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Cryogenic spin Seebeck effect

Mehrdad Elyasi 1 and Gerrit E. W. Bauer 1,2,3

1Institute for Materials Research, Tohoku University, 2-1-1 Katahira, 980-8577 Sendai, Japan
2AIMR and CSRN, Tohoku University, 2-1-1 Katahira, 980-8577 Sendai, Japan

3Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, Netherlands

(Received 16 November 2020; accepted 11 February 2021; published 24 February 2021)

We present a theory of the nonlinear spin Seebeck effect (SSE) in a ferromagnetic nanowire at cryogenic
temperatures. We adopt a microscopic quantum noise model based on a collection of two-level systems. At
certain positions of Pt detectors to the wire, the transverse SSE changes sign as a function of temperature and/or
temperature gradient. On the other hand, the longitudinal SSE does not show significant nonlinearities even far
outside the regime of validity of linear response theory.
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I. INTRODUCTION

We address the spin Seebeck effect (SSE) in electrically
insulating magnets, i.e., the spin current caused by a tem-
perature gradient as detected by the inverse spin Hall effect
voltage in heavy metal contacts [1–9]. The longitudinal SSE
(LSSE) is observed in a planar configuration in which the heat
and spin currents flow in parallel and normal to the interfaces
[10]. The transverse, or nonlocal [11], SSE (TSSE) refers to
more complicated configurations, usually two contacts on the
surface of a magnetic slab or film. The spin current is injected
into the metal contact by spin pumping [4], but the signal
is usually dominated by the currents that are generated by
temperature gradients in the bulk of the magnet [12]. The
reported signals are, in general, proportional to the applied
temperature differences �T . However, several recent studies
of the SSE at low temperatures [13–20] did not address a fun-
damental issue of thermal transport at ultralow temperatures.
Linear response is valid when the perturbation is sufficiently
small, but the properly normalized driving force is not �T but
�T/T (or ∂T/T ), i.e., the temperature difference divided by
the average one [21]. This condition is increasingly difficult to
fulfill at low temperatures, or positively formulated, it should
become easier to access nonlinear thermomagnonic transport
phenomena.

Existing theoretical treatments of the spin Seebeck effect
are not suitable to address the low-temperature and non-
linear regimes. The low-frequency magnons that dominate
at cryogenic temperatures are strongly affected by dipolar
interactions, so exchange-only magnon models fail. The as-
sumption of a semiclassical magnon accumulation in terms
of a local chemical potential and magnon temperature [22]
breaks down because thermalization becomes weak. With a
classical magnetization noise model and in linear response,
the nonthermal distribution functions governing the SSE
can be described by mode-dependent (rather than position-
dependent) magnon temperatures and chemical potentials
[23,24]. Treatments of the stochastic magnetization dynamics

in terms of classical white noise sources [25–28] do not work
at low temperatures. This can be repaired by a noise spectrum
that obeys the quantum fluctuation dissipation theorem [29],
but at the cost of introducing phenomenological damping
constants. A recent linear response study of the LSSE at low
temperatures [30] focused on the magnon-polaron hybrid state
at high magnetic fields [31].

The broadening of the ferromagnetic resonance of an yt-
trium iron garnet (YIG) sphere increases ∝ T for T > 1 K.
The minimum in the damping followed by an increase and
saturation with decreasing temperatures <1 K [32] is caused
by impurities and disorder, presumably two-level systems
(TLSs) [34–36]. The spin and heat transport in this regime
have, to our knowledge, not been addressed in the literature
and are the focus of this paper. We study the cryogenic SSE
of a ferromagnetic (FM) nanowire with a microscopic TLS
model for the thermal noise, at weak magnetic fields. In this
regime, magnon-magnon and magnon-phonon interactions
may be safely disregarded. We predict that the antisymme-
try of the TSSE signal as a function of position of a Pt
detector [4,5,26] is broken in the nonlinear regime, and a
nonmonotonous temperature dependence at certain contact
positions emerges. These effects are caused by the nonuni-
form gradient of the spin distribution functions in spite of
a constant temperature gradient. The LSSE signal is, on
the other hand, surprisingly robust, with a linear depen-
dence on a global temperature difference �T much larger
than TM .

