
PHYSICAL REVIEW B 103, 054422 (2021)

Noncoplanar multiple-Q spin textures by itinerant frustration: Effects of single-ion anisotropy and
bond-dependent anisotropy
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We theoretically investigate multiple-Q spin textures, which are composed of superpositions of spin density
waves with different wave numbers, for an effective spin model of centrosymmetric itinerant magnets. Our
focus is on the interplay between biquadratic interactions arising from the spin-charge coupling and magnetic
anisotropy caused by the spin-orbit coupling. Taking into account two types of the magnetic anisotropy,
single-ion anisotropy and bond-dependent anisotropy, we elucidate magnetic phase diagrams for an archetypal
triangular-lattice system in the absence and presence of an external magnetic field. In the case of the single-ion
anisotropy, we find a plethora of multiple-Q instabilities depending on the strength and the sign of the anisotropy
(easy plane or easy axis), including a noncoplanar triple-Q state regarded as a skyrmion crystal with topological
number of two, and coplanar and noncoplanar double-Q states. In an external magnetic field, we find that another
noncoplanar triple-Q state, a skyrmion crystal with topological number of one, is stabilized by the in-plane
(out-of-plane) magnetic field under the easy-plane (easy-axis) anisotropy. A part of the results, especially for
the relatively large biquadratic interaction, qualitatively reproduce those in the Kondo lattice model, which
explicitly includes itinerant electrons [S. Hayami and Y. Motome, Phys. Rev. B 99, 094420 (2019)]. We also
examine the stability of the field-induced skyrmion crystal by rotating the field direction. As a by-product, we
show that a different triple-Q state with nonzero chirality appears in the presence of the biquadratic interaction
and the easy-axis anisotropy. Meanwhile, we find that the bond-dependent anisotropy also stabilizes both types
of skyrmion crystals. We show that, however, for the skyrmion crystal with topological number of one, Bloch-
and Néel-type skyrmion crystals are selectively realized depending on the sign of the bond-dependent anisotropy,
since this anisotropy selects a particular set of the helicity and vorticity. Moreover, we find yet another multiple-Q
states with nonzero spin scalar chirality, including two types of meron crystals with the skyrmion numbers of
one and two. The systematic investigation of multiple-Q instabilities in triangular itinerant magnets will provide
a reference to complex magnetic textures in centrosymmetric magnetic metals.
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I. INTRODUCTION

Superpositions of spin density waves, which are termed
as multiple-Q magnetic states, have attracted much interest
in various fields of condensed matter physics [1–4]. Different
ways of taking a linear combination lead to different types of
spin textures. One of the fundamental examples is found in
a superposition of collinear states in the axial next-nearest-
neighbor Ising model, which exhibits peculiar temperature
dependence of spatial spin modulations called the devil’s stair-
case [5–10]. Another interesting example is represented by a
superposition of spiral states, which results in noncollinear
and noncoplanar spin textures, such as magnetic vortices
[1,11–13] and skyrmion crystals [14–19]. Such superpositions
of spirals are intriguing, as they often carry nonzero vector
chirality, Si × S j , and/or scalar chirality, Si · (S j × Sk ), which
are sources of an emergent electromagnetic field for electrons
through the spin Berry phase mechanism [20–22]. Indeed, the
chirality degrees of freedom in the multiple-Q states generate
interesting phenomena, such as the topological Hall effect
[21,23–25], the spin Hall effect [26–28], and nonreciprocal
transport [29–32].

Such noncollinear and noncoplanar multiple-Q states are
ubiquitously found in a wide range of materials. From the
viewpoint of the microscopic mechanism, however, there are
several different origins depending on the systems. We here
discuss three of them in the following. The first one is (i)
the relativistic spin-orbit coupling in the absence of spa-
tial inversion symmetry in the lattice structure. It induces
an effective antisymmetric exchange interaction called the
Dzyaloshinskii-Moriya (DM) interaction [33,34], which fa-
vors a twist in the spin texture. For instance, the interplay
among the ferromagnetic interaction, the DM interaction, and
an external magnetic field stabilizes a triple-Q spiral density
wave termed as the skyrmion crystal [3,16,35–37]. Since the
discovery of skyrmion crystals in B20 compounds [17,18],
a number of candidates in this category have been studied
intensively, and various types of skyrmions have been ex-
plored, such as the Bloch-type skyrmion [17,18,38], Néel-type
skyrmion [39,40], antiskyrmion [41–43], and bi-skyrmion
crystals [44,45]. Recently, multiple-spin chiral interactions,
which can be regarded as higher order extensions of the DM
interaction, have been studied to understand the peculiar non-
coplanar magnetism at surfaces and interfaces [46–50].
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The second mechanism is based on (ii) competing in-
teractions between the magnetic moments. For example,
geometrical frustration arising from nonbipartite lattice struc-
tures leads to noncollinear and noncoplanar multiple-Q states,
combined with, e.g., the effect of further-neighbor inter-
actions [51–53], quantum fluctuations [12,13,54,55], and
disorder by impurities [56–58]. Bond-dependent exchange
anisotropy, e.g., of compass and Kitaev type, can also induce
magnetic vortices and skyrmion crystals [59–64]. Frustra-
tion rooted in the competing exchange interactions and the
magnetic anisotropy also gives rise to a plethora of multiple-
Q states [61,65–72]. Note that the magnetic anisotropy in
this mechanism originates from the spin-orbit coupling in
centrosymmetric systems, in contrast to (i). In addition,
multiple-spin interactions beyond the bilinear exchange inter-
action provide another way to induce the multiple-Q states
through the frustration [48,50,73–76].

The third mechanism is (iii) itinerant nature of electrons.
The kinetic motion of electrons can induce effective magnetic
interactions through the coupling between spin and charge
degrees of freedom. The typical example is the Ruderman-
Kittel-Kasuya-Yosida (RKKY) interaction appearing when
the spin-charge coupling is much smaller than the bandwidth
[77–79]. The RKKY interaction is long-ranged and favors a
single-Q spiral state whose wave number is set by the Fermi
surface. On the other hand, when the Fermi surface has a
structure so that the bare susceptibility exhibits multiple peaks
in momentum space, the instability toward the single-Q spiral
state occurs at the multiple wave numbers simultaneously.
This is another type of frustration distinguished from that in
the mechanism (ii), which we call itinerant frustration. In this
case, higher order contributions from the spin-charge coupling
lift the degeneracy. Among many contributions, an effective
positive biquadratic interaction in momentum space plays an
important role [80–87] in stabilizing multiple-Q states, such
as the triple-Q states in hexagonal crystal systems [80,88–95],
the double-Q states in tetragonal crystal systems [83,96–98],
and the triple-Q states in cubic crystal systems [99,100].

More recently, further interesting situations have been
studied by considering the interplay between the mechanisms
(i)–(iii) mentioned above. For instance, a synergetic effect
between (i) the antisymmetric exchange interactions by the
spin-orbit coupling and (iii) the multiple-spin interactions by
the spin-charge coupling results in more exotic multiple-Q
states, such as the triple-Q and quartet-Q hedgehog crystals
[101,102] and sextuple-Q states [103]. Competition between
(ii) the single-ion anisotropy and (iii) the spin-charge coupling
induces a triple-Q skyrmion crystal under the magnetic field
[104–106]. Moreover, a Bloch-type skyrmion crystal is real-
ized even in a Rashba-type metal by taking into account (i),
(ii), and (iii) [107,108].

