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We compare the ground-state features of alternating ferrimagnetic chains (1/2, S) with S = 1, 3/2, 2, 5/2
in a magnetic field and the corresponding Holstein-Primakoff bosonic models up to order

√
s/S, with s = 1/2,

considering the fully polarized magnetization as the boson vacuum. The single-particle Hamiltonian is a
Rice-Mele model with uniform hopping and modified boundaries, while the interactions have a correlated
(density-dependent) hopping term and magnon-magnon repulsion. The magnon-magnon repulsion increases
the many-magnon energy and the density-dependent hopping decreases the kinetic energy. We use density
matrix renormalization group calculations to investigate the effects of these two interaction terms in the bosonic
model and display the quantitative agreement between the results from the spin model and the full bosonic
approximation. In particular, we verify the good accordance in the behavior of the edge states, associated with
the ferrimagnetic plateau, from the spin and from the bosonic models. Furthermore, we show that the boundary
magnon density strongly depends on the interactions and particle statistics.

DOI: 10.1103/PhysRevB.103.054432

I. INTRODUCTION

The gapped phases of magnetic insulators are responsible
for magnetization (m) plateaus in the m vs magnetic field
curves [1]. In one dimension, these incompressible phases sat-
isfy the topological Oshikawa-Yamanaka-Affleck [2] criteria
and exhibit associated edge states in open spin chains [3].
The gapped phases are separated by gapless phases that have
a low-energy physics described by the Tomonoga-Luttinger-
liquid theory [4]. Thus, the magnetic field h induces quantum
phase transitions in the spin chain, with quantum critical
points at the plateau extremes [5,6]. In the vicinity of the
quantum critical points, the magnons are in a high-dilute
regime and can be treated as a gas of hard-core bosons [7,8] or
fermions [9]. In this approximation, the energy is comprised
only by a simple hopping term and the uniform Zeeman term,
which plays the role of chemical potential in the effective
model. Following this approach, we can show that the m(h)
curve (magnon density) presents a square-root singularity in
the gapless side of the transition. The first correction to this
law is linear and obtained by taking into account magnon-
magnon interaction through a phenomenological scattering
length [10–14].

Another kind of hopping term is known as correlated
(or density-dependent) hopping and is essential in the
modeling of a variety of quantum systems [15]. One of
these terms, the bond-charge interaction [16], is used to
model electrons in strongly correlated materials [17–21]
and was particularly investigated in the context of high-
Tc superconductivity. Besides, the Hubbard model with
this term has an exact solution in a special point of the

parameter space [22–25]. On the other hand, the extended
boson Hubbard model with a density-dependent hopping is an
effective Hamiltonian for bosonic molecules, typically polar
species [26–28], in optical lattices [29–36]. Further, general
correlated hopping hard-core bosonic Hamiltonians are in-
vestigated to understand the physics of frustrated insulating
magnetic materials [29–31,37].

The ground state of ferrimagnetic chains satisfies the
Lieb-Mattis theorem [38], exhibits ferromagnetic and anti-
ferromagnetic long-range orders [39], and was investigated
in the isotropic [40–42] and anisotropic [41,43,44] cases.
Ferrimagnetic systems, in particular, the behavior of the
edge states associated with the 1/3 magnetization plateau of
the AB2 anisotropic chain, were recently investigated [45].
Furthermore, rich phase diagrams are observed through dop-
ing [46–50] or adding geometric frustration [51–58] to the
ferrimagnetic models. In particular, ferrimagnetic spin-(1/2,
S) chains under an applied magnetic field present magneti-
zation plateaus at m = S − 1/2 (ferrimagnetic plateau) and
m = S + 1/2 (saturation plateau), where m is the magneti-
zation per unit cell [59–64]. On the experimental side, the
one-dimensional magnetic phase of a variety of bimetallic
compounds was shown to be modeled by spin-(1/2, S) fer-
rimagnetic chains [65–70]. Recently, the full magnetization
curve of the charge-transfer salt (4-Br-o-MePy-V)FeCl4 was
experimentally investigated [71] and shown to be a spin-(1/2,
5/2) chain above the three-dimensional ordering temperature.

Since spin-(s, S) ferrimagnetic chains have a long-ranged
ordered ground state, linear and interacting spin-wave the-
ory [72] from the classical ferrimagnetic state was used to
characterize their low-energy magnetic excitations, mainly
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through the Holstein-Primakoff formalism [59,60,73–78].
Furthermore, linear spin-wave theory from the fully polarized
state [64] gives good results for the gapped and gapless phases
of spin-(1/2, S) chains in a magnetic field.

Here we show that the Holstein-Primakoff Hamiltonian up
to order

√
s/S gives almost exactly results to the ground-state

phase diagram of ferrimagnetic spin-(1/2, S) chains in a mag-
netic field. We use the density matrix renormalization group
(DMRG) [79,80] to obtain the magnetization curves, besides
local properties from the Holstein-Primakoff Hamiltonian and
the spin Hamiltonian. In addition to the simple hopping and
the nearest-neighbor interacting terms, a correlated hopping
term is essential to obtain a good accord between the numer-
ical results from the spin and bosonic models. In Sec. II we
present the Holstein-Primakoff Hamiltonian and the analytical
formulas for the hard-core boson approximation. In Sec. III
we compare the DMRG results for the magnetization and local
properties from the Holstein-Primakoff Hamiltonian and the
spin model. In Sec. IV we present a summary of the main
results of the paper.