This paper is organized as follows. Section II describes our
model for the steady-state magnon dynamics of a ferromag-
netic wire in the presence of temperature gradients in terms
of distributed correlation functions. In Sec. III, we show the
computed temperature-dependent TSSE and demonstrate why
and how nonlinearities can lead to nonmonotonicity and a sign
change. Section IV addresses the modification of the model
from Sec. II necessary to address LSSE, followed by results.
We end with a summary and a discussion of the impact and
the outlook in Sec. V.
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II. MODEL

In Sec. II A, we emphasize that TLSs are the main source
of dissipation at very low temperatures. In Sec. II B, we intro-
duce the magnon model interacting with a TLS ensemble that
forms a thermalized reservoir. In Sec. II C, we derive the mas-
ter equation of motion for the model and derive the correlation
functions and their relation to the TSSE spin current.

A. Dissipation due to TLS

We consider YIG nanostructures with high-quality surfaces
[33] in which scattering at low temperatures is dominated by
rare earth (RE) substitutional impurities, e.g., Tb or Yb, on
the Y sites [32,34–37]. Two degenerate atomic levels of a RE
atom form a TLS with pseudospin �� that interacts with the
local iron magnetic moments of spin �SFe by an exchange inter-
action HT LS = �SFe · K̄ ��, where K̄ is an anisotropic exchange
interaction tensor, which splits the pseudospin levels by ω01.
Since the RE angular momentum strongly couples to the lat-
tice, spin waves can be efficiently dissipated via HT LS . The
isotropic Heisenberg exchange contribution Sx(y)�x(y) couples
the precessional dynamics and leads to a “transverse” relax-
ation that preserves the total magnetization. The anisotropy
introduces “longitudinal” terms like Sx�z and Sy�z by which
the splitting ω01 depends on the magnetization direction. Van
Vleck [34,36] computed the lifetime broadenings due to HT LS

as a function of the ratio of rare earth to Fe concentration c.
For the longitudinal process he reported

�L =
∑

j

�L, j =
∑

j

c j h̄

6kBT

6∑
n=1

× ω2
j,n,01 f j,n(θ, φ)

τ j,nωU

1 + τ 2
j,nω

2
U

[
1 − tanh2 h̄ω j,n,01

2kBT

]
,

(1)

where j indicates a certain type of impurity or a certain
corresponding TLS, while n indicates an yttrium site in the
YIG unit cell. τ j,n is the relaxation time of an excited TLS,
f j,n(θ, φ) ∈ [0, 1] depends on the polar magnetization direc-
tion angles θ and φ, and ωU is the FMR frequency. The
transverse relaxation is dominated by isotropic exchange and
reads [34,36]

�T =
∑

j

�T, j = −Im
∑
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6∑
n=1

c jω j,n,01

12
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+ ωU
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]
.

(2)

For ω j,n,01 = ω j,01 ∀n and τ j,n = τ j ∀n,

�T, j = 1

2
ωU c j tanh

h̄ω j,01

2kBT

×
{
ω j,01τ j/

(
1 + τ 2

j ω
2
j,01

)
ω j,01τ j

ω j,01 � ωU ,

ω j,01 ∼ ωU .
(3)

�L, j is a nonmonotonous function of temperature, increas-
ing from zero at T = 0 up to a maximum at ∼h̄ω01/kB.
�T, j monotonically increases from zero as T decreases and

FIG. 1. Model. (a) The dissipation caused by two TLS ensembles
that fit the experiments of Tabuchi et al. [32]. �tot = ∑

j=1,2 �L(T ), j ,
where j indicates the ensembles parametrized by c1 = 3 ×
10−7, c2 = 1 × 10−4, τ1 = 10 ns, τ2 = 0.1 ps, ω1,01 = 2π × 10 GHz,
ω2,01 = 2π × 150 GHz, and ωU = 2π × 10 GHz. (b) A spin Seebeck
current J (s) polarized along ẑ flows from the magnet into the metal
contact. The color indicates the temperature profile, where white
(black) is hottest (coldest). (c) Left: Array of spins �Si, coordinate sys-
tem, lattice spacing d , external magnetic field �h, and local reservoirs
at temperature Ti. Right: Mesoreservoir of NT LS two-level systems
(TLS) with frequency splittings ω j,01. The TLS ensemble is in con-
tact with a thermal bath (relaxation rate ξ j = 2π/τ j) at temperature
Ti and interacts with a spin (green lines) by Vi, j .