These series of studies to investigate when and how the
multiple-Q states appear are important to understand the mi-
croscopic origins of the multiple-Q states found in materials.
Recently, unconventional multiple-Q states have been found
in d- and f -electron systems, such as the vortices in MnSc2S4

[109,110], CeAuSb2 [111,112], and Y3Co8Sn4 [113]; the
skyrmions in SrFeO3 [114–116], Co-Zn-Mn alloys [117], Eu-
PtSi [118–120], Gd2PdSi3 [121–125], Gd3Ru4Al12 [126,127],
and GdRu2Si2 [128,129]; and the hedgehogs in MnSi1−xGex

[130–133]. Furthermore, there remain several unidentified
multiple-Q states distinguished from the above states, espe-
cially in centrosymmetric materials [115,121–123,126,128].
Due to the crystal symmetry and the short period of the
magnetic textures, their mechanisms might be accounted
for by (ii) and (iii), although their origins are still under
debate.

To understand the microscopic origins and encourage fur-
ther experimental exploration of exotic multiple-Q states, in
this paper, we push forward the theoretical study in a more
systematic way on the interplay between (ii) the magnetic
anisotropy caused by the spin-orbit coupling in centrosym-
metric systems and (iii) the multiple-spin interactions arising
from the spin-charge coupling. Taking an archetypal hexago-
nal model, we study how the itinerant frustration is relieved
by their interplay and what types of the multiple-Q states are
generated. By introducing two types of magnetic anisotropy,
single-ion anisotropy and bond-dependent anisotropy, to the
effective bilinear-biquadratic model for itinerant magnets, we
elaborate magnetic phase diagrams in a wide parameter range
of the biquadratic interaction, the magnetic anisotropy, and
the magnetic field in a systematic way. We uncover a vari-
ety of multiple-Q states, including those which have never
been reported. Our results provide deeper understanding of
the multiple-Q states emergent from the synergy between
the spin-charge coupling and the spin-orbit coupling in cen-
trosymmetric systems.

The rest of the paper is organized as follows. We start
by showing a brief summary of the main results in this
paper in Sec. II. In Sec. III, we present an effective bilinear-
biquadratic spin model on a triangular lattice including the
two types of magnetic anisotropy and outline the numerical
method. In Sec. IV, we discuss the effect of the single-ion
anisotropy. We obtain the magnetic phase diagram including
three multiple-Q states by changing the single-ion anisotropy
and the biquadratic interaction in the absence of the magnetic
field in Sec. IV A. Then, in Secs. IV B–IV D, we show a fur-
ther variety of multiple-Q instabilities in the magnetic fields
applied in different directions. In Sec. V, we discuss the effect
of the bond-dependent anisotropy. We find five multiple-Q
states at zero field and more in the field. Section VI is devoted
to the concluding remarks.

II. BRIEF SUMMARY OF MAIN RESULTS

Before starting the detailed discussions, we summarize
the main results of this paper, i.e., where multiple-Q states
appear in the phase diagram through the interplay among
the biquadratic interaction, the magnetic anisotropy, and the
magnetic field. We investigate two types of the magnetic
anisotropy, the single-ion anisotropy and the bond-dependent
anisotropy, with and without the biquadratic interaction and
the magnetic field. The schematic phase diagrams are shown
for typical parameter sets in Fig. 1, where K represents the bi-
quadratic interaction, positive (negative) A represents the
easy-axis (easy-plane) single-ion anisotropy, IA represents the
bond-dependent anisotropy, and H = (Hx, Hy, Hz ) is an ex-
ternal magnetic field. See Sec. III for the details of the model
and parameters.
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FIG. 1. Schematics of the magnetic phase diagram of the model in Eq. (1) in the presence of (a)–(c) the single-ion anisotropy A and (d) the
bond-dependent anisotropy IA. K stands for the coupling constant for the biquadratic exchange interaction: The left, middle, and right panels
are the results at K = 0, 0.1, and 0.3, respectively. Panels (a) and (d) are for the [001] magnetic field, panel (b) is for the [100] field, and panel
(c) is for the field in the xz plane with H = 0.8. 1Q, 2Q, 3Q, SkX-1, SkX-2, MX-1, MX-2, Ch, and FP stand for the single-Q state, double-Q
state, triple-Q state, nsk = 1 skyrmion crystal, nsk = 2 skyrmion crystal, nsk = 1 meron crystal, nsk = 2 meron crystal, multiple-Q states with
nonzero uniform scalar chirality, and the fully polarized state, respectively. The detailed magnetic and chirality structures in panels (a)–(c) are
presented in Sec. IV and those in panel (d) are in Sec. V.

For the isotropic case (A = IA = 0), we find a triple-Q
skyrmion crystal in a magnetic field for small K = 0.1 and
another one evolved from zero field for large K = 0.3, as dis-
played in the top row of Fig. 1(a). The former is characterized
by the topological number of one (nsk = 1 skyrmion crys-
tal), while the latter has topological number of two (nsk = 2
skyrmion crystal); see Secs. IV A and IV B 1.

The stability of the nsk = 1 and nsk = 2 skyrmion crystals
against the single-ion anisotropy A is discussed in Secs. IV B–
IV D. We show that the nsk = 2 skyrmion crystal remains
stable against both small easy-axis and easy-plane anisotropy

as shown in Figs. 1(a) and 1(b), qualitatively similar to the
result obtained for the Kondo lattice model [105]. We find
two types of modulations of the nsk = 2 skyrmion crystal by
systematically changing A and Hz: One is characterized by
a superposition of the magnetic vortices in the xy spin com-
ponent and the sinusoidal wave in the z spin component, and
the other is characterized by a superposition of the magnetic
vortices in both xy and z spin components; see Sec. IV B.
Besides, we find another nsk = 2 skyrmion crystal in the mag-
netic field along the Hx direction for the easy-axis anisotropy,
as shown in the case with A = 0.4 in Fig. 1(b), whose spin
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texture is characterized by dominant double-Q modulations in
the z spin component and a subdominant modulation in the xy
spin components; see Sec. IV C 1 for the details. Meanwhile,
we find that the nsk = 1 skyrmion crystal remains stable in
the magnetic field along the z direction for the easy-axis
anisotropy and along both x and z directions for the easy-plane
anisotropy, as shown in Figs. 1(a) and 1(b); see Secs. IV B 2,
IV B 3, and IV C 2. We examine the systematic evolution
of the nsk = 2 and nsk = 1 skyrmion crystals by rotating the
magnetic field in the xz plane, as shown in Fig. 1(c); see
Sec. IV D. The nsk = 2 skyrmion crystal found for the field
along the x direction under the easy-axis anisotropy is rapidly
destabilized by rotating the field to the z direction. On the
other hand, the nsk = 1 skyrmion crystal is stable in a wide
range of fields and anisotropy, as shown in the second row
of Fig. 1(c). The range of the field angle where the nsk = 1
skyrmion crystal is stabilized tends to be wider for larger K
for both easy-axis and easy-plane anisotropy; see Secs. IV D 1
and IV D 2. Moreover, we find a triple-Q state with nonzero
scalar chirality, which is different from the skyrmion crystals,
in the magnetic field in the xz plane under the easy-axis
anisotropy, as shown in the second row of Fig. 1(c). We also
show that there appear triple-Q states, which are topologically
trivial (no net scalar chirality), around the skyrmion crystals,
as shown in Figs. 1(a)–1(c). Also, in the large-K and small-A
region, we find a double-Q state, whose spin configuration is
coplanar at zero field, as shown in the right bottom row of
Fig. 1(a); see Sec. IV B 3.

