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Magnon valve effect and resonant transmission in a one-dimensional magnonic crystal
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We theoretically investigate the transmission of exchange-dominated spin waves in a one-dimensional
magnonic crystal (MC) with a periodic exchange bias field. By recasting the Landau-Lifshitz-Gilbert equation
into an effective Schrödinger equation and establishing spin-wave functions, it is found that MCs with upward
(up) and downward (down) magnetization, respectively, correspond to the rectangular N-fold barriers and wells
for magnons. The broadband transmission spectra in up and down states are systematically investigated. We
show the phenomena of the magnon resonant transmission in both states and calculate the resonant transmission
wave functions, which are related to the magnon density. Our results also show a transmission spectra shift effect
(TSSE) between up and down states, which is found to be general in this system. Furthermore, the TSSE is useful
to design a type of magnon valve, the magnonic-crystal-based magnon valve (MCMV), which has a large on/off
ratio and bandwidth. By high-throughput screening, 125 000 groups of parameters of the MC are calculated, and
1948 parameter groups of high-performance MCMVs are screened out. Our work clarifies the physical details
of the exchange-dominated spin-wave transmission in rectangular N-fold barriers and wells and also provides a
promising route for designing novel magnonic devices.
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I. INTRODUCTION

Spin waves, the elementary excitation of the magnetic
system, were first introduced by Bloch 91 years ago [1].
After that, Holstein and Primakoff [2] and Dyson [3] in-
troduced spin-wave quanta which are called magnons. Each
quantized magnon carries a spin angular momentum of −h̄
and is regarded as a potential information carrier. Magnonics
is the research field encompassing the transmission, storage,
and processing of information by using magnons [4–8]. In
magnonics, the manipulation of the magnon transmission
is an important branch due to its potential application in
magnonic devices [9–17]. One of the effective ways to ma-
nipulate magnon transmission is injecting spin waves into the
magnonic crystals (MCs).

As early as 1976, Sykes et al. experimentally studied the
spin-wave propagation in a periodic structure [18], which is
regarded as the first work on MCs [19], and the concept of
MCs was first introduced by Nikitov et al. in 2001 [20]. MCs,
as the magnetic analog of photonic and sonic crystals, are
artificial mesoscopic media with periodic lateral variations
in magnetic properties [6,7,19,21]. The spectra of magnons
in such media, significantly different from those in uniform
media, have band structures containing band gaps, where
propagations of spin waves are prohibited [6,7,19,21]. The
experimental works of MCs mainly focus on the dipole-
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dominated spin waves [12,18,22–24]. These types of MCs are
usually in micron or millimeter scales, and their frequency
ranges are mainly 1–10 GHz, which will limit the reduction of
the device sizes and the information processing speed. There-
fore, it is necessary to investigate the exchange-dominated
spin waves with short wavelengths (λ < 100 nm) in MCs, and
we contribute to this field in this paper.

In this work, we construct a model for a one-dimensional
MC with a periodic exchange bias (EB) field. It is found
that the MCs with upward (up) and downward (down) mag-
netization correspond to the rectangular N-fold barriers and
wells for exchange-dominated spin waves, respectively. Via
the transfer matrix method (TMM) [25,26], the transmission
coefficients in up and down states are investigated, and the
phenomena of the magnon resonant transmission are found.
Our results also show that a transmission spectra shift effect
(TSSE) leads to the different transmission coefficients in up
and down states. Based on the TSSE, a type of magnon valve
called a magnonic-crystal-based magnon valve (MCMV) with
high performance for manipulating the magnon transmission
is proposed. Through the high-throughput screening method,
plenty of MCMVs with large on/off ratios and bandwidths
are screened out. Our work can serve as a promising tool for
investigating the exchange-dominated spin-wave transmission
and also provides guidance for future magnonic devices.