saturates to a finite value at T = 0 since the transverse
relaxation is proportional to polarization of the TLS, i.e.,
tanh [h̄ω j,01/(2kBT )]/2. The proportionality of �T, j with τ j

when ω j,01 ∼ ωU holds only for 1/τ j 	 ωU . �T, j vanishes
with τ j because of the associated lifetime broadening of
the TLS density of states. Tabuchi et al. [32] found ex-
cellent agreement for the temperature-dependent broadening
at T < 1 K, assuming ω01/2π ∼ ωU /2π ∼ 10 GHz and a
temperature-independent bias. Phonon or magnon interac-
tions vanish with temperature and cannot cause the observed
increase and saturation of the broadening with decreasing
temperature when T < 1 K. The increase in damping with
temperature for T � 1 K could be phonon induced but could
also indicate the presence of a second family of levels with
larger exchange splitting. Figure 1(a) shows that the total
dissipation due to the combination of two distinct TLSs,
�tot = ∑

j=1,2 (�L, j + �T, j ), explains the observed damping
very well up to T ∼ 5 K, where we used c1 = 3 × 10−7, c2 =
1 × 10−4, τ1 = 10 ns, τ2 = 10 ps, f1 = 1, f2 = 1, ω1,01/2π =
10 GHz, and ω2,01/2π = 150 GHz. Figure 1(a) shows that at
T < 1 K, �T,1 � �L,1(2), �T,2. In the following, we therefore
consider only a single TLS type with �tot ≈ αTLSωU, where
αTLS = c1τ1ω1,01 tanh (h̄ω1,01/2kBT ) ≈ 10−4 is the (Gilbert)
damping coefficient. We proceed to predict the consequence
of TLS-dominated dissipation for the spin Seebeck effect. The
TLS model not only captures the observed Gilbert damping at
low temperature but also provides a recipe to include quantum
noise and is a starting point to derive the master equation for
the magnon dynamics, as detailed in Secs. II B and II C.
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B. Hamiltonian

Figure 1(b) shows the schematics of the physical system, a
nanowire magnetized along its length, while Fig. 1(c) shows
the schematics of the corresponding spin-lattice-reservoir
model. The dipolar interactions affect the magnon dispersion
only for wavelengths that are much larger than the unit cell.
We therefore adopt a micromagnetic approach in which the
local magnetization represents an average over slices of typi-
cally 50 nm that contain many local moments. The macrospin
site i then interacts with a “mesoreservoir” composed of
several TLSs, as described earlier. Since the latter are local
impurities with short-range exchange interactions, we may
disregard their cross correlation. The mesoreservoir in turn in-
teracts with a large reservoir with a well-defined temperature
Ti that is allowed to vary slowly in space. The Hamiltonian for
the model in Fig. 1(c) now reads

H = HS + HR + HSR, (4)

where HS describes the magnet, HR is the mesoreservoirs,
and HSR is the interaction between them. We expand the
Heisenberg Hamiltonian for the spin chain in Fig. 1(c) to the
second order of the Holstein-Primakoff transformation for a
spin S on site i, i.e., S+

i = √
2Sa†

i [1 − a†
i ai/(2S)]1/2, S−

i =√
2S[1 − a†

i ai/(2S)]1/2ai, Sz
i = S − a†

i ai, in terms of magnons
a†

i (ai) created (annihilated) at site i. This leads to

HS =
∑

i

(
Ai − S

∑
j

F i, j
zz

)
a†

i ai

+
∑
i, j

{[SJδ(i ± 1, j) + Bi, j )]a
†
i a j

+ Ci, jaia j + H.c.}, (5)

where Ai = −2SJ + γehz. A1(NL ) = −2SJ + γehz indicates
that the edges are in contact with a pinned spin; otherwise,
A1(NL ) = −SJ + γehz. hz is the magnetic field in the ẑ di-
rection; γe is the gyromagnetic ratio; δ is the Kronecker
delta; Bi, j = S(F i, j

xx + F i, j
yy )/2; Ci, j = S(F i, j

xx − F i, j
yy )/2, where

F i, j
xx(yy) is the dipolar field of Sx

i (Sy
i ) exerted on Sx

j (Sy
j );

and J is the exchange interaction. We compute the dipolar
interactions assuming uniform dynamics along the thick-
ness of the nanowire ‖x̂ and a nodeless cosine function
amplitude with an effective width w′

y along ŷ [38]. F i, j
pp =

μ0μ
2
B

4π h̄

∫
Vi

d3 �ρi
∫

Vj
d3 �ρ j f g, where f = cos ( πyi

w′
y

) cos ( πy j

w′
y

), g =
[1/|�ρi j |3 − 3(pi − p j )2/|�ρi j |5], p ∈ {x, y}, �ρi( j) is the position
vector within site i( j), �ρi j = �ρi − �ρ j , Vi( j) is the volume of
segment i( j), μ0 is the vacuum permeability, and μB is the
Bohr magneton.