The effect of the bond-dependent anisotropy IA is dis-
cussed in Sec. V. We find that the nsk = 2 skyrmion crystal is
also stabilized at zero field by introducing the bond-dependent
anisotropy, as shown in Fig. 1(d). Interestingly, this state has
a spontaneous ferromagnetic moment along the z direction, in
contrast to the case of the single-ion anisotropy. Accordingly,
the sign of the scalar chirality is selected to be opposite to
that of the z component of the ferromagnetic moment. In
other words, it lifts the degeneracy between the skyrmion
and antiskyrmion [64]; see Sec. V A. When the magnetic
field is applied along the z direction, we obtain two types of
the nsk = 1 skyrmion crystals: The one is characterized by
a periodic array of the uniaxially elongated skyrmions and
the other shows a periodic array of the isotropic ones. Be-
sides the skyrmion crystals, we show that the bond-dependent
anisotropy induces a nsk = 1 meron crystal, including one
meron and three antimerons in the magnetic unit cell. Fur-
thermore, we find a nsk = 2 meron crystal in the large IA

and small K region, which includes four merons in the mag-
netic unit cell. We also obtain multiple-Q states with nonzero
uniform scalar chirality other than the skyrmion and meron
crystals under the magnetic field as shown in Fig. 1(d), which
have not been found in the case of the single-ion anisotropy.
See Sec. V B for all the details. Meanwhile, we could not find
the instability toward the skyrmion and meron crystals against
the in-plane magnetic field (not shown).

III. MODEL AND METHOD

We introduce an effective spin model for itinerant mag-
nets with the magnetic anisotropy in Sec. III A. We outline
the method of numerical simulations and measured physical
quantities in Sec. III B.

A. Model

When an itinerant electron system consists of itinerant
electrons and localized spins coupled via the exchange in-
teraction, like in the Kondo lattice model, one can derive an
effective spin model for the localized spins by tracing out the
itinerant electron degree of freedom. The model includes the
exchange interactions in momentum space and two types of
magnetic anisotropy in general. We consider such a model
whose Hamiltonian is explicitly given by

H = HBBQ + HSIA + HBA + HZ, (1)

where

HBBQ = 2
∑

ν

[
−JSQν

· S−Qν
+ K

N

(
SQν

· S−Qν

)2
]
, (2)

HSIA = −A
∑

i

(
Sz

i

)2
, (3)

HBA = 2
∑

ν

[
−J

∑
αβ

Iαβ

Qν
Sα

Qν
Sβ

−Qν

+ K

N

(∑
αβ

Iαβ

Qν
Sα

Qν
Sβ

−Qν

)2]
, (4)

HZ = −
∑

i

H · Si. (5)

The first term HBBQ represents the bilinear-biquadratic in-
teractions in momentum space, which was originally derived
from the perturbation expansion with respect to the spin-
charge coupling in the Kondo lattice model [85]; J and K
are the positive coupling constants for the isotropic bilinear
and biquadratic exchange interactions, which are obtained by
the second- and fourth-order perturbation analyses in terms
of the spin-charge coupling in the Kondo lattice model, re-
spectively. Although the coupling constants can be derived
from the perturbation theory, we regard them as phenomeno-
logical parameters in order to cover the whole magnetic phase
diagram in the model in Eq. (1), as in the previous study
[105]. Both interactions in Eq. (2) are defined in momentum
space for a particular set of the wave numbers Qν ; SQν

=
(1/

√
N )

∑
i Sie−iQν ·ri is the Fourier component of the spin

Si = (Sx
i , Sy

i , Sz
i ) at site i, where N is the number of spins.

In the present study, we consider the triangular lattice in the
xy plane (x is taken along the bond direction), and assume
that Qν originate from the six peaks of the bare susceptibil-
ity dictated by the Fermi surface in the presence of sixfold
rotational symmetry of the lattice. Specifically, we choose a
set of Qν as Q1 = (π/3, 0, 0), Q2 = (−π/6,

√
3π/6, 0), and

Q3 = (−π/6,−√
3π/6, 0) in the following calculations (the

lattice constant is taken to be unity). The other contributions
with different q dependences (including q = 0 component)
are ignored by assuming distinct peak structures of the bare
susceptibility [85]. Hereafter, we set J = 1 as the energy unit.

The second and third terms in Eq. (1) represent the mag-
netic anisotropy that we focus on in the present study. The
second term HSIA in Eq. (3) represents the local single-ion
anisotropy. The positive (negative) A represents the easy-axis
(-plane) anisotropy. The effect of the single-ion anisotropy

054422-4



NONCOPLANAR MULTIPLE-Q SPIN TEXTURES BY … PHYSICAL REVIEW B 103, 054422 (2021)

on the instability toward multiple-Q magnetic orderings has
been investigated for chiral [134–138], frustrated [65–67], and
itinerant magnets [104–106], although the analysis including
itinerant electrons explicitly has not been performed exten-
sively due to the huge computational cost.

The third term HBA in Eq. (4) represents the anisotropic
exchange interaction dependent on the bond direction. Due
to the sixfold rotational symmetry and mirror symmetry
of the triangular lattice, the anisotropic tensor Iαβ

Qν
satisfies

the relation, −Ixx
Q1

= Iyy
Q1

= 2Ixx
Q2

= −2Iyy
Q2

= 2Ixy
Q2

/
√

3 =
2Iyx

Q2
/
√

3 = 2Ixx
Q3

= −2Iyy
Q3

= −2Ixy
Q3

/
√

3 = −2Iyx
Q3

/
√

3 ≡ IA

and otherwise zero. This type of interaction specifies the
spiral plane according to the sign of IA: A positive (negative)
IA favors the proper-screw (cycloidal) spiral state. This
term originates from the relativistic spin-orbit coupling
irrespective of inversion symmetry [108,113,139], in contrast
to the antisymmetric DM interaction in the absence of
inversion symmetry. Similar interactions have been discussed
in terms of the short-ranged bond-dependent interaction
in magnetic insulators, such as the compass and Kitaev
interactions [63,140–143].

The last term HZ in Eq. (5) represents the Zeeman coupling
to an external magnetic field. In the presence of the single-
ion anisotropy (A �= 0), we apply the magnetic field in the z
and x directions, i.e., the [001] and [100] directions, and also
rotate it in the xz plane (note that the [100] and [010] fields are
equivalent when IA = 0). Meanwhile, in the presence of the
bond-dependent anisotropy (IA �= 0), we apply the magnetic
field along the [100], [010], and [001] directions, but show the
results only for the most interesting [001] case (we do not find
any chiral spin textures in the [100] and [010] cases).