II. ANALYTICAL MODEL

In magnetic films, the dynamics of spin-wave propagation
(magnon transmission) is governed by the Landau-Lifshitz-

2469-9950/2021/103(5)/054425(7) 054425-1 ©2021 American Physical Society

https://orcid.org/0000-0001-8053-793X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.103.054425&domain=pdf&date_stamp=2021-02-18
https://doi.org/10.1103/PhysRevB.103.054425


Y. W. XING, Z. R. YAN, AND X. F. HAN PHYSICAL REVIEW B 103, 054425 (2021)

Gilbert (LLG) equation

∂m
∂t

= −γμ0m × Heff + αm × ∂m
∂t

, (1)

where m = M/Ms is the unit magnetization vector with the
saturation magnetization Ms, γ = 1.76 × 1011 rad/(s T) is the
gyromagnetic ratio, and α is the Gilbert damping coefficient.
Generally, the effective field Heff, including the exchange field
Hex, dipolar field Hd, anisotropy field Ha, and external field
Hext, has the form Heff = Hex + Hd + Ha + Hext. For the case
of magnetization perpendicular to the films, the spin-wave
dispersion relation is given by [27]

ω2 = [A∗k2 + ωH ][A∗k2 + ωH + ωM f (kd )], (2)

where A∗ = 2γ A/Ms, with A being the exchange constant; k
is the magnitude of the wave vector; ωH = γμ0(Ha + Hext ),
with Ha and Hext being the magnitudes of the anisotropy field
and external field, respectively; and d is the thickness of the
magnetic film. Here, Ha represents the effective anisotropy
field which includes the influence of the demagnetization
field. ωM = γμ0Ms and f (kd ) = 1 − [1 − exp(−kd )]/kd are
terms which show the influence of the dipole-diploe interac-
tion for a perpendicularly magnetized film. As reported by
Lenk et al. [28], for cases in which the spin waves propagate in
the films with in-plane magnetization, when k is over 0.0628
rad/nm (or wavelength λ is below 100 nm), the spin-wave
dispersion is dominated by the exchange interaction, and the
dipolar influence can be ignored. By calculation, we found
that the perpendicular case is similar to the in-plane cases
because the dipolar term can also be ignored when k is high
enough. Thus, the exchange-dominated spin-wave dispersion
relation is written as [29,30]

ω = A∗k2 + ωH . (3)

We consider the transmission of the exchange-dominated
spin waves in a one-dimensional MC with periodic EB field.
Figures 1(a) and 1(b) show the side views of this MC in up
and down states, respectively. The blue rectangles represent
the ferromagnet (FM) with perpendicular magnetic anisotropy
(PMA), such as PMA CoFeB [31,32]. The periodic green
rectangles on top of the FM represent the antiferromagnets
(AFMs) with perpendicular EB, such as MnN [32]. The
number of periodic AFMs, the width of each AFM, and the
distance between two adjacent AFMs are described by N, a,
and b, respectively. The direction of the EB field Heb is fixed
upward. The magnetization state of the FM is up and down
in Figs. 1(a) and 1(b), respectively. In this paper, the external
field Hext = 0 because we consider a large PMA for which
the stable up and down states can be constructed under zero
external field. The parameters of the MC used for calculations
are the following: saturation magnetization Ms = 1.1 × 106

A/m [33], exchange constant A = 1.1 × 10−11 J/m [33],
PMA field Ha = 3000 Oe [32], and perpendicular EB field
Heb = 2000 Oe [32]. The frequency of spin waves is high
enough (ω/2π > 20 GHz, λ < 60.74 nm) to ensure that the
spin waves are exchange dominated, which is discussed in
detail in the Supplemental Material [34], Sec. I.