II. HOLSTEIN-PRIMAKOFF BOSONIC HAMILTONIAN
FROM THE FULLY POLARIZED VACUUM

The alternating mixed-spin (s = 1/2, S) chain with L unit
cells has the Hamiltonian

HSPIN = J
L∑

j=1

(s j · S j + s j · S j−1) − BSz
tot, (1)

where

Sz
tot =

∑
j

(
sz

j + Sz
j

)
(2)

is the z component of the total spin, and we consider the
magnetic field B in the z direction, with gμB ≡ 1, where μB

is the Bohr magneton and g is the g factor. The spin-1/2
are attached to a sites, while spin-S to b sites along the
chain, and we study chains for which S = 1, 3/2, 2, 5/2, as
schematically shown in Fig. 1(a). The ground-state total spin
for B = 0 is S − s and has a copy in each sector in the range
−(S − s) � Sz

tot � (S − s), as expected from the Lieb-Mattis
theorem [38], with a ferrimagnetic (FRI) long-range ordered
state. If a little magnetic field is applied, the ground state
with Sz

tot = (S − s) is chosen. Further, the ground state has a
finite gap to spin excitations carrying a spin �Sz = +1, which
induces a magnetization plateau at mFRI = (S − s). Also, a
second magnetization plateau is the fully polarized plateau at
mFP = S + s.

The fully polarized state is an exact ground state of the spin
Hamiltonian, and we build the spin-wave theory considering
it as the magnon vacuum. Making the Holstein-Primakoff
mapping on a sites

sz
j = s − na

j ,

s−
j =

√
2sa†

j

(
1 − na

j

2s

)1/2
≈

√
2sa†

j

(
1 − na

j

4s

)
, (3)

and on b sites:

FIG. 1. (a) Schematic representation of the alternating spin
model, with spin-1/2 at a sites, and spin-S at b sites, with S =
1, 3/2, 2, and 5/2. The z direction is the direction of an ap-
plied magnetic field B and the superexchange coupling is J .
(b) Holstein-Primakoff bosonic Hamiltonian up to O(S−1/2), with a
hopping term t = J

√
sS, local potentials εa = −2SJ and εb = −2sJ ,

nearest-neighbor interaction V = J , and density dependent corre-
lated hopping process X = J

√
s/S. The a sites have a hard-core

constraint, na � 1, while the constraint nb � 2S is imposed on b sites,
with na (nb) as the number of bosons in one a (b) site. The magnetic
field B acts as a chemical potential μ in the bosonic model: μ = −B.
(c) The bosonic approximations investigated: t , t-V , and t-X -V . In
the t and t-V approximations, there is a hard-core constraint on all
sites, while in the t-X -V model, the b sites can accommodate up to
two magnons.

Sz
j = S − nb

j ;

S−
j =

√
2Sb†

j

(
1 − nb

j

2S

)1/2
≈

√
2Sb†

j

(
1 − nb

j

4S

)
, (4)

where na
j = a†

j a j and nb
j = b†

jb j , we arrive in the following
spin-wave Hamiltonian
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HSW = J
∑

j

{(
S − nb

j

)(
s − na

j

) +
√

sS

[(
1 − nb

j

4S

)
b ja

†
j

(
1 − na

j

4s

)

+ b†
j

(
1 − nb

j

4S

)(
1 − na

j

4s

)
a j

]
+

√
sS

[(
1 − na

j

4s

)
a jb

†
j+1

(
1 − nb

j+1

4S

)

+ a†
j

(
1 − na

j

4s

)(
1 − nb

j+1

4S

)
b j+1

]
+ (

s − na
j

)(
S − nb

j+1

)} − B
∑

j

(
S + s − na

j − nb
j

) + O(S−1). (5)

Dropping the classical energy of the ferromagnetic state
Eclass = 2JLsS − B(S + s)L, the relevant magnon Hamilto-
nian is:

HSW = Ht + HX + HV + O(S−1), (6)

with HSW = HSW − Eclass.
As sketched in Fig. 1(b), the Ht term comprises a hopping

process and distinct local potentials on a and b sites:

Ht = t
∑

j

(b†
ja j+1 + b†

j+1a j+1 + H.c.)

+
∑

j

[(εa − μ)na
j + (εb − μ)nb

j] (7)

with

t = J
√

sS, hopping parameter;

εa = −2SJ , local potential on a sites;

εb = −2sJ , local potential on b sites;

μ = −B. (8)

In an open chain, if a or b is a boundary site, the local potential
is half of the above value:

ε(boundary)
a = −SJ

ε
(boundary)
b = −sJ. (9)

Considering the local potentials, we see that the magnon has
a higher probability to be found on a sites, and this probabil-
ity increases with S. However, since the hopping parameter
t increases with

√
S, quantum fluctuations are relevant for

moderate values of S, and the magnons can overcome the
potential barrier between a and b sites.

We observe that the bulk Hamiltonian Ht is a particular
case of the Rice-Mele model [81]:

HRice-Mele =
∑

j

(t2b†
ja j+1 + t1b†

j+1a j+1 + H.c.)