B. Numerical calculations

We study the magnetic phase diagram of the model in
Eq. (1) by using simulated annealing from high temperature.
Our simulations are carried out with the standard Metropo-
lis local updates in real space. We present the results for
the system with N = 962 spins. In each simulation, we first
perform the simulated annealing to find the low-energy con-
figuration by gradually reducing the temperature with the
rate Tn+1 = αTn, where Tn is the temperature in the nth step.
We set the initial temperature T0 = 0.1–1.0 and take the
coefficient α = 0.99995–0.99999. The final temperature is
typically taken at T = 0.01 for zero field and T = 0.0001 for
nonzero field (we need lower temperature for nonzero fields
to resolve keen competition between different phases). The
target temperatures are reached by spending totally 105–106

Monte Carlo sweeps. At the final temperature, we perform
105–106 Monte Carlo sweeps for measurements after 105–106

steps for thermalization. We also start the simulations from the
spin structures obtained at low temperatures to determine the
phase boundaries between different magnetic states.

We identify the magnetic phase for each state obtained by
the simulated annealing by calculating the spin and scalar
chirality configurations. The spin structure factor is defined
as

Sαα
s (q) = 1

N

∑
j,l

〈
Sα

j Sα
l

〉
eiq·(r j−rl ), (6)

where r j is the position vector at site j. As the magnetic inter-
action in the Qν channel tends to stabilize the magnetic order
with wave number Qν , we focus on the magnetic moment with
the Qν component, which is given by

mα
Qν

=
√

Sαα
s (Qν )

N
. (7)

In the case of the single-ion anisotropy, we measure the
in-plane component (mxy

Qν
)2 = (mx

Qν
)2 + (my

Qν
)2, while in the

case of the bond-dependent anisotropy, we measure the in-
plane components of the magnetic moments, m

Q‖
Qν

and mQ⊥
Qν

,
which are parallel and perpendicular to the Qν direction, re-

spectively; we take (m
Q‖
Qν

, mQ⊥
Qν

, mz
Qν

) to form the orthogonal
coordinates. We also calculate the uniform component of the
magnetization mα

0 .
Meanwhile, the chirality structure factor is defined as

Sχ (q) = 1

N

∑
μ

∑
R,R′∈μ

〈χRχR′ 〉eiq·(R−R′ ), (8)

where R and R′ represent the position vectors at the centers
of triangles, and μ = (u, d ) represent upward and downward
triangles, respectively; χR = S j · (Sk × Sl ) is the local spin
chirality at R, where j, k, l are the sites on the triangle at R
in the counterclockwise order. The scalar chirality with the
Qν component is defined as

χQν
=

√
Sχ (Qν )

N
. (9)

The uniform component is given by χ0. Note that, in this
definition, a staggered arrangement of χR also gives a nonzero
χ0; we distinguish uniform and staggered ones by real-space
pictures.

IV. SINGLE-ION ANISOTROPY

In this section, we investigate the effect of the single-ion
anisotropy A for the Hamiltonian H = HBBQ + HSIA + HZ

(i.e., HBA = 0). The magnetic phase diagram at zero mag-
netic field is presented in Sec. IV A. Then, the field-induced
magnetic orders are discussed in Secs. IV B–IV D for different
field directions: the field along the z direction in Sec. IV B, the
field along the x direction in Sec. IV C, and the field rotated in
the xz plane in Sec. IV D.

A. At zero field

First, we present the magnetic phase diagram for the model
in Eq. (1) with HBA = HZ = 0 obtained by the simulated
annealing in Fig. 2. The result includes six phases, whose
real-space configurations of spin and chirality are shown in
Figs. 3 and 4. Each magnetic phase is characterized by the
magnetic moments with the Qν components, (mQν

)2, the spin
scalar chirality with the Qν components, (χQν

)2, and the uni-
form component (χ0)2. A dependences of these quantities at
K = 0, 0.1, and 0.3 are shown in Fig. 5. Due to the sixfold
rotational symmetry, Q1, Q2, and Q3 are symmetry related;
e.g., the single-Q state with mQ1

�= 0 is equivalent with that
with mQ2

�= 0 or mQ3
�= 0. Thus, three types of the single-

Q states are energetically degenerate, and hence, they are
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 0.3

-0.6 -0.4 -0.2  0.0  0.2  0.4  0.6

1Q collinear

1Q helical

1Q cycloidal

2Q coplanar

nsk=2 skyrmion

2Q
chiral stripe

FIG. 2. Magnetic phase diagram of the model in Eq. (1) with
HBA = HZ = 0 obtained by the simulated annealing down to T =
0.01. A > 0 (A < 0) represents the easy-axis (plane) anisotropy. See
the text for details.

obtained randomly in the simulated annealing starting from
different initial configurations. Similar degeneracy occurs also
for other multiple-Q states. In the following, we show the
results in each ordered state by appropriately sorting (mQν

)2

and (χQν
)2 for better readability.

At K = 0 where the model is reduced to the simple bilinear
model with the single-ion anisotropy, the single-Q state is
stabilized for all A, although the spiral plane depends on the
sign of A; the spins rotate in the xy plane for A < 0, while in
the xz (or yz) plane for A > 0, as shown in Figs. 3(a) and 3(b),

(b)

-1

 0

 1(a)

(d)(c)

FIG. 3. Real-space spin configurations of (a) the single-Q (1Q)
helical state at A = 0.2 and K = 0, (b) the 1Q cycloidal state at A =
−0.4 and K = 0, (c) the 1Q collinear state at A = 0.6 and K = 0,
and (d) the double-Q (2Q) coplanar state at A = −0.4 and K = 0.3.
The contour shows the z component of the spin moment [144], and
the arrows represent the xy components.

-1

 0

 1(b)(a) (b

-1

 0

 1(c)
-1

 0

1

1

-1

 0

 1(d)

FIG. 4. Real-space spin configurations of (a) the 2Q chiral stripe
state at A = 0.1 and K = 0.1 and (b) the nsk = 2 skyrmion crystal at
A = 0.2 and K = 0.3. The contour shows the z component of the spin
moment, and the arrows represent the xy components. Panels (c) and
(d) display the real-space chirality configurations corresponding to
panels (a) and (b), respectively.

respectively. This is represented by nonzero (mxy
Q1

)2 for A < 0

and nonzero (mz
Q1

)2 for A > 0, as shown in Fig. 5(a). The
former is an in-plane cycloidal spiral, while the latter is an out-
of-plane cycloidal or proper-screw spiral. We call the former
the single-Q cycloidal state and the latter the single-Q helical
state. In the single-Q cycloidal state, (mz

Q1
)2 is zero and (mxy

Q1
)2

does not depend on A, while in the single-Q helical state,
both (mxy

Q1
)2 and (mz

Q1
)2 are nonzero and their ratio changes

as A. This indicates that the spiral plane in the cycloidal and
helical states are circular and elliptical, respectively. While
increasing positive A, (mxy

Q1
)2 decreases and (mz

Q1
)2 increases

to gain the energy from the single-ion anisotropy. While fur-
ther increasing A, (mxy

Q1
)2 vanishes and the 1Q collinear state

with (mz
Q1

)2 �= 0 is realized for A � 0.55. The real-space spin
texture in the 1Q collinear state is shown in Fig. 3(c).