The transmission coefficients in this MC are derived below.
The unit magnetization is assumed to be m = mxx̂ + myŷ +
mzẑ, with mx,y � 1 and mz ≈ 1. By defining a spin-wave
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FIG. 1. The magnon transmission in a one-dimensional MC. The
schematic diagrams of the MC in (a) the up state and (b) the down
state. (c) The broadband transmission spectra in up and down states,
corresponding to the black curve (T↑) and red curve (T↓) respectively.
The parameters of the MC are the following: N = 14, a = 10 nm, and
b = 25.2 nm. (d) The difference between T↑ and T↓ as a function of
ω/2π . ω/2π is shown in logarithm scale.

function ψ = mx − imy and neglecting the damping, the LLG
equation (1) can be recast into an effective Schrödinger equa-
tion [29,30,35–39],

ih̄
∂ψ

∂t
=

(
p̂2

2m∗ + V

)
ψ, (4)

where p̂ = −ih̄∇ is the momentum operator and m∗ = h̄/2A∗

is the effective mass of magnons. V represents the potential
energy and has different expressions depending on the regions
of the MC. In the regions without AFMs, V = V0 = h̄γμ0Ha,
with Ha being the PMA field. In contrast, in the regions with
AFMs, V = h̄γμ0(Ha ± Heb), with Heb being the EB field,
where ± corresponds to the cases with N-fold barriers (+)
and N-fold wells (−), as shown in Figs. 1(a) and 1(b). For
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simplicity, we define a normalized wave function ψ̂ (x, t ) =
ψ (x, t )/aI, where aI = |ψI(x, t )| represents the amplitude
of the incident waves. By separating the space-dependent
and time-dependent functions via ψ̂ (x, t ) = φ(x)T (t ), with
T (t ) = e−iωt , the Schrödinger equation (4) turns into a station-
ary Schrödinger equation. The theoretical task in this work is
to solve the stationary Schrödinger equation in the case of N-
fold barriers and wells. The MC is divided into 2N + 1 regions
by the N-fold barriers (wells); j = 1, 2, . . . , N represent the
jth barrier (well), while s = 1, 2, 3, . . . , 2N, 2N + 1 represent
the sth region. According to Eq. (3), the expressions for the
wave vectors in different regions are

ks = k =
√

Ms

2γ A
(ω − γμ0Ha)

s = 1, 3, 5, . . . , 2N + 1,

ks = kb(w) =
√

Ms

2γ A
[ω − γμ0(Ha ± Heb)]

s = 2, 4, 6, . . . , 2N, (5)

where + is for kb in the barrier regions and − is for kw in
the well regions. For the jth barrier (well), the left boundary
conditions at x2 j−1 are written as [25,30]

φ2 j−1(x2 j−1) = φ2 j (x2 j−1),

dφ2 j−1

dx

∣∣∣∣
x=x2 j−1

= dφ2 j

dx

∣∣∣∣
x=x2 j−1

. (6)

The right boundary conditions at x2 j are

φ2 j (x2 j ) = φ2 j+1(x2 j ),

dφ2 j

dx

∣∣∣∣
x=x2 j

= dφ2 j+1

dx

∣∣∣∣
x=x2 j

. (7)

The waves in regions 1–(2N + 1) are assumed to be φs(x) =
Aseiksx + Bse−iksx. The incident and reflected waves in region
1 and the transmitted waves in region 2N + 1 are assumed to
be

φ1(x) = φI(x) + φR(x) = eikx + re−ikx, (8)

φ2N+1(x) = φT(x) = teikx. (9)

The numerical solutions of the reflection coefficients R =
|r|2 and transmission coefficients T = |t |2 can be obtained
through the TMM [25,26].

