spectra of the DW
racetrack at the edge (DW 1) and bulk (DW 20) positions, as
shown in Fig. 8(b). One can easily identify the edge and bulk
modes. Furthermore, we choose two frequencies f = 1.863
and 2.144 GHz to show the oscillation characteristics of edge
and bulk states, respectively. The spatial distributions of the
DW-oscillation amplitudes with these two frequencies are
plotted in Figs. 8(c) and 8(d). We observe the localized (at
both ends) and extended nature for the edge and bulk states,
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FIG. 8. (a) Schematic plot of a finite racetrack containing 40
DWs, with d1 = 160 nm and d2 = 140 nm. (b) The temporal Fourier
spectra of the DW oscillation at edge (1st DW) and bulk (20th DW)
positions. The spatial distribution of the DW oscillation amplitude
for edge (c) and bulk (d) states.

respectively, which compares well with theoretical calcula-
tions [see Figs. 7(c) and 7(d)].

APPENDIX C: THE ANHARMONIC EFFECT

Next, we discuss the anharmonic effects in the two-DW
system when the DW oscillation amplitude is large. We apply
a sinusoidal magnetic field h(t ) = h0 sin(2π f t )x̂ with h0 =
0.05 mT and f = 1.71 GHz (and 2.033 GHz) to stimulate
the dynamics of the DW-DW pair. In Fig. 6(e), we plot the
displacement of DWs as a function of time. Surprisingly, we
observe that both modes are out of phase, and the oscillation
amplitude of mode 1 is one order of magnitude smaller than
that of mode 2. This result is in sharp contrast to that in the

linearly coupled DW-DW pair:

M
d2q1

dt2
+Kq1 + Iq2 = 0,

M
d2q2

dt2
+Kq2 + Iq1 = 0,

(C1)

from which we obtain two eigenfrequencies ω1,2 =√
(K ∓ I)/M with corresponding eigenfunctions q1 = −q2

and q1 = q2, respectively. The former solution represents
the out-of-phase mode, while the latter one corresponds to
the in-phase mode. To interpret the discrepancy between the
numerical result and theoretical calculation, we introduce a

nonlinear term εq2
1q2

2
2 to the DW-DW coupling, where ε > 0

represents the nonlinearity strength. We then obtain the
nonlinearly coupled equations of motion for the DW-DW
pair:

M
d2q1

dt2
+ (
K + εq2

2

)
q1 + Iq2 = 0,

M
d2q2

dt2
+ (
K + εq2

1

)
q2 + Iq1 = 0.

(C2)

In line with micromagnetic simulations, we impose the
DW-DW pair to support the out-of-phase modes only, i.e.,
q1 = −q2 = q. Equations (C2) then can be simplified to

M
d2q

dt2
+ (K + ε|q|2)q − Iq = 0. (C3)

The presence of the nonlinear coupling will cause a
frequency shift: ω1 → �1 = √

(K − I+ δ1)/M and ω2 →
�2 = √

(K + I+ δ2)/M. Substituting �1 and �2 into
Eq. (C3), we obtain δ1 = ε|q|2 and δ2 = ε|q|2 − 2I. It can
be clearly seen that δ1 (δ2) approaches zero only if |q| → 0
(|q| → √

2I/ε) for a given ε, which is consistent with the
numerical findings that the oscillation amplitude of the ω2

mode is much higher than that of the ω1 mode and both modes
are out of phase [see Fig. 6(e)]. We thus conclude that the
anharmonic coupling between DWs leads to two out-of-phase
modes, which well explains the results observed in micromag-
netic simulations.

APPENDIX D: THE STT EFFECT ON THE DW MOTION

The STT effect can be included in the generalized Landau-
Lifshitz-Gilbert equation:

(1 + α2)
dq

dt
=γαHpin� + 1

2
γ (Nz − Ny)�Mssin2φ − (1 + αβ )bJ ,

(1 + α2)
dφ

dt
=γ Hpin − 1

2
γα(Nz − Ny)Mssin2φ + bJ

�
(α − β ).

(D1)

For theoretical simplicity, we consider the dynamics of a
single DW, such that the subscript j was removed in the
above equations. By linearizing Eq. (D1) and neglecting the

dissipation terms, we obtain

d2q

dt2
+ K
M

q = −βγ (Nz − Ny)MsbJ . (D2)

054438-7



LI, WANG, CAO, ZHANG, AND YAN PHYSICAL REVIEW B 103, 054438 (2021)

FIG. 9. Proposed scheme to determine the STT non-adiabaticity
β by experimentally measuring the slope of X -bJ curve.

The solution of (D2) can be written as

q(t ) = q0 exp(iω0t ) − βγ (Nz − Ny)MsbJ

ω2
0

. (D3)

From Eq. (D3), we find that the STT does not modify the
DW-oscillation frequency but causes a shift to its equilibrium
position:

X = |〈q(t )〉| = βγ (Nz − Ny)MsbJ

ω2
0

. (D4)

The non-adiabaticity parameter β can therefore be accu-
rately quantified by experimentally measuring the slope of
the X -bJ curve, i.e., λ = βγ (Nz − Ny)Ms/ω

2
0. The proposal is

schematically illustrated in Fig. 9. For the typical parameters
β = 0.01, J = 3 × 1012 A/m2, and P = 0.7, we can estimate
the size of the average displacement |〈q(t )〉| ≈ 10.5 nm.
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