By introducing the biquadratic interaction K , the double-Q
state is stabilized in the small |A| region, as shown in Fig. 2.
The spin and chirality components are shown in the case of
K = 0.1 in Fig. 5(b). This double-Q state is composed of two
helices, as indicated by the nonzero (mQ1

)2 and (mQ2
)2 with

different intensities, (mQ1
)2 > (mQ2

)2. At the same time, this
state shows nonzero (χQ2

)2. The spin and chirality configu-
rations obtained by the simulation are presented in Figs. 4(a)
and 4(c), respectively. This type of the double-Q state has been
found in the itinerant electron systems without the single-ion
anisotropy, such as the Kondo lattice model with the weak
spin-charge coupling [83] and the d-p model with the strong
Hund’s-rule coupling [145], where it is called the double-Q
chiral stripe state [83]. In the limit of A → 0, the real-space
spin configuration is given by [83]

Si =
⎛
⎝

√
1 − b2 + b2 cos Q2 · ri cos Q1 · ri√
1 − b2 + b2 cos Q2 · ri sin Q1 · ri

b sin Q2 · ri

⎞
⎠

T

, (10)
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FIG. 5. A dependence of (first row) (mxy
Qν

)2, (second row) (mz
Qν

)2, and (third row) (χQν
)2 and (χ0)2 for (a) K = 0, (b) K = 0.1, and (c) K =

0.3. See also Fig. 2.

which is approximately regarded as a superposition of the
dominant spiral wave with Q1 in the xy plane and the si-
nusoidal wave with Q2 along the z direction. b represents
the amplitude of the latter component. In the case of A = 0,
the spiral plane is arbitrary; the energy is unchanged for any
global spin rotation. A nonzero A fixes the spiral plane. For
A > 0, the Q1 spiral is laid on the xz (or yz) plane and becomes
elliptical, and the sinusoidal Q2 component runs along the y
(or x) direction. On the other hand, for A < 0, the double-Q
chiral stripe consists of the dominant spiral in the xy plane
and the additional sinusoidal wave along the z direction, as
shown in Fig. 5(b). By increasing |A|, the double-Q chiral
stripe continuously turns into the single-Q cycloidal state for
A < 0 and the single-Q helical state for A > 0, which are con-
nected to those at K = 0. Note that the former approximately
corresponds to b → 0 in Eq. (10). The region of the double-Q
chiral stripe state is extended by increasing K , as shown in
Fig. 2.

For larger K , two different multiple-Q phases appear: the
nsk = 2 skyrmion crystal for −0.3 � A � 0.5 and the double-
Q coplanar state for A � −0.3, as shown in Fig. 2. The
nsk = 2 skyrmion crystal is a triple-Q magnetic state by a
superposition of three sinusoidal waves orthogonal to each
other, mQ1

⊥ mQ2
⊥ mQ3

[85,91]. The typical spin configura-
tion is shown in Fig. 4(b). While (mQ1

)2 = (mQ2
)2 = (mQ3

)2

at A = 0, the intensities at Qη for the xy component become
larger (smaller) than those for the z component for A < 0
(A > 0), as shown in Fig. 5(c). The xy component always
shows the double-Q structure with equal intensities, while

the z component is single Q. This magnetic structure has
a noncoplanar spin configuration, leading to nonzero scalar
chirality, as shown in Figs. 4(d) and 5(c), which gives rise to
the topological Hall effect.

By increasing A, the xy spin component vanishes as shown
in the top panel of Fig. 5(c), and then the nsk = 2 skyrmion
crystal turns into the 1Q collinear state continued from the
smaller K region. Meanwhile, when decreasing A, the z spin
component vanishes as shown in the middle panel of Fig. 5(c),
and the double-Q coplanar state with (mQ1

)2 = (mQ2
)2 > 0

and (mQ3
)2 = 0 is realized whose spin texture is shown in

Fig. 3(d).
A similar phase sequence of the double-Q coplanar, nsk =

2 skyrmion crystal, and single-Q collinear states while chang-
ing the single-ion anisotropy was obtained also for the original
Kondo lattice model [105]. Thus, our effective spin model in
Eq. (1) can capture the instability toward multiple-Q states
in itinerant magnets qualitatively in the large K region, as
demonstrated for the isotropic case [85]. However, by closely
comparing the results, we find at least two differences between
the two models. One is the nature of the phase transitions:
In the effective spin model, the transitions from the nsk =
2 skyrmion crystal to the single-Q collinear and double-Q
coplanar states appear to be of second order with continu-
ous changes of the magnetic moments mQη

and the uniform
scalar chirality (χ0)2, while the results in the Kondo lattice
model indicate the first-order transitions with clear jumps in
these quantities. The other difference is that a noncoplanar
double-Q phase appears in a narrow region between the nsk =
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FIG. 6. Hz dependence of (first row) mz
0 and (χ0)2, (second row) (mxy

Qν
)2, (third row) (mz

Qν
)2, and (fourth row) (χQν

)2 for (a) K = 0,
(b) K = 0.1, and (c) K = 0.3 at A = 0.

2 skyrmion crystal and the double-Q coplanar state in the
Kondo lattice model. These differences might be attributed
to some factors which are omitted in the derivation of the
effective spin model from the Kondo lattice model, such as
the interactions at wave numbers other than Qη and other
types of magnetic interactions dropped off in the perturba-
tion processes in itinerant magnets. Nevertheless, our result
indicates that the effective spin model is useful to investigate
the multiple-Q instability in the Kondo lattice model, since it
provides us with an overall picture of the emergent multiple-Q
phases, by a considerably smaller computational cost than
that by the direct numerical simulation of the Kondo lattice
model.

B. Field along the z direction

Next, we examine the effect of the magnetic field along the
z direction. We take H = (0, 0, Hz ) in the Zeeman Hamilto-
nian HZ in Eq. (5). We show the results for the isotropic case
at A = 0 in Sec. IV B 1, and the effects of the easy-axis and
easy-plane anisotropy in Secs. IV B 2 and IV B 3, respectively.
We discuss the results in this section in Sec. IV B 4.

1. Isotropic case

We first consider the situation in the absence of the single-
ion anisotropy, A = 0. The phase diagram in the K-Hz plane
and a part of the results were shown in the previous study by
the authors [85]. We here discuss the changes of the spin and
chirality structures in detail. Figure 6 shows the magnetic field
dependence of the spin and chirality components at K = 0,
0.1, and 0.3. Note that the following results in this section are
the same for the magnetic field along any direction due to the
spin rotational symmetry.

At K = 0, the magnetic state at zero field is the single-Q
spiral state, whose spiral plane is arbitrary due to the spin
rotational symmetry. When applying the magnetic field in
the z direction, the spiral plane is fixed in the xy plane, and
the spin pattern is characterized by (mxy

Q1
)2 in addition to the

uniform component of the magnetization along the z direction,
mz

0, as shown in the upper two panels of Fig. 6(a). This
corresponds to the single-Q conical spiral where the spiral
plane is perpendicular to the field direction. Reflecting the
noncoplanar spin structure, this single-Q conical state exhibits
a staggered arrangement of nonzero local scalar chirality be-
tween the upward and downward triangles, as signaled by
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FIG. 7. (a) Real-space spin configuration of the nsk = 1
skyrmion crystal at K = 0.1 and H = 0.6. The contour shows the
z component of the spin moment, and the arrows represent the xy
components. (b) Real-space chirality configuration corresponding to
(a).

nonzero (χ0)2 shown in the top panel of Fig. 6(a). Note
that the scalar chirality cancels out between the staggered
components. While increasing Hz, the single-Q conical state
continuously changes into the fully polarized state at Hz = 2.