We parametrize J by its value in the continuum limit.
For long wavelengths J = γeμ0Msλ

2/(d2S), where S = NS0

and N = wxwyd/l3 is the number of unit cells in each
one-dimensional segment, wx (wy) is the thickness (width)
of the nanowire, and l is the unit cell dimension. S0 =
l3Ms/(2πγe) ≈ 14 is the net number of spins in the YIG
unit cell, with magnetization Ms = 1.46 × 105 A/m, γe =
26 GHz/T, and l = 1.2 nm. The exchange length for YIG λ =√

3 × 10−8 m [39]. Figure 2(a) shows the dipolar-exchange
magnon dispersion for three values of wy, where d = 50 nm

FIG. 2. (a) The magnon dispersion of a wire with different
widths wy. The wave number k corresponds to the peak of the
Fourier transform of the spatial wave function. (b) and (c) Spin
Seebeck current as a function of average temperature TM = (TL +
TR )/2 and temperature difference �T = TR − TL , respectively. Left:
|J (s)/�T |. Right: J (s)/|J (s)|. In (b), �T = 10 mK. In (c), TL =
20 mK. In (b) and (c), wy = 500 nm [red curve in (a)]. In (a)–(c),
hz = 20 mT.

and the number of segments NL = 200, i.e., a nanowire of
length L = 10 μm. Figure 2(a) shows that the dispersion min-
imum becomes deeper for larger wy. When the wire is not
too narrow (e.g., wy > 100 nm for wx = 100 nm [38]), the
dispersion relation is nonmonotonous, or “backward moving,”
for small wave vectors along the magnetization [40–42].

Next, we bosonize the Hamiltonian HR =∑
i

∑
j ω j,01r†

i, j ri, j and its interaction with the system

HSR = ∑
i

∑
j (Vi, j r

†
i, jai + H.c.), where i labels the magnetic

segments and j labels the TLS for weak excitations, i.e.,
h̄ω j,01 � kBT . The TLS pseudospin � Hamiltonian can be
simplified by another Holstein-Primakoff transformation,
L+

i, j = √
2L j r

†
i, j and L−

i, j = √
2L j ri, j , where r†

i, j (ri, j)
creates (annihilates) a boson with frequency ω j,01. The
polarization of a TLS with index j in the collection L j =
〈�z〉 = tanh [h̄ω j,01/(2kBT )]/2. Vi, j = ω j,01

√
c jL j/

√
S0 is

the interaction between a magnon on site i with pseudospin j
at relative concentration c j . Each TLS collection is in contact
with a large reservoir at a (slowly varying) temperature Ti and
dissipation ξ j = 2π/τ j . This dissipation is accompanied
by the fluctuating field acting on the TLS collection
gi, j = √

ξ jFi, j , where 〈Fi, j (t )F†
i, j (t

′)〉 = (nth
i, j + 1)δ(t − t ′),

〈F†
i, jFi, j〉 = nth

i, jδ(t − t ′), and nth
i, j = (eh̄ω j,01/kBTi − 1)

−1
. The

white noise correlation functions hold as long as h̄ξ j 	 kBTi

for each i, which is a safe assumption for Ti > 10 mK and
τ1 = 10 ns. Here, we focus on low temperatures T < 1 K and
a single TLS parametrized by c1 = 3 × 10−7, τ1 = 10 ns,
and ω1,01/2π = 10 GHz, leading to Vi,1/2π ≈ 1.5 MHz
at T = 0 [see Fig. 1(a)]. We are safely in the regime
〈r†

i,1ri,1〉 	 Nc1L1, where N is the number of unit cells, i.e.,
far from the saturation of TLS excitations.

C. Master equation and spin current

We now address the steady state for the model defined
above, i.e., a closed system of a magnetic nanowire with a
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large temperature gradient and at low temperatures. The Pt
side contacts noninvasively detect the nonthermal component
of site-dependent magnon distributions, i.e., the TSSE, which
we compute numerically without additional approximations.