III. RESULTS AND DISCUSSION

In Fig. 1(c), T↑ (T↓) shows the magnon transmission co-
efficients in the up (down) state. The main characteristic of
the transmission spectra is the band structure with periodic
valleys and peaks, which are similar to the transmission spec-
tra reported in previous works [12,18,20,22–24,40]. The deep
valleys of T↑ and T↓ show the strong reflection of magnons,
while the peaks where T↑ = 1 (or T↓ = 1) represent the
magnon resonant transmission. The tendencies of T↑ and T↓
are very similar. However, the positions of their valleys and
resonant peaks are different. It seems that T↓ can be regarded

as T↑ shifted to a lower frequency. This transmission spectra
shift (TSS) can lead to a significant difference between T↑ and
T↓. Thus, we define a parameter called D to characterize the
difference in transmission coefficients between up and down
states:

D(ω) = T↓(ω) − T↑(ω). (10)

Figure 1(d) shows the transmission difference in T↑ and
T↓ from Fig. 1(c). When ω/2π is between about 24.0 and
25.4 GHz, T↑ oscillates around 0.9, and T↓ is around 0.1;
thus, D is below −0.78. This value indicates that the up state
provides high transmission for magnons, while the down state
leads to strong reflection. In contrast, when ω/2π is between
about 27.1 and 28.7 GHz, D is above 0.87, showing a reverse
transmission behavior of magnons in up and down states. This
behavior demonstrates that the proposed MC can be used as
a magnon valve because the magnon transmission depends on
the magnetization state of the FM, i.e., up and down states.
This magnon valve is similar to giant magnetoresistance
(GMR)-based spin valves [41,42], tunnel magnetoresistance
(TMR)-based magnetic tunnel junctions (MTJs) [43–49], and
magnon-valve-effect-based magnon valves [13] and magnon
junctions [14]. Therefore, this proposed MC can be called a
MCMV. Obviously, D, which indicates the on/off ratio of the
magnon transmission, is the key parameter for the MCMV.
The optimization of D will be discussed in the last part of this
paper.

Next, the physical details of the magnon resonant transmis-
sion in this MC are investigated. As seen in Fig. 1(c), a large
value of N causes numerous and complex resonant peaks,
which makes it difficult to analyze the crucial points. There-
fore, a smaller N is chosen for further discussion. Figure 2(a)
shows T↑ and T↓ at N = 1 and a = 10 nm. The details are
shown in Fig. 2(b) by enlarging Fig. 2(a). The tendencies of T↑
and T↓ are similar to those in Fig. 1(c), although the numbers
of resonant peaks are different. The TSS between T↑ and T↓
still exists, which suggests it is independent of N, a, and b.
Figure 2(b) shows four resonant peaks marked E1–E4, which
represent the resonant transmission energy levels (RTELs).
Figures 2(c)–2(f) show the moduli of the resonant transmis-
sion wave functions (RTWFs) |
n(x)| of the up state with
n = 1–4, respectively. The red lines represent |
n(x)| in the
regions without the barrier, while the blue lines represent
|
n(x)| in the barrier regions. According to the definition of
the spin-wave function, |
n(x)| = √|mx(x)|2 + |my(x)|2/aI

also represents the distribution of the magnon density. All
|
n(x)| are space symmetric and consist of numbers of peaks.
It is easy to understand the symmetry because the transmission
from left to right is the same as that from right to left in
the resonant cases. The number of peaks in |
n(x)| increases
as n is increased, which indicates that the distribution of the
magnon density become more complex as En increases to a
higher level. For N = 2, 3, 5, the RTELs and RTWFs are also
investigated and are shown in the Supplemental Material [34],
Sec. II. As N is increased to infinity, the pass bands and
forbidden bands start to appear in the transmission spectra,
and this result is shown in the Supplemental Material [34],
Sec. III.