At K = 0.1, the double-Q chiral stripe state is stabilized at
zero field, as discussed in the previous section. In the presence
of the magnetic field, this state survives up to Hz � 0.4, as
shown in Fig. 6(b). We note that (χ0)2 takes a small nonzero
value for 0 < Hz � 0.4 because of the nonzero staggered
chirality induced by the magnetic field, similar to the single-
Q state at K = 0 above. While increasing Hz, this state is
replaced with the nsk = 1 skyrmion crystal at Hz � 0.5 with a
finite jump of (χ0)2. The nsk = 1 skyrmion crystal is char-
acterized by the triple-Q peak structures for both xy and z
components in the spin structure, as shown in the two middle
panels of Fig. 6(b). It also exhibits the triple-Q peak structures
in the chirality as shown in the lowest panel of Fig. 6(b), in
addition to (χ0)2. Thus, both spin and chirality configurations
in real space have threefold rotational symmetry, as shown in
Figs. 7(a) and 7(b). When further increasing Hz, the system
undergoes a first-order phase transition to a triple-Q state at
Hz � 1, which has double-Q peaks in the xy component and
a single-Q peak in the z component of the magnetic moments.
This triple-Q state accompanies the single-Q chirality density
wave with Q3. The triple-Q state turns into the fully polarized
state at Hz = 2.

Figure 6(c) displays the result at K = 0.3. The nsk = 2
skyrmion crystal at zero field is replaced with a triple-Q
state at Hz � 0.2, which is similar to the high-field state at
K = 0.1. While further increasing Hz, it turns into the nsk = 1
skyrmion crystal at Hz � 0.4. After that, the phase sequence
is similar to that at K = 0.1.

2. With easy-axis anisotropy

Next, we discuss the effect of the magnetic field along the
z direction, Hz, in the presence of the single-ion anisotropy
for several K and A. We show the results for the easy-axis
anisotropy A > 0 in Figs. 8–10 in this section and for the easy-
plane anisotropy A < 0 in Figs. 11–13 in the next section.

Figures 8(a) and 8(b) show the results at A = 0.2 and
A = 0.4 with K = 0, respectively. The main difference from
the isotropic case with A = 0 is found in the emergence of
the nsk = 1 skyrmion crystal in the intermediate-field region.
This indicates that the easy-axis anisotropy can stabilize the
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FIG. 8. Hz dependence of (first row) mz
0 and (χ0)2, (second row)

(mxy
Qν

)2, (third row) (mz
Qν

)2, and (fourth row) (χQν
)2 for K = 0 at

(a) A = 0.2 and (b) A = 0.4.

nsk = 1 skyrmion crystal even without the biquadratic interac-
tion, consistent with the previous result in Ref. [104]. It is also
found that (χ0)2 becomes smaller for larger A, since the pos-
itive A tends to align the spins along the z direction, namely,
it enhances (mz

Qν
)2 and suppresses (mxy

Qν
)2. For A = 0.4, there

are two types of the nsk = 1 skyrmion crystal, which are al-
most energetically degenerate: One shows weak anisotropy in
both spin and chirality structures for 0.5 � Hz � 0.9, and the
other has the isotropic intensities for 0.9 � Hz � 1.1. Such
quasidegenerate skyrmion crystals have also been found in
an itinerant electron model [105] and a localized spin model
[146], which indicates that optimized spin configurations in
the skyrmion crystal is determined from a subtle balance
among different interaction energies.

Differences from the result at A = 0 are also found in
the low- and high-field regions. In the low-field region, the
single-Q spiral state is realized similar to the A = 0 case, but
(mz

Q1
)2 becomes nonzero for A > 0, as shown in the third row

of Fig. 8. In addition, at A = 0.2, (mxy
Q2

)2 and (mxy
Q3

)2 become
nonzero in the vicinity of the phase boundary at H � 0.4, as
shown in Fig. 8(a), suggesting a narrow intermediate phase
between the single-Q spiral state and the nsk = 1 skyrmion
crystal. Meanwhile, in the high-field region, the triple-Q state,
which is similar to that obtained at A = 0 and K > 0 in
Figs. 6(b) and 6(c), is stabilized for 1.3 � Hz � 1.6 at A =
0.2 without K , as shown in Fig. 8(a). This state is shrunk and
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FIG. 9. The same plots as in Fig. 8 for K = 0.1.
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FIG. 10. The same plots as in Fig. 8 for K = 0.3.

(a) K = 0 , A = -0.1 (b) K = 0 , A = -0.3

0.2

0.4

0.2

0.4

0.0 0.5 1.0 1.5 2.0 2.5 0.0 0.5 1.0 1.5 2.0 2.5
Hz Hz

3.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

FIG. 11. Hz dependence of (upper) mz
0 and (χ0)2 and (lower)

(mxy
Qν

)2 for K = 0 at (a) A = −0.1 and (b) A = −0.3.

eventually vanishes while increasing A; the nsk = 1 skyrmion
crystal directly turns into the fully polarized state at A = 0.4,
as shown in Fig. 8(b). This indicates that the energy gain
by A in this triple-Q state is smaller than that in the nsk = 1
skyrmion crystal and the fully polarized state.
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FIG. 12. Hz dependence of (first row) mz
0 and (χ0)2, (second row)

(mxy
Qν

)2, (third row) (mz
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)2, and (fourth row) (χQν
)2 for K = 0.1 at

(a) A = −0.1 and (b) A = −0.3.

054422-10



NONCOPLANAR MULTIPLE-Q SPIN TEXTURES BY … PHYSICAL REVIEW B 103, 054422 (2021)

0.0

0.2

0.4

0.6

0.8

1.0
(a) K = 0.3, A = -0.1

0.0

0.2

0.4

0.6

0.8

1.0
(b) K = 0.3, A = -0.3

0.00

0.05

0.10

0.15

0.20

0.0

0.1

0.2

0.00

0.05

0.10

0.15

0.00

0.02

0.04

0.06

0.00

0.05

0.10

0.15

0.0 0.5 1.0 1.5 2.0 2.5
Hz

0.00

0.02

0.04

0.06

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Hz

FIG. 13. The same plots as in Fig. 12 for K = 0.3.

Figure 9 shows the results for K = 0.1. At A = 0.2, the
sequence of the magnetic phases is similar to that for A = 0 in
Fig. 6(b). Comparing Figs. 8(a) and 9(a), nonzero K replaces
the single-Q state in the low-field region by the triple-Q state
with the dominant single-Q peak in the z spin component.
Furthermore, K extends the region of the nsk = 1 skyrmion
crystal, as clearly seen at A = 0.4 in Fig. 9(b), while (χ0)2 is
suppressed by increasing A.