+
∑

j

(
εana

j + εbnb
j

)
, (10)

putting μ = 0 and considering the general case of alternat-
ing hopping: t1 (t2) for intracell (intercell) hopping. The
Rice-Mele Hamiltonian was originally proposed to model the
physics of electrons in polymers but is a paradigmatic model
to the understanding of topological insulators and can be re-
alized by atoms in optical lattices [82]. The model presents
the bulk-boundary correspondence [83], and an interacting

version was recently investigated [83] to probe the connec-
tion between topology and particle-particle interactions [83].
The Rice-Mele model recovers the bulk Hamiltonian Ht for
t1 = t2. However, for an open chain, the mapping of the spin
model requires local potentials on the boundary sites, Eq. (9).

The second term in the bosonic Hamiltonian (6) is a
density-dependent or correlated hopping term given by

HX = −X
∑

j

[
(a†

j + a†
j+1)nb

jb j + H.c.
]
, (11)

with

X = J

4

√
s

S
. (12)

Since s = 1/2 and na
j � 1, a hard-core constraint must be

imposed on a sites for all models considered. Hence, we
discard a term similar to the X term but with a and b vari-
ables exchanged, with X ′ = J

4

√
S/s as the correlated hopping

amplitude. As sketched in Fig. 1(b), the energy of the system
is lowered by the hopping of a magnon to a site that is already
occupied. In other words, the magnon probability to overcome
the potential barrier between a and b sites increases if there
is one magnon on the b site. This term becomes relevant for
higher magnon densities, since it is an interaction term, and
X → 0 as S increases.

The last term in the Hamiltonian (6), see Fig. 1(b), is a
repulsive term between magnons in nearest neighbor sites:

HV = V
∑

j

na
j+1

(
nb

j + nb
j+1

)
, (13)

with V = J , and increases the energy for higher magnon
densities. For one magnon per unit cell, this term favors the
magnon localization on alternating a sites, since the local
potentials (ε) favor the occupation of a sites. Thus, ε (any
density) and V (higher densities) favor magnon localization on
a sites, while quantum fluctuations (tunneling between a and
b sites) are favored by t (any density) and X (higher densities).

In this work, we compare data from three approximations
of Hamiltonian (6), as summarized in Fig. 1(c), and from the
spin Hamiltonian (1). The first, which we identify as the t
approximation, is an analytical solution to the free hard-core
model. In this approximation, all sites have a hard-core con-
straint and can be occupied by only one magnon: na

j � 1 and
nb

j � 1, for any j. This constraint implies that there is not an
energy contribution from the X term, and we drop the nearest-
neighbor interaction V . In the second approximation, t-V , we
keep the hard-core constraint but add the V contribution to Ht .
The last approximation, t-X -V , has the three terms Ht , HX ,
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and HV . We consider a hard-core constraint on a sites and a
constraint nb

j � 2 on b sites. As we present below, the relax-
ation of the hard-core constraint on b sites and the consequent
activation of the correlated hopping term implies an excellent
agreement between the results of this approximation and the
spin model.

A. Free hard-core magnons (t approximation): Ht and L → ∞
The first approximation to the magnetization curve, a

many-magnon state, is to consider the magnons as free hard-
core bosons or free fermions. This mapping is exact in the
high-dilute regime of magnons, near the saturation field. Here,
we extend this approach for the full range of the magneti-
zation, (S − s) � m � (S + s), and compare their results to
more precise calculations considering the interaction terms.

The single-magnon energies are given by the term Ht ,
Eq. (7), in Hamiltonian (6). Using the following Fourier trans-
forms:

a j = 1√
L

∑
k

e−ik/4eik jak;

b j = 1√
L

∑
k

e+ik/4eik jbk, (14)

where a phase e±ik/4 is included to ease the calculation, Ht

becomes:

Ht =
∑

k

(
a†

k b†
k

)(εa γk

γk εb

)(
ak

bk

)
, (15)

where

γk = 2t cos(k/2). (16)

After diagonalization, the Hamiltonian is written as

Ht =
∑

k

ω(−)

k n(−)

k + ω(+)

k n(+)

k , (17)

where the dispersion relations are

ω(±)

k = εa + εb

2
± ωk = −J (s + S) ± ωk, (18)

with

ωk =
√(εb − εa

2

)2

+ γ 2
k

= J
√

(S − s)2 + 4sS cos2(k/2), (19)

and n(±)

k = α (±)†

k α (±)

k , where
(

α (−)

k

α (+)

k

)
=

(
cos θk − sin θk

sin θk cos θk

)(
ak

bk

)
, (20)

with

cos2 θk = 1

2
+ S − s

2ωk
;

sin2 θk = 1

2
− S − s

2ωk
. (21)

A magnetic field (or chemical potential) adds a +B energy
term to the two bands.

FIG. 2. One-magnon states from the fully polarized (FP) vacuum
and B = 0 as a function of lattice wave vector k. In the t approxi-
mation, the high energy band is inactive. For B = 2(s + S) = −μ,
the exact ground state is the FP vacuum, while there is one magnon
per unit cell in the system for B = 2S, and the ground state is
ferrimagnetic (FRI).