The results for T↑ and T↓ become different when the values
of N, a, and b change. Nevertheless, the main results are
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FIG. 2. The magnon transmission spectra and RTWFs at N = 1 and a = 10 nm. (a) The transmission spectra in up and down states. (b) The
details of the transmission spectra in (a). E1–E4 represent the RTELs. (c)–(f) The moduli of the RTWFs |
n(x)| (n = 1–4) corresponding to
En (n = 1–4) of the up state, which also suggest the distribution of the magnon density in the resonant cases. In (c)–(f), the red lines represent
|
n(x)| in the regions without the barrier, while the blue lines represent the regions with the barrier.

similar to Fig. 2. There are two characteristics which are
independent of N, a, and b. First, the phenomenon of the
magnon resonant transmission always exists, showing that
only magnons with a specific frequency are allowed to totally
pass through the MC. A similar phenomenon was reported in
photonic crystals [50]. Second, the TSS between T↑ and T↓
is a general phenomenon. For N = 1, the frequency shift of
the corresponding resonant peaks between T↑ and T↓ can be
analytically proved to be �ω = −2γμ0Heb as follows. The
transmission problem of a single barrier is well known, and
the transmission coefficient T↑ is given by

T↑ =
[

1 + 1

4

(
k

kb
− kb

k

)2

sin2(kba)

]−1

. (11)

The derivation details of Eq. (11) are given in the Supple-
mental Material [34], Sec. IV. It is obvious that the condition
of the resonant transmission is sin(kba) = 0; in other words,
kba = nπ (n = 1, 2, 3, . . .). By uniting the resonant condition
with Eq. (3), the nth resonant frequency is written as

ωn
↑ = A∗

(nπ

a

)2
+ γμ0(Ha + Heb). (12)

Similarly, for the case of a single well, the transmission coef-
ficient T↓ is given by

T↓ =
[

1 + 1

4

(
k

kw
− kw

k

)2

sin2(kwa)

]−1

. (13)

The derivation details of Eq. (13) are also given in the Supple-
mental Material [34], Sec. IV. The condition of the resonant

transmission is kwa = nπ (n = 1, 2, 3, . . .), and the nth reso-
nant frequency is written as

ωn
↓ = A∗

(nπ

a

)2
+ γμ0(Ha − Heb). (14)

Uniting Eq. (12) with Eq. (14), the shift of the nth resonant
peaks between T↑ and T↓ can be given by

�ω = ωn
↓ − ωn

↑ = −2γμ0Heb. (15)

Equation (15) shows that the relative distance of the corre-
sponding peaks of T↑ and T↓ are constant, which leads to a
TSS between T↑ and T↓. It also demonstrates that the EB field
Heb plays an important role in the TSS. For N � 2, it is hard to
analyze the shift of the resonant peaks with those complex
analytical expressions. Fortunately, one can always see the
TSS with the numerical results shown in Figs. 1(c), 2(b)
and 3 and Figs. 2–4 in the Supplemental Material. Based on
these proofs, we conclude that the TSS is general in the system
of N-fold barriers and wells, which is thus named a TSSE.

Figures 3(a)–3(c) show the influence of the periodic num-
ber N on the transmission coefficients T↑ and T↓ and the
transmission difference D. First, the number of resonant peaks
increases with the increase of N, showing that the number
of resonant transmission states increases. Second, the valleys
of T↑ and T↓ become deeper as N increases. This increasing
deepness can be explained by the mechanism in which as
the number of the barriers or wells increases, the reflection
of magnons become stronger, which leads to smaller T↑ and
T↓. Figures 3(c)–3(e) demonstrate the influence of the PMA
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FIG. 3. The influences of N, Ha, and Heb on T↑ (black), T↓ (red),
and D (blue). The influence of (a)–(c) increasing N, (c)–(e) increas-
ing Ha, and (e)–(g) decreasing Heb. ω/2π is shown in logarithm
scale.

field Ha. It is obvious that T↑ and T↓ are shifted to higher fre-
quency as Ha increases. The reason is that the potential energy
V0 = h̄γμ0Ha rises with the increase of Ha. The influence of
the EB field Heb is shown in Figs. 3(e)–3(g), which can be
interpreted by the decrease in the heights of barriers (and also
the depths of wells) �V = h̄γμ0Heb. On the one hand, for an
up (down) state, the heights (depths) of the barriers (wells)
decrease as Heb decreases. Thus, T↑ (T↓) is shifted to lower
(higher) frequency ranges; in other words, the TSSE become
weaker. This result indicates that the TSSE is strongly depen-
dent on the energy difference between the potential barriers
and wells. On the other hand, �V also affects the strength
of the scattering. It is the reason for the suppression of the
oscillation amplitudes of T↑ and T↓.