The spin Seebeck spin current can be detected by the in-
verse spin-Hall voltage in Pt contacts generated by the spin
current pumped by a nonequilibrium magnetization at the
YIG|Pt interface [4,5,43,44]. The spin pumping at site i

J̃ (SP)
i ≈ h̄gr

4π
〈�Si × �̇Si〉 = h̄gr

4π

〈
Sx

i Ṡy
i − Sy

i Ṡx
i

〉
, (6)

where gr is the real part of the complex spin-mixing con-
ductance. We address J (SP)

i = 4πJ̃ (SP)
i /h̄gr in the rest of the

paper. Ṡx,(y,z) = −i[Sx(y,z), HS] leads to

J (SP)
i = 1

4

∑
j

{
[SJδ(i ± 1, j) + Bi, j]

× (〈
mx

i mx
j

〉 + 〈
my

i my
j

〉)
+ C i j

( − 〈
mx

i mx
j

〉 + 〈
my

i my
j

〉)}
, (7)

where mx
i = ai + a†

i , my
i = −i(ai − a†

i ). At equilibrium, J (SP)
i

is canceled exactly by the torque induced by the thermal
spin current noise emitted by the metal contact [4]. There-
fore, for a certain temperature profile Ti, the net spin current
pumped from site i into the nonmagnetic metal (NM) J (s)

i =
J (SP,NEQ)

i − J (SP,EQ)
i , where J (SP,NEQ)

i (J (SP,EQ)
i ) are the

nonequilibrium (equilibrium) currents at a contact i with tem-
perature Ti. Disregarding any spin accumulation in the metal
contacts, the SSE spin current is pumped by nonequilib-
rium magnons. Indeed, the dominant term (see the Appendix
and Fig. 7) in J (SP)

i is proportional to 〈mx
i mx

i 〉 + 〈my
i my

i 〉 =
4〈a†

i ai〉 + 2. Therefore, the local magnon accumulation at
each site, i.e., the difference in 〈a†

i ai〉 at equilibrium and
nonequilibrium, drives the spin current J (s)

i . The thermal-
ization is weak, so the local distribution functions cannot be
parametrized by magnon temperatures or chemical potentials.
We disregard the effect of the pumping on the magnon system
for simplicity, which is allowed when the mixing conductance
is small, e.g., for sufficiently small contacts.

The objective is the matrix �∞ of the equal-time correla-
tion function of the phase space variables mx

i = ai + a†
i , my

i =
−i(ai − a†

i ), Xi = ri + r†
i , and Yi = −i(ri − r†

i ) (or symmet-
ric covariance matrix) in the steady state that governs the
spatially dependent magnon population and spin currents
[see, e.g., Eq. (7)]. This is the long-time limit of the time-
dependent covariance matrix �. Since the Hamiltonian of
noninteracting magnons is quadratic and the fluctuations are
Markovian, the density matrix obeys a linear master equation
of motion �̇ = O� + �O + ϒ [45], where v̇ = Ov + c, v =
[mx

1, my
1, X1,Y1, . . . , mx

L, my
L, XL,YL] and O is determined by

the Heisenberg equation v(p) = −i[H, v(p)] − ζ (p)v(p)/2.
ζ (p) = ξ1 for the phase space variables of the TLS, p ∈
{4(i − 1) + 3, 4(i − 1) + 4} ∀i, while ζ (p) = 0 for the phase
space variables of the magnons, p ∈ {4(i − 1) + 1, 4(i − 1) +
2} ∀i. c is the vector of fluctuating fields and determines
ϒ = 〈(cT c + ccT )/2〉. ϒ is diagonal with elements ϒ(p, p) =
ζ (p)(2nth

i + 1) = ζ (p)[2(eh̄ω1,01/kBTi − 1)
−1 + 1] (nth

i is the
Planck distribution). We obtain �∞ by solving O�∞ +

FIG. 3. (a) Site dependence of J (s)
i for �T = 107, 135, 894 mK

from Fig. 2(c). (b) Dependence of spin current J (s)
i (�T ) of four sites

i on �T , from Fig. 2(c). The dashed lines correspond to a finer mesh
d = 25 nm (rather than 50 nm), illustrating convergence. In (a) and
(b), TL = 20 mK.

�∞O = −ϒ . The latter equation can be cast into a linear
system of equations in the phase space variables that we solve
numerically by inverting a (nonsparse) (4 × NL )2 × (4 × NL )2

matrix, which in practice limits the system size to NL < 100.
The distributed spin pumping currents in Eq. (7) may then
be expressed in terms of the steady-state covariance ma-
trix �∞, i.e., 〈mx

i mx
j〉 = �∞[4(i − 1) + 1, 4( j − 1) + 1] and

〈my
i my

j〉 = �∞[4(i − 1) + 2, 4( j − 1) + 2].
Below, we calculate the TSSE by the steady-state covari-

ance matrix as a function of the temperature gradient along
the magnetic wire. In Sec. IV, we focus on the LSSE induced
by temperature gradients, introducing terminal contacts that
act as spin and energy sinks.