The magnon bands are shown in Fig. 2 for (i) B = 0;
(ii) B = 2(s + S), the saturation field, for which m = mFP =
(S + s); (iii) B = 2S, the critical field of the ferrimagnetic
plateau, for which m = mFRI = (S − s), or 1 magnon per unit
cell: mFP − mFRI = (S + 1/2) − (S − 1/2) = 1. As expected
from the Lieb-Mattis theorem, the magnetization in the null
field is S − s. In the free hard-core boson or free fermion
approximation, we fill the single-particle states following a
Fermi distribution up to the effective Fermi wave vector kF .
As shown in Fig. 2, if we follow this procedure the two bands
should be filled for B = 0 (two magnons per unit cell) and
the magnetization curves of the spin model would not be
reproduced. We have shown in Ref. [64] that this problem can
be overcome, even for finite T , by introducing an effective
chemical potential μ to the upper band, in a way similar to
Takahashi’s solution to the ferromagnetic linear chain [84]. In
particular, μ → −J = −2sJ as T → 0, such that the overall
effect of μ at T = 0 is the suppression of the upper band.
Hence, in the free hard-core approximation, we must consider
only the lower band in the calculations, as schematically indi-
cated in Fig. 2. Thus, for example, the energy per unit cell in
the free hard-core approximation is written as

E

L
= 1

L

kF∑
k=−kF

ω(−)

k (22)

for a magnon density per unit cell n, where

kF = πn, (23)

and n = mFP − m.

1. Average local magnetizations

If the chain has a magnon density per unit cell n and
considering the hard-core approximation, the average magne-
tizations of a and b sites are given by

〈sz〉 = s − 1

L

kF∑
k=−kF

〈
na

k

〉
(a sites);

〈Sz〉 = S − 1

L

kF∑
k=−kF

〈
nb

k

〉
(b sites). (24)

054432-4



ROLE OF DENSITY-DEPENDENT MAGNON HOPPING AND … PHYSICAL REVIEW B 103, 054432 (2021)

Using Eqs. (20) and discarding terms involving the upper
band, we obtain 〈

na
k

〉 = n(−)

k cos2 θk;〈
nb

k

〉 = n(−)

k sin2 θk . (25)

We thus have

〈sz〉 = s − 1

2
− S − s

2

kF∑
k=−kF

1

ωk
;

〈Sz〉 = S − 1

2
+ S − s

2

kF∑
k=−kF

1

ωk
, (26)

after the substitution of Eqs. (21) in Eqs. (25) and the results
in Eqs. (24).

III. DMRG RESULTS FOR THE SPIN MODEL AND THE
BOSONIC HAMILTONIANS

A. Methodology

We use the density matrix renormalization group to obtain
the magnetization curves and local properties of the spin,
t-V , and t-X -V models and also compare this data with the
analytical results from the free hard-core model (t model) in
the thermodynamic limit: L → ∞. These approximations are
summarized in Fig. 1(c). All DMRG results (boson and spin
models) are obtained through the Algorithms and Libraries
for Physics Simulations (ALPS) project [85] for chains with
L = 128 unit cells, with one a site at one extreme and a b site
at the other. If the system has an a site at the left extreme and
a b in the right (a-b boundaries), the renormalization process
for the magnetization step inside the ferrimagnetic plateau be-
comes trapped in a metastable state for S = 3/2, 2, and 5/2.
In these cases, the global energy minimum is reached by the
algorithm if the chains have a b site at the left extreme and an
a site at the right extreme (b-a boundaries). In the other mag-
netizations, this is irrelevant, i.e., the same state is calculated
for the a-b or the b-a boundaries. We retain a maximum of 243
states per block and the maximum discarded weight less than
10−9.

For the spin model, the magnetization curves are calculated
from the lowest energy state for a fixed Sz and B = 0: E (Sz ),
since for B 
= 0 we need only to add the Zeeman term, such
that EB(Sz ) = E (Sz ) − BSz. In a gapless (nonplateau) phase,
the magnetization curves are made of finite steps in a finite-
size system. Defining the extreme points of these finite steps
as B− and B+, we have

B± = ±[E (Sz ± 1) − E (Sz )] (27)

for the step at Sz. In a gapless phase, B− → B+ as L →
∞, while in a thermodynamic-limit plateau state B− 
= B+
for L → ∞. In the last case, B± are quantum critical fields
separating the plateau insulating state from a gapless critical
Luttinger liquid phase. For the bosonic models, the magnon
density per unit cell n as a function of chemical potential μ

is obtained with a similar procedure. We calculate the lowest
energy state for a fixed number of bosons N , with N = nL and
μ = 0. The value of the chemical potential at the extremes

FIG. 3. (a) Magnetization per unit cell (m) of (1/2, S) chains,
with S = 1, 3/2, 2, and 5/2, normalized by its saturation value
(ms) and (b) magnon densities per unit cell n as functions of B in units
of J . DMRG data for (full lines) the spin model and for (•) the t-X -V
approximation. We present in both figures the results for the t model
(dashed lines) and L → ∞. In (b), we also show the magnon density
as a function of B units of J for (•) the t-V approximation, calculated
with DMRG for a system with L = 128. In the thermodynamic limit,
the ferrimagnetic plateau is observed for n = 1, while the gapless
Luttinger liquid phase for 0 < n < 1. On both figures, we indicate
(arrows) the magnetic field at which the edge states are occupied by
one magnon.