As mentioned before, D is the key parameter for the
MCMVs. It is found that the D − ω/2π curves are closely
related to N, a, and b. We used a high-throughput screening
method to find the MCMVs with high D and large bandwidth
�ω in various groups of (N, a, b). High D, which indicates a
large on/off ratio, is necessary for the MCMVs. It is similar to
the common interest in spin valves with higher GMR [41,42]
or MTJs with larger TMR [43–49]. Thus, the critical transmis-
sion difference Dc is set for searching MCMVs with D > Dc

in the algorithm. Figure 4(a) is a screening example of the

FIG. 4. High-throughput screening results of (N, a, b) for high
Dc and large �ωc. (a) The schematic diagram of Dc, �ωc, �ω,
and ωc. ω/2π is shown in logarithm scale. (b) The pseudocode of
the high-throughput algorithm. The screening results of N, a, and
b at (c) Dc = 0.9, �ωc = 1 GHz, (d) Dc = 0.95, �ωc = 1 GHz, (e)
Dc = 0.95, �ωc = 1.5 GHz, and (f) Dc = −0.95, �ωc = 1.5 GHz.
The color bars in (c)–(f) are the same and are defined to the right
of (c).

high-throughput screening at Dc = 0.9 and �ωc = 1 GHz.
�ωc represents the critical bandwidth and is also set for
searching MCMVs with �ω > �ωc because large �ωc is
also helpful for magnonic devices to achieve wide operating
ranges. ωc is the center operating frequency of the selected
MCMVs. Figure 4(b) shows the pseudocode of the high-
throughput algorithm. The screening steps are as follows.
First, the D − ω/2π curves of various parameter groups (N,
a, b) are calculated. Second, for each D − ω/2π curve, a con-
tinuous interval �ω satisfying D > Dc is sought out. Third,
if �ω > �ωc is satisfied, (N, a, b) and ωc are output as the
parameters of the high-performance MCMVs.

Ultimately, 125 000 groups of (N, a, b) have been calcu-
lated. For Dc = 0.9 and �ωc = 1 GHz, 1948 groups of (N, a,
b) were screened out, as shown in Fig. 4(c). ωc is distributed
in the range of 20.4–51.4 GHz, as shown by the color bar. As
Dc increases to 0.95, the number of (N, a, b) decreases to 1397
[Fig. 4(d)]. For Dc = 0.95 and �ωc = 1.5 GHz, there are still
303 MCMVs [Fig. 4(e)]. Figure 4(f) shows the screening
results at Dc = −0.95 and �ωc = 1.5 GHz. The number of
the extracted (N, a, b) is 61. Here, Dc is negative, suggesting
that the up state is on and the down state is off for the magnon
transmission, which is different from Figs. 4(c)–4(e). This
tunability may provide more functionalities for fabricating
new types of magnon valves.
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IV. CONCLUSION

In summary, we constructed a one-dimensional MC with
a periodic EB field. It was found that the up (down) state
of the MC corresponds to the rectangular N-fold barriers
(wells) for exchange-dominated spin waves. The broadband
transmission spectra in up and down states were calculated.
On the one hand, the numerical results showed the phenomena
of the magnon resonant transmission. On the other hand, a
TSSE was found to interpret the difference in the transmission
spectra between the two states, which was also useful for
designing the MCMVs. With the high-throughput screening
method, 125 000 parameter-groups of MCs were calculated,
and a number of them helpful for high-performance MCMVs
were screened out. Our work theoretically investigated the

exchange-dominated spin-wave transmission in rectangular
N-fold barriers and wells and will also provide guidance for
designing future magnonic devices.
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