III. TSSE TEMPERATURE DEPENDENCE

We apply a linear temperature gradient with �T = TR −
TL; TL (TR) is the temperature at the left (right) edge of the
nanowire. In linear response, the TSSE signal is antisym-
metric, changing sign in the middle of the wire [4,5,24–
26]. Figures 2(b) and 2(c) show amplitudes (left panels)
and signs (right panels) of J s

i /�T as a function of TM =
(TR + TL )/2 and temperature difference �T , respectively, for
wy = 500 nm and hz = 20 mT [with dispersion in Fig. 2(a)].
In Fig. 2(b), we show the dependence on the mean temperature
TM for fixed �T = 10 mK. In Fig. 2(c), TL = 20 mK is fixed,
and the gradient �T is varied. According to Fig. 2(b), the
signal increases with increasing TM . The early saturation is
an artifact of the frequency cutoff ωmax introduced by the
finite mesh size d , so results are valid for T < h̄ωmax/kB.
The qualitative features nevertheless remain intact for half
the mesh size d , i.e., an ∼4 times larger cutoff frequency, as
illustrated in Fig. 3(b). The site index i± at which J s

i changes
sign in Fig. 2(b) shifts to the right edge with decreasing TM

below h̄ωc/kB = 0.1 K, where ωc is the uniform (Kittel) mode
frequency. According to Fig. 2(c), the asymmetry survives
at higher temperatures with increasing temperature difference
�T and fixed TL 	 h̄ωc/kB. Figures 3(a) and 3(b) emphasize
the essence of the results in Fig. 2(c) (see also the Appendix
and Fig. 6). Figure 3(a) shows the deviation of the signal from
an antisymmetric profile. In Fig. 3(b), we observe that for
a contact on the right half of the nanowire and fixed small
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TL = 20 mK, the TSSE signal changes sign, and a maximum
appears at relatively large �T and TM . The dashed curves in
Fig. 3(b) show that for smaller mesh size d , i.e., higher cutoff
frequency, the peak and sign change features remain intact.
For the blue curves in Fig. 3(b), the �T ’s that cause the sign
change and peak are ∼0.4 and ∼0.2 K, respectively.

The deviation from an antisymmetric signal can partly
be understood in a semiclassical picture. The additional oc-
cupation of a magnon mode with frequency ω0 scales like
δnBE ∼ τrv(ω0)∇nBE (ω0) [12], where τr is a relaxation time,
v(ω0) is the group velocity, and nBE (ω0) = (eh̄ω0/kBT − 1)

−1
.∫

ω
δnBE �= 0 because the magnons pile up or get drained at the

edges. In linear response and a long spin-diffusion length, the
dependence is linear with a zero in the center. An expansion
in h̄ω0/(kBT ) can indicate only that ∇nBE (ω0) is uniform
for TM > h̄ω0/kB when �T 	 TM [see Fig. 2(b)] and for
�T � h̄ω0/kB when TM ∼ �T/2 [see Fig. 2(c)]. A uniform
∇nBE (ω0) leads to the antisymmetric TSSE in Figs. 2(b) and
2(c). A nonuniform ∇nBE (ω0) breaks the antisymmetry by
the spatial dependence of the magnon accumulation, which
causes a substantial nonmonotonicity of the signal at certain
positions.

The TSSE voltage V (T SSE )
i = 2ρθH ewygrJ s

i /(4πwyd ),
where −e is the electron charge, and for Pt, the conductiv-
ity ρ = 0.9 μ� m [46], and spin Hall angle θH = 0.07 [47],
while for the YIG/Pt interface gr/(wyd ) = 1016 m−2 [46].
This leads to V (T SSE )

i ≈ 8 × 10−18J s
i V. The low-temperature

maximum of J s
i /�T ∼ 1010 for �T = 0.2 K [see Fig. 3(b)]

leads to a substantial V (T SSE )
i ∼ 16 nV.