(μ− and μ+) of the step at N are given by

μ± = ±[E (N ± 1) − E (N )]. (28)

A gapless phase has μ+ → μ− as L → ∞, while in a plateau
insulating phase μ+ 
= μ− in the thermodynamic limit. The
transformation from the boson to the spin language is per-
formed through the following equations:

n = m − mFP, and

B = −μ. (29)

B. Magnetization curves and local magnetizations

The magnetization curves from the spin model and the bo-
son Hamiltonians are shown in Fig. 3(a). The models present
two magnetization plateaus, one at the ferrimagnetic magne-
tization mFRI = S − 1/2 and the fully polarized state mFP =
S + 1/2. The saturation field BFP, end point of the FP plateau,
is obtained through the closing of the single-particle magnon
gap with B, as sketched in Fig. 2, at B = BFP = 2(S + s).
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The saturation field BFP from any bosonic approximation is
rigorously equal to its exact value since the fully polarized
state, an exact eigenstate of the spin model, is the vacuum for
the bosonic models.

The Oshikawa-Yamanaka-Affleck topological criteria [2]
states that a plateau can appear in the magnetization curve of
spin systems if

Su − m = integer, (30)

where Su is the maximum spin of a unit cell, unless the
ground state spontaneously breaks translation symmetry. This
corresponds to a number of magnons per unit cell n =
0, 1, 2, . . . , Su(Su − 1/2) for integer (half integer) Su, from
the fully polarized state. Since Su = S + 1/2 (saturated mag-
netization) for spin-(1/2, S) chains, plateaus could appear at
m = S + 1/2, (S − 1/2), . . . , 0(1/2), for half integer (inte-
ger) S. In the spin-(1/2, S) chains, the data shows that there
are two magnetization plateaus, one at the fully polarized
(n = 0) magnetization and the other at one magnon per unit
cell (n = 1), the ferrimagnetic plateau. The other possible
magnetization plateaus are inhibited by the magnon-magnon
interaction term V [Eq. (13)]. The magnetization curves of
ferrimagnetic spin chains with 1/2 < s < S can exhibit other
plateaus between the ferrimagnetic and the fully polarized
ones. This is observed, for example, in spin-(1, 2) and spin-(1,
3/2) chains [86]. For these chains, the ferrimagnetic plateau
state has two magnons per unit cell, n = 2, and the magnetiza-
tion curves also exhibit a plateau at n = 1. We also observe the
occupancy of the edge states of the ferrimagnetic plateau by
one magnon at the indicated magnetic fields. These edge states
appear in finite-size open systems associated with topological
aspects [3,45] of the ferrimagnetic state.

The noninteracting Rice-Mele model (10) does not present
edge states for uniform hopping. However, recently [83], it
was shown that an interacting fermionic system, with a local
Coulomb interaction, presents effective edge states, and that
a fraction of the boundary charge is, in fact, related to the
bulk properties. Our noninteracting Hamiltonian (7) has the
modified local potentials in the boundaries (9), required from
the spin mapping, and thus localized edge states. Furthermore,
our interacting model is a bosonic system having the correlated
hopping and nearest-neighbor Coulomb repulsion. In Sec. IV,
we study the boundary magnon density and compare it from
relevant interacting and noninteracting bosonic models. The
gapless phase between the magnetization plateaus is a Lut-
tinger liquid phase with power-law decay of the transverse
spin correlation functions [4] and has a dynamical exponent
z = 1.

We notice in Fig. 3(a) that as B decreases from BFP, the
magnetization from the free hard-core model, t approxima-
tion, departs from that of the spin model at roughly half filling
of the lower magnon band ω(−), Eq. (18). At this filling, the
interaction effects start to become relevant. The critical field
of the ferrimagnetic plateau from the free hard-core model:
2S, see Fig. 2, becomes more near its value for the spin model
as S increases, as also confirmed in Table I. This effect can be
attributed to the local energy of the a sites that becomes deeper
in comparison with the local energy of the b sites, as can be
seen in the energy term (7) and the sketch in Fig. 1. Thus,
the magnons become more localized on a sites as S increases,

TABLE I. Critical field of the ferrimagnetic plateau in units of J
for the spin-(1/2, S) chains in the free hard-core boson approxima-
tion t approximation and the spin model.

S t approx.: 2S spin model: β
2S−β

β

1 2 1.76 0.13
3/2 3 2.85 0.05
2 4 3.88 0.03
5/2 5 4.91 0.02

and the X and V energy terms, Eqs. (11) and (13), respec-
tively, become lesser relevant. The X term due to the low
occupancy probability of one b site by two magnons and also
because X → 0 as S → ∞, see Eq. (12). The V term, on the
other hand, because the probability of finding two magnons
in nearest neighbor sites is also very low. Further, the t-X -V
approximation, which has all energy terms in Hamiltonian (6)
active, is in excellent agreement with the results for the spin
model. Even the location of the edge states is well reproduced
by the t-X -V approximation.