When further increasing K , the zero-field phase becomes
the nsk = 2 skyrmion crystal for K � 0.25 as shown in Fig. 2.
The field-induced phases are similar to those for A = 0 in
Fig. 6(c). The results are shown in Fig. 10 for K = 0.3. Both
nsk = 2 and nsk = 1 skyrmion crystals remain for A = 0.2 and
A = 0.4; the region for the nsk = 2 skyrmion crystal appears
to be independent of A, whereas that for the nsk = 1 skyrmion
crystal is extended by increasing A. In particular, in the case
of A = 0.4 shown in Fig. 10(b), the triple-Q state between
the nsk = 2 and nsk = 1 skyrmion crystals vanishes, and the
nsk = 1 skyrmion crystal is stabilized for 0.1 � Hz � 1.2. At
the same time, the triple-Q state without (χ0)2 appearing for
1 � Hz � 2 in Fig. 6(c) is suppressed and vanishes while
increasing A.

3. With easy-plane anisotropy

We turn to the case with the easy-plane anisotropy, A <

0. Figures 11–13 show Hz dependences of the spin and
chirality related quantities for K = (0, 0.1, 0.3) and A =
(−0.1,−0.3).
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 1 )b()a(

-1

 0

 1

FIG. 14. Real-space spin configuration of the nsk = 2 skyrmion
crystals at (a) Hz = 0.1 and (b) Hz = 0.2. The contour shows the
z component of the spin moment, and the arrows represent the xy
components.

At K = 0, as shown in Fig. 11, there is no qualitative
change from the result at A = 0 in Fig. 6(a) by introducing
the easy-plane anisotropy. Meanwhile, when we turn on K , the
system shows qualitatively different behavior with the insta-
bility toward the multiple-Q states. As shown in Fig. 12(a) for
K = 0.1 and A = −0.1, the single-Q conical state at K = 0
is replaced with two triple-Q states by introducing the mag-
netic field. The lower-field one appearing for 0 < Hz � 1.1
shows a dominant contribution from (mxy

Q1
)2 accompanied by

small (mxy
Q2

)2 and (mz
Q3

)2; while increasing Hz, the former

decreases but the latter two increase. Accordingly, (χQ3
)2

becomes nonzero and shows similar Hz dependence to (mz
Q3

)2,
as shown in the lowest panel of Fig. 12(a). Thus, the low-field
phase is characterized by the anisotropic triple-Q peaks with
different intensities at Q1, Q2, and Q3 in the spin structure
and the single peak at Q3 in the chirality. On the other hand,
the higher field state for 1.1 � Hz � 2.2 shows (mxy

Q1
)2 =

(mxy
Q2

)2, similar to the high-field triple-Q phase at K = 0.1

and A = 0 in Fig. 6(b). The intensities of (mxy
Q1

)2, (mxy
Q2

)2,

(mz
Q3

)2, and (χQ3
)2 become smaller as increasing Hz, and the

system continuously changes into the fully polarized state at
Hz � 2.2. For stronger easy-plane anisotropy, however, these
triple-Q states disappear as shown in Fig. 12(b), and instead,
the single-Q state similar to that at K = 0 in Fig. 11(b) is
recovered. Thus, the easy-plane anisotropy suppresses the
multiple-Q instability in the model in Eq. (1), as seen in
frustrated localized spin models [65–67].

The results for a larger K = 0.3 are shown in Fig. 13. At
A = −0.1, as shown in Fig. 13(a), there is a phase transition
within the low-field nsk = 2 skyrmion crystal at Hz � 0.2.
The spin texture for Hz � 0.2 is characterized by the double-
Q peak structure with equal intensities at Q1 and Q2, while
the z component shows the single-Q peak structure at Q3,
as shown in Fig. 4(b). This spin texture is similar to that
in the case of easy-axis anisotropy in Figs. 10(a) and 10(b).
Meanwhile, the spin texture for Hz � 0.2 has the triple-Q
peak structure for both xy and z components, as shown in
the middle two panels of Fig. 13(a). Comparison of the real-
space spin configurations between the two types of the nsk = 2
skyrmion crystal is shown in Fig. 14. The low-field one in
Fig. 14(a) breaks the threefold rotational symmetry due to
inequivalent (mQ1,2

)2 and (mQ3
)2, while the high-field one

in Fig. 14(b) preserves the threefold rotational symmetry, as
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indicated in the data in Fig. 13. It is noted that these two spin
textures are connected by global spin rotation, and their ener-
gies are degenerate at A = Hz = 0; the former spin texture is
approximately given by

Si ∝
⎛
⎝cos Q1 · ri

cos Q2 · ri

cos Q3 · ri

⎞
⎠

T

, (11)

and the latter is by

Si ∝

⎛
⎜⎝

√
3

2 (cos Q2 · ri − cos Q3 · ri )
cos Q1 · ri − 1

2 (cos Q2 · ri + cos Q3 · ri )
1√
2
(cos Q1 · ri + cos Q2 · ri + cos Q3 · ri )

⎞
⎟⎠

T

. (12)

The result indicates that the spin texture in Eq. (11) is chosen
in the presence of A and small Hz, while that in Eq. (12) is
chosen for moderate Hz presumably due to subtle balance
among different interaction energies. While further increasing
Hz, the nsk = 2 skyrmion crystal changes into the nsk = 1
skyrmion crystal at Hz � 0.3. Thus, in this case, there are
three different skyrmion crystals in the low-field region. At
Hz ≈ 0.4, the system undergoes a transition to the anisotropic
triple-Q state which is the same as that found for K = 0.1 in
Fig. 12(a).

For stronger easy-plane anisotropy, the low-field skyrmion
crystals are all replaced with the double-Q state with equal
intensities of (mxy

Q1
)2 and (mxy

Q2
)2, as shown in Fig. 13(b) for

A = −0.3. This turns into the triple-Q state for Hz � 0.9
with a small additional contribution from (mz

Q3
)2. Thus, the

z-spin component of the low-field double-Q state is uniform,
while that of the high-field triple-Q state exhibits the sinu-
soidal modulation along the Q3 direction. Both states show the
single-Q chirality density wave at Q3, as shown in the lowest
panel of Fig. 13(b).

4. Discussion

The results obtained in this section are summarized in
Fig. 1(a). We found a variety of multiple-Q instabilities in
the presence of the single-ion anisotropy A under the [001]
magnetic field. The triple-Q states including the skyrmion
crystals with nsk = 1 and 2 are stabilized by the biquadratic in-
teraction K even at A = 0, but they show contrastive responses
to the easy-axis (A > 0) or easy-plane (A < 0) anisotropy.
In the following, we discuss the differences focusing on the
skyrmion crystals.

In the case of the nsk = 2 skyrmion crystal, although the
stable region in the presence of the easy-axis anisotropy at
zero field is wider than that for the easy-plane anisotropy, e.g.,
−0.25 � A � 0.45 at K = 0.3 in Fig. 2, the robustness against
the magnetic field tends to be opposite: The critical field to
destabilize the nsk = 2 skyrmion crystal is larger for A < 0
compared to that for A > 0 [see Figs. 10(a) and 13(a)]. For
A < 0, we found two different types of the nsk = 2 skyrmion
crystal depending on Hz, as shown in Fig. 14.

Meanwhile, the stable field range of the nsk = 1 skyrmion
crystal changes more sensitively depending on the sign of A.
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0.8

1.0

-0.10 -0.08 -0.06 -0.04 -0.02 0.00
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0.0

0.1

0.2

-0.10 -0.08 -0.06 -0.04 -0.02 0.00
A

FIG. 15. A dependence of (upper) mz
0 and (χ0)2 and (lower)

(mxy
Qν

)2 and (mz
Qν

)2 at K = 0.3 and Hz = 0.7.