IV. LSSE MODEL AND TEMPERATURE DEPENDENCE

The LSSE records the total spin current generated in
the magnet within the spin relaxation length and not just
the magnon accumulation at the contact as in the TSSE.
We can access the LSSE by modifying the boundary
conditions at the terminals of the wire in order to allow
the spin currents to flow unimpeded into the contacts that
act as spin and energy sinks. To this end, we introduce
two reservoirs to the left and right of the nanowire. We
assume that the reservoirs are NMs with a large spin-mixing
conductance and interfacial damping, in contrast to the con-
tacts in the TSSE, which we assumed to be noninvasive.
We model the end contacts by reservoirs coupled equally to
all modes in the nanowire by a structured reservoir model
[45,48–50] of NM bosonic modes, as depicted in Fig. 4.
The modified total Hamiltonian H ′ = H + H ′

SR, where
H ′

SR = ∑
q(VL,qe†

L,qa1 + VR,qe†
R,qaNL + H.c.), e†

L(R),q creates a
boson in mode q of the left (right) reservoir, and VL(R),q is the
coupling of the local magnon field of the left (right) edge to
the left (right) reservoir. Each boson mode in the left (right)
reservoir is in contact with a large thermal bath at TL (TR)
and dissipation ξL (ξR). This dissipation is accompanied
by the fluctuating field g′

L(R),q = √
ξL(R)F ′

L(R),q, where

〈F ′
L(R),q(t )F ′†

L(R),q(t ′)〉 = (nth
L(R),q + 1)δ(t − t ′), 〈F ′†

L(R),q(t )

F ′
L(R),q(t ′)〉 = nth

L(R),qδ(t − t ′), nth
L(R),q = (eh̄ωq/kBTL(R) − 1)

−1
,

assuming 1/ξL(R) � h̄/kBTL(R). The density of states
of the left (right) reservoir GL(R)(ω) = ∑

q 2ξL(R)ω
2

FIG. 4. The LSSE model schematics of additional mesoreser-
voirs to the left and right edges of the nanowire [see Fig. 1(c)]. The
mesoreservoirs consist of NM bosonic modes with frequencies ωq and
dissipate (ξL(R)) to a thermal bath at TL(R).

[(ω2
q − ω2)2 + ω2ξ 2

L(R)]
−1

. Therefore, the dissipation of a
magnon with frequency ωq in the left (right) magnetic site
to the left (right) reservoir �′

L(R)(ωq) = GL(R)(ωq)V2
L(R),q.

The reservoirs should dissipate magnons of all frequencies,
so we impose NM = NL and ωq to be frequencies of the
normal magnon modes of the nanowire. The spin and
energy loss at the edges is equivalent to increased damping
αSP, i.e., �′

L(R)(ωq) = αSPωq, so VL(R),q = √
αSPωq/G(ωq).

For 2π/ξL(R) = 10 ns and αSP = 0.1αT LS , we obtain
the steady-state covariance matrix �′

∞ as described in
Sec. II C, which allows computing the spin current flowing
from the left (right) reservoir into (out of) the nanowire
J (LSSE )

L(R) = −i[Sz
1(NL ), H] as

J (LSSE )
L(R) = 1

2

∑
j

[{SJδ[1(NL ) ± 1, j] + B1(NL ), j}

× (〈
mx

1(NL )m
y
j

〉 − 〈
my

1(NL )m
x
j

〉)
+ C1(NL ), j

( − 〈
mx

1(NL )m
y
j

〉 − 〈
my

1(NL )m
x
j

〉)]
. (8)

Figures 5(a) and 5(b) show the temperature depen-
dence of the average current through the wire J (LSSE ) =
(J (LSSE )

R − J (LSSE )
L )/2. The temperature combinations in

Figs. 5(a) and 5(b) are the same as in Figs. 2(b) and 2(c), i.e.,
fixed �T = 10 mK but varying TM or fixed TL = 20 mK but

FIG. 5. Longitudinal spin Seebeck effect. The temperature de-
pendence of the spin current at the right end point flowing into a spin
sink. (a) �T = 10 mK. (b) TL = 20 mK. Here we plot (J (LSSE )

L −
J (LSSE )

R )/2 (red line labeled Sym.) and J (LSSE )
R + J (LSSE )

L (black line
labeled Asym.)
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FIG. 6. (a) Site dependence of J (s)
i for two TM . For TM = 37 mK,

the plot is scaled by 104. (b) TM dependence of J (s)
i for two sites i.