In Fig. 3(b) we show the average magnon density per unit
cell 〈n〉. Besides the models presented in (a), we add the t-V
approximation. The presence of the magnon repulsion makes
the accordance with the spin model good for 〈n〉 > 1/2, while
in the t approximation this agreement is good up to a value
of 〈n〉 less than 1/2. As 〈n〉 → 1, reaching the ferrimagnetic
plateau, the repulsion V increases much the energy of the
system and thus implies a lower value of the critical magnetic
field BFRI, compared to the spin model. The location of the
edge states in the finite-size system is also different between
the spin and the t-V approximation. Further, the X term, the
density-dependent hopping term, lowers the energy, and the
full 〈n〉 curve of the spin model is well reproduced by the
t-X -V approximation. We notice, however, that only for the
finite size spin-(1/2, 1) chain studied, the lower critical field of
the ferrimagnetic plateau is B ≈ 0.06J . In Sec. IV, we present
the magnon curve for N > 128.

The average spin and magnon density at a and b sites
are shown in Fig. 4. Notice that the average spin at b sites,
Fig. 4(b), is normalized by S. Also shown are the probability
of occupancy of a and b sites. We use the expressions (26)
to obtain the average spins from the t approximation, while
we calculate the average magnon density from the spin model
with

〈na〉 = 1

2
− 1

L

L∑
l=1

〈
sz

l

〉
,

〈nb〉 = S − 1

L

L∑
l=1

〈
Sz

l

〉
, (31)

for a finite spin chain of size L and open boundaries. The
value of the average spin at a sites from any of the con-
sidered bosonic approximations is in good agreement with
its value from the spin model. A relevant departure between
the approximations and the spin model occurs in the average
spin on b sites as the ferrimagnetic magnetization plateau
is approached. However, even the t approximation provides
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FIG. 4. Average spin at (a) a, 〈Sz
a〉, and (b) b, 〈Sz

b〉, sites,
in this case normalized by S, for (1/2, S) chains with S =
1, 3/2, 2, and 5/2, as a function of the normalized magnetization
m/ms, where ms is the saturation magnetization of each chain. The
hard-core boson t approximation in the thermodynamic limit (dashed
lines), DMRG results for the spin model (full lines) and the t-X -V
approximation (•), both for systems with L = 128. Average magnon
densities at (c) a, 〈na〉, and (d) b, 〈nb〉, sites as a function of m/ms and
the same legend of (a) and (b).

good values for the average spins, as shown in Table II for
the ferrimagnetic magnetization. Also, the results become
indistinguishable, even on b sites, as S increases or as the
fully polarized plateau is approached. Furthermore, as in the
magnetization results, the t-X -V model is an excellent ap-
proximation to the spin Hamiltonian. The data in Figs. 4(c)
and 4(d) confirm that due to the higher value of the local
potential on a sites, the probability of occupancy of a sites
is higher than that on b sites, as discussed in the context of
the magnetization curves in Fig. 3. In particular, quantum

TABLE II. Average spins at a (〈sz〉) and b (〈Sz〉) sites for the
spin-(1/2, S) chains in the free hard-core boson approximation t
and the spin model: (〈sz〉, 〈Sz〉), at m = S − s, the ferrimagnetic
magnetization.

S t approx. Spin model

1 (−0.27, 0.77) (−0.29, 0.79)
3/2 (−0.34, 1.34) (−0.36, 1.36)
2 (−0.38, 1.88) (−0.39, 1.89)
5/2 (−0.40, 2.40) (−0.41, 2.41)

fluctuations are reduced as S increases, since 〈nb〉 → 0 in this
limit, as the data in Fig. 4(d) suggests.

In Figs. 5(a) and 5(b) we present the local magnon densities
in finite chains with open boundaries for the spin and the
t-X -V models. The magnon densities from the spin model are
calculated through 〈

na
l

〉 = 1
2 − 〈

sz
l

〉
;〈

nb
l

〉 = S − 〈
Sz

l

〉
, (32)

and 〈ncell
l 〉 = 〈na

l 〉 + 〈nb
l 〉. We show the data for the spin-

(1/2, 1) and spin-(1/2, 5/2) chains, for two low magnon
densities (n = 8/128, n = 16/128), near the fully polarized
magnetization plateau, and two high magnon densities, more
near the ferrimagnetic magnetization plateau (n = 72/128,
n = 116/128), in a chain with L = 128 unit cells. For the
lower magnon densities (hard-core limit) the results for t-X -V
approximation departs from the spin model data near the
boundaries for the spin-(1/2, 1). However, the accordance be-
tween the two models is excellent in the case of the spin-(1/2,
5/2), even near the boundaries, for the two lower magnon
densities shown. For the two higher magnon densities, there is
an excellent agreement between the spin model and the t-X -V
approximation for the two chains.