The range is extended by increasing positive A for small A [see
Figs. 6(b), 6(c), 9(a), and 10(a)], but it is rapidly shrunk by
decreasing negative A and does not appear in Figs. 11–13. We
show the stability in the small negative A region at K = 0.3
and Hz = 0.7 in Fig. 15. The result clearly indicates that the
nsk = 1 skyrmion crystal is very weak against the easy-plane
anisotropy; it is destabilized at A � −0.06, while it remains
stable for much stronger easy-axis anisotropy, as exemplified
in Fig. 10(b) for A = 0.4. The results are qualitatively con-
sistent with those obtained for the Kondo lattice model [105].
Despite the narrow stable region, it is worth noting that the
nsk = 1 skyrmion crystal for A < 0 is one of the good indi-
cators for the importance of the spin-charge coupling, since
it is hardly stabilized in the localized spin models with the
easy-plane anisotropy [65–67].

Let us comment on the model parameters in relation to
experiments. The nsk = 2 skyrmion crystal is realized only for
nonzero K , while the nsk = 1 one is stabilized even without
K [104] or A [85]. This indicates that the phase diagram
against Hz in experiments provides information on whether K
and/or A are important. For example, in the skyrmion-hosting
centrosymmetric materials such as Gd2PdSi3 [121–123] and
Gd3Ru4Al12 [126], the effect of magnetic anisotropy might
be significant rather than K , since the zero-field phase does
not correspond to the nsk = 2 skyrmion crystal. Nevertheless,
the chemical substitution or carrier doping would result in the
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FIG. 16. Hx dependence of (first row) mx
0 and (χ0)2, (second row)

(mx
Qν

)2 and (my
Qν

)2, and (third row) (mz
Qν

)2 for K = 0 at (a) A = 0.2
and (b) A = 0.4.

nsk = 2 skyrmion crystal, since K is sensitive to the electronic
band structure [85].

C. Field along the x direction

Next, we discuss the result in the presence of the magnetic
field along the x direction by taking H = (Hx, 0, 0) in the
Zeeman Hamiltonian HZ in Eq. (5). As the result for the
isotropic case with A = 0 is the same (by replacing Hx with
Hz) as that in Sec. IV B 1 due to spin rotational symmetry,
we show the results for the anisotropic cases with A > 0 in
Sec. IV C 1 and A < 0 in Sec. IV C 2. We discuss the results
in this section in Sec. IV C 3.

1. With easy-axis anisotropy

Figures 16–18 show Hx dependences of the spin and chi-
rality related quantities in the case of the easy-axis anisotropy,
A = 0.2 and 0.4 for K = 0, 0.1, and 0.3. At K = 0 and A =
0.2, the spiral plane of the single-Q helical state is locked in
the yz plane for nonzero Hx, as shown in the lower two panels
of Fig. 16(a). By increasing Hx, (my

Q1
)2 and (mz

Q1
)2 become

smaller and vanish at Hx � 1.8 and Hx � 2.4, respectively.
The difference of the critical field is due to the presence of the
easy-axis anisotropy favoring the z-spin component. Thus, the
magnetic state for 0 < Hx � 1.8 is the single-Q conical state
with the anisotropic spiral in the yz plane and the magnetic
state for 1.8 � Hx � 2.4 is the single-Q fan state consisting
of the collinear z spin and the uniform magnetization mx

0.
The single-Q conical state in the low-field region has nonzero
(χ0)2 as plotted in the top panel of Fig. 16(a), but this is not
a uniform but staggered component. For larger A = 0.4 in
Fig. 16(b), the phase sequence is similar to that for A = 0.2.
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FIG. 17. Hx dependence of (first row) mx
0 and (χ0)2, (second row)

(mx
Qν

)2 and (my
Qν

)2, (third row) (mz
Qν

)2, and (fourth row) (χQν
)2 for

K = 0.1 at (a) A = 0.2 and (b) A = 0.4.

The critical field between the single-Q conical and fan states
becomes smaller, while that between the single-Q fan and
fully polarized states becomes larger; namely, the fan state
is extended by increasing A. This tendency is naturally un-
derstood from the fact that the easy-axis anisotropy prefers to
align the spins parallel to the z direction.

By introducing K , several multiple-Q instabilities appear
in the presence of Hx as in the case of Hz in Sec. IV B.
Figure 17(a) shows the result for K = 0.1 and A = 0.2. While
the single-Q fan state is stabilized for 1.8 � Hx � 2.4 similar
to the case for K = 0 in Fig. 16(a), the major part of the
lower-field single-Q conical state is replaced with a multiple-
Q state. At Hx = 0, the spin configuration is modulated from
the single-Q cycloidal spin structure at K = 0 so that the
x-spin component has Q2 modulation, which corresponds to
the double-Q chiral stripe state with nonzero (χQ2

)2, as shown
in the lowest panel of Fig. 17(a). When Hx is applied, (χ0)2

by a staggered chirality configuration, (my
Q3

)2, and (mz
Q3

)2 are
induced with similar Hx dependence and shows a broad peak
structure around Hx ≈ 1. At Hx � 1.4, this state turns into
the single-Q conical state which was found in Fig. 16(a). For
larger A, however, as shown in Fig. 17(b), the double-Q state
is suppressed and the phase sequence becomes similar to that
for K = 0 in Fig. 16(b).

In the case of larger K = 0.3 and A = 0.2 in Fig. 18(a),
the spin structure in the nsk = 2 skyrmion crystal stabilized at
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FIG. 18. The same plots as in Fig. 17 for K = 0.3.

Hx = 0 is modulated from the triple-Q sinusoidal structure
with (mx

Q3
)2, (my

Q2
)2, and (mz

Q1
)2 so as to possess nonzero

(my
Q1

)2 and (mz
Q2

)2 [or (mz
Q1

)2 and (my
Q2

)2]. The real-space
spin configuration at Hx = 0.1 is shown in Fig. 19(a). For
0.2 � Hx � 0.4, the additional component (my

Q1
)2 has a sim-

ilar value to (my
Q2

)2. In other words, the real-space spin
structure in this field region is characterized by the single-
Q sinusoidal modulation along the field direction and the
double-Q checker-board-type modulation perpendicular to the
field direction. The real-space spin configuration is presented
in Fig. 19(b).

While further increasing Hx, (χ0)2 jumps at Hx � 0.4, and
the nsk = 1 skyrmion crystal is realized for 0.4 � Hz � 0.7,
similar to that for A > 0 and Hz > 0 in Sec. IV B 2. In
this case, however, the skyrmion core has Sx � −1 and the
spin structure breaks threefold rotational symmetry due to the
in-plane field, as shown in Figs. 19(c) and 19(d). For 0.5 �
Hx � 0.7, (mQ2

)2 and (mQ3
)2 take the same value, which are

smaller than (mQ1
)2, while (mQ1

)2, (mQ2
)2, and (mQ3

)2 are
all different for smaller Hx. This suggests that there are two
regions in the nsk = 1 skyrmion crystal with slightly different
multiple-Q structures.

At Hx � 0.7