The inset zooms in on the maximum. In (a) and (b), �T = 10 mK.
The plots are cross sections from Fig. 2(c).

varying �T , respectively. Figures 5(a) and 5(b) are featureless
and illustrate that even for low TM 	 �T , J (LSSE ) depends
(quasi)linearly on �T [see Fig. 5(b)]. In Fig. 5(b), we also
show the difference in the spin currents into the left and out
of the right contacts J (LSSE )

R + J (LSSE )
L , which turns out to be

relatively very small because LSSE is dominated by the bulk
spin current, which is the same for both contacts. It should
be emphasized that our TLS model is strictly valid only for
T < 1 K.

V. CONCLUSION

We investigated SSE at cryogenic temperatures T � 1 K
with dissipation by two-level systems. In the nonlinear
temperature regime, i.e., large �T/T , we predicted a non-
monotonic TSSE signal at a certain position of the detector
contacts. For a linear temperature gradient and a contact po-
sition in the hot region, the sign changes, and a substantially
large ∼10 nV voltage peak emerges at 2TM ≈ �T ∼ 0.2 K.
On the other hand, the LSSE signal follows a (quasi)linear
dependence on �T , even when much larger than the average
temperature. Testing our predictions will be a challenge for
experiments, requiring advanced nanofabrication of magnetic
insulators and state-of-the-art low-temperature equipment, but
form an important step in coming to grips with magnon trans-
port in an uncharted regime. Our model and methodology
can be extended to include effects of microwave-driven co-
herence or spontaneous magnon condensation. Our approach
provides the fluctuation statistics of the steady state in various
nonequilibrium situations and at cryogenic temperatures and
can be used to identify quantum squeezing and entanglement
in magnonic systems.
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APPENDIX: ADDITIONAL INFORMATION ON TSSE

Figure 6(a) shows the deviation of the TSSE current J s
i

from an antisymmetric profile for low TM and �T = 10 mK.
In Fig. 6(b), we observe that for contacts on the right half
of the wire the TSSE signal may change sign. Compared

FIG. 7. |J (s,2)/J (s,1)| as a function of TM (left panel) and �T
(right panel) for the same set of parameters as in Figs. 2(b) and 2(c),
respectively.

to Fig. 3(b), this sign change and a local maximum appear
at much larger �T and TM , when TL (rather than TM ) is
fixed and small. Here, we estimate a TSSE voltage V (T SSE )

i ≈
8 × 10−18J s

i V. The low-temperature maximum in Fig. 6(b),
J s

i /�T ∼ 108 at �T = 10 mK, generates only a very small
V (T SSE )

i ∼ 8 pV.
We support the statement in Sec. II C that magnon ac-

cumulation dominates the TSSE spin current J (s) by the
decomposition J (s)

i = J (s,1)
i + J (s,2)

i , where J (s,1) is caused
by the magnon accumulation, i.e., the difference in nonequlib-
rium and equilibrium values of 〈a†

i ai〉, while J (s,2) stands
for the rest. Figure 7 shows |J (s,2)

i /J (s,1)
i | as a function of

TM and �T for the set of parameters in Figs. 2(b) and 2(c).
|J (s,2)

i /J (s,1)
i | < 1 proves the dominating role of the magnon

accumulation.
Next, we discuss a consequence of the magnetodipolar in-

teraction that generates negative group velocities at the origin
and a minimum of the magnon dispersion at finite wave num-
bers. We can study the latter as a function of decreasing wy,
which causes the minimum to become shallower and finally
vanish. In practice, it is convenient to modify the exchange
length λ for fixed wy, which is not physical but suffices
to illustrate that the effect is small. Figure 8(a) shows the
dispersion for exchange lengths λ′ ∈ {0.5, 1, 5}λ, where λ is
that of YIG. The dispersion is deeper (shallower) for smaller
(larger) λ′, as expected. Figure 8(b) shows the temperature
dependence of J (s)

i /J ′(s)
i at a representative site i = 15, where

J ′(s)
i is the TSSE current corresponding to λ′. For larger λ′,

FIG. 8. (a) The magnon dispersion for three different exchange
lengths, λ′ = 0.5λ, λ, and 5λ, where λ is that of YIG. (b) Left (right):
TM (�T ) dependence of the ratio J (s)

i /J ′(s)
i . J ′(s)

i is the TSSE spin
current for λ′ �= λ. The results are for site i = 15. In (b), vertical axes
are logarithmic.
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i.e., a shallower valley, the TSSE signal increases with the
absolute value of the average group velocity over the occu-
pied states. For magnetization ‖x̂(ŷ), the dispersion increases

monotonically, which increases the spin currents, but detec-
tion by the inverse spin Hall effect becomes more complicated
(not shown).
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