In Fig. 5(c), we show the magnon distribution in the edge
localized state occupied by one magnon for the four chains
studied. To calculate it, we notice that the edge state appears
between the two magnetization steps: Sz = L(S − s) and Sz =
L(S − s) + 1, which will join in the thermodynamic limit, and
make the S − s ferrimagnetic plateau, see Fig. 3(a) and 3(b).
Thus, to visualize the spatial extent of the edge state, we con-
sider the magnon distribution change, δ〈n〉FRI+1→FRI, between
a total number of magnons N = L − 1 [Sz = L(S − s) + 1]
and N = L [Sz = L(S − s)]:

δ〈n〉FRI+1→FRI,l = 〈n〉N=L,l − 〈n〉N=L−1,l . (33)

We notice in the data shown in Fig. 5(c) that a tiny discrepancy
is observed between the results for the t-X -V -approximation
and the spin model in the case of the (1/2, 1) chain, while for
the other chains the agreement is excellent. The hole added
to the many-magnon state at N = L becomes well localized
in the boundary cell, mainly on the boundary a site, thus
implying the presence of this empty orbital in the N = L − 1
[Sz = L(S − s)] state. The localization in the boundary in-
creases with S as expected from the increasing of the bulk gap.
In fact, the fluctuations of the magnon density in the boundary
become negligible as S → ∞, and the boundary hosts one
magnon in this limit. We can attribute this behavior to the
increasing potential barrier between bulk and edge, Eqs. (8)
and (9), respectively, as S → ∞.

As an example of the data used to make the results shown
in Fig. 5(d), we exhibit in Fig. 5(d) the average magnon
density along the chain, 〈n〉, for a and b sites, in the t-X -V
approximation of the (1/2, 1) chain. We notice that the a site
at the left boundary is almost empty for N = L − 1, while its
≈0.6 for N = L, implying the value shown in (c). We also
notice a sizable change in the occupation of the b site at the
left boundary for the two fillings, while 〈n〉 does not change
at the right boundary. A sketch of the two ground states is
shown in Fig. 5(e). For N = L − 1, we have an insulating state
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FIG. 5. Average magnon densities along (a) the (1/2, S = 1) chain and (b) the (1/2, S = 5/2) with L = 128 unit cells. Magnon
densities at (pink •) a sites, 〈na,l〉, at (purple •) b sites, 〈nb,l〉, and (green •) total magnon density, 〈ncell,l〉, for unit cell l from the spin
model and (�) the t-X -V approximation, both calculated with DMRG for systems with L = 128. The following total average magnon
densities are shown: n = 8/128, 16/128, 72/128, and 116/128, from top to bottom, corresponding, respectively, to the magnetizations
(a) m = 184/128, 176/128, 120/128, and 76/128 and (b) m = 376/128, 368/128, 312/128, and 268/128. (c) Average magnon distribution
change δ〈n〉FRI+1→FRI,l = 〈n〉N=L,l − 〈n〉N=L−1,l along the chain as a function of unit cell l shows the presence of the edge states for the four
chains studied. (d) The average magnon probability density 〈n〉 along a chain with L = 128 at (circles) a and (diamonds) b sites for (white
symbols) N = L − 1 and (red symbols) N = L bosons from the t-X -V approximation of the (1/2, 1) chain. (e) Sketch of the ground states for
N = L − 1 and N = L bosons. Average magnon densities are shown as gray circles, fluctuations between a and b sites are indicated by a blue
stripe, and we use a red filled curve to represent the localized orbital in the boundary unit cell.

with the magnon average higher on a sites than on b sites.
Quantum fluctuations between a and b sites in nearby unit
cells are expected, given the excellent accordance between
the results from the t-X -V approximation and the spin model
in the high-density limit, m → mFRI. Adding one magnon
to the (L − 1)-magnon state, we obtain the magnetization at
m = S − s in the finite-size system, which is also an insulating
state. The added magnon occupies the empty localized orbital
state in the unit cell of the boundary a site. The penetration of
this edge state in the gapped bulk is very tiny and decreases
with increasing S, see Fig. 5(c), as can be estimated through
the average magnon distribution.

IV. THE RELEVANCE OF THE BOUNDARY POTENTIALS
AND INTERACTIONS IN THE BOUNDARY MAGNON

DENSITY OF THE BOSONIC MODEL

With the help of Fig. 6, we discuss the relevance of the
difference between the local potential in the boundaries and
the bulk sites on the boundary magnon densities, as well as
the importance of interactions in it. We use the parameters of
the spin-(1/2, 1) chain but focus on the bosonic Hamiltonian,
for three models in finite-size chains: (1) the interacting model
considering the mapping to the spin system (X 
= 0,V 
= 0),
the t-X -V model; (2) the corresponding noninteracting model,
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FIG. 6. DMRG results for finite-size modified Rice-Mele models
with L = 128. In (a) and (c), the boundary potentials have the values
in Eq. (9), while in (b) and (d), the boundary potentials have the
same values of the bulk local potentials on a and b sites, εa and εb in
Eq. (8). Taking the parameters from the spin-(1/2, 1) chain, we show
data for the full interacting model, t-X -V , the t-X -V model with X =
0 = V , and the hard-core approximation t . In (a) and (b), we present
the number of magnons N as a function of magnetic field (in units of
J) B = −μ, where μ is the chemical potential in the bosonic system.
In (c) and (d), we show the change in magnon density per unit cell
δ〈n〉Ni→Nf ,l = 〈n〉Nf ,l − 〈n〉Ni,l between states N = Ni and N = Nf as
a function of unit cell l , where the arrows in (a) and (b) identify Ni

and Nf for each model.

i.e., the t-X -V model with X = 0 and V = 0, which has a
hard-core constraint on a sites and the b sites can host up to
two bosons; (3), the t approximation, which has a hard-core
constraint on a and b sites. One of the sets, Figs. 6(a) and 6(c),
shows data for the boundary potentials distinct from the bulk
potentials, with the values in Eqs. (9) and (8), respectively.
The other set, Figs. 6(b) and 6(d), takes the value of the bound-
ary potentials equal to the bulk ones, Eq. (8). The arrows
in Figs. 6(a) and 6(b) indicate the edge states whose boson
density change

δ〈n〉Ni→Nf ,l = 〈n〉Nf ,l − 〈n〉Ni,l (34)

is shown in Figs. 6(c) and 6(d), respectively, where Nf (Ni)
is the highest (lowest) value of N between the two magnon
density steps separated by the occupancy of the edge state.
For the bulk different from the boundaries, Fig. 6(a), we see
that the edge state is very robust, appearing even in the t
approximation. This does not occur for the t approximation
if the boundary is equal to the bulk, Fig. 6(b), which is an
expected result for the Rice-Mele model [83]. However, we
notice in Fig. 6(a) that in comparison with the spin model, the
plateau width is very underestimated in the t approximation,
since we are not discarding the single-particle states in the
upper band shown in Fig. 2. We observe that this upper band
was discarded for the L → ∞ results shown in Figs. 3 and 4,

due to the introduction of the effective chemical potential
connected with the Takhashi’s constraint [64]. Considering
also the spin model, the error in the plateau width for the
t-X -V interacting case is very tiny, with a lower critical field
≈0.06J . Also in Fig. 6(a), bulk and boundaries distinct, we
note that the edge state in the noninteracting t-X -V model
appears only for two bosons over the N = 127 state, Fig. 6(a),
with one of the bosons occupying an extended state and the
other an edge state, as shown in Fig. 6(c). This shows that the
distinction between boundaries and bulk is not sufficient to a
good representation of the edge state in the spin mode; the
interactions are essential for it. In the case of the t approxi-
mation, the particle statistics provide a change in the single
particle quantum states that mimic the effect of the X and
V interactions in the t-X -V model. In Fig. 6(b), where the
boundary is equal to the bulk, we show that edge states appear
in the t-X -V model in the interacting and noninteracting cases.
As mentioned above, the edge state of the noninteracting case
does not appear in the t approximation. Further, the boundary
density, Fig. 6(d), in the interacting t-X -V case appears in
the right extreme and has a value approximately equal to
that in Fig. 6(c). From these results, we can assert that the
interactions X and V , and the particle statistics, are essential
to understand the boundary magnon density.

V. SUMMARY AND DISCUSSION

We have investigated the Holstein-Primakoff bosonic
Hamiltonian, up to order

√
s/S, of the alternating spin-(s =

1/2, S) chains in a magnetic field, considering the fully
polarized as the vacuum. Three bosonic Hamiltonians were
considered: The first has only a hopping term (t approxi-
mation) and distinct local potentials (ε) on the spin-1/2 (a
site) and the spin-S (b site) sites; this approximation is a
Rice-Mele Hamiltonian with boundaries different from the
bulk and uniform hopping term. The second one has the terms
of the t approximation plus a magnon-magnon repulsion V
(t-V approximation), and the last approximation shows the
t and V terms and a density-dependent correlated hopping
term X (t-X -V approximation). In the t-X -V approximation,
b sites can accommodate up to two magnons, while in the
others a hard-core constraint is imposed on a and b sites.
The local potentials, at any density, and V for higher den-
sities favor magnon localization on the a sites. On the other
hand, quantum fluctuations, magnon tunneling between a and
b sites, are favored by t , at any density, and X for higher
densities. We use the density matrix renormalization group
to investigate the spin model and the bosonic Hamiltonians
t-V and t-X -V in finite-size open systems, while for the t
approximation we have considered its analytical solution. We
compare the magnetization and magnon densities per unit
cell as a function of a magnetic field, average bulk density,
and local densities along the chains from the spin model and
the bosonic approximations. From the ferrimagnetic plateau
(one magnon per unit cell) to saturation (empty chain), the
t-X -V approximation is in excellent agreement with the spin
model, while the t and t-V results depart from that of the spin
model as the magnon density increases. This, thus, shows the
relevance of both interaction terms, magnon-magnon repul-
sion and the correlated hopping term X , and its associated
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particle fluctuations, to describe the many-body system near
the ferrimagnetic plateau. The edge state associated with the
insulating ferrimagnetic plateau is well reproduced by the
bosonic model. In particular, we have shown that the magnon
boundary densities are strongly dependent on the interactions
and the particle statistics.

The use of the fully polarized state as the vacuum en-
ables a better understanding of the underlying quantum
processes in the spin Hamiltonian, compared to a ferrimag-
netic vacuum, which is not an exact eigenstate of the spin
Hamiltonian. Our results also suggest that, beyond hopping
and magnon-magnon interaction, the density-dependent hop-
ping term increases the range of magnetizations for which

effective bosonic models can make a good description of the
physical data from general spin systems having ions with
spins higher than 1/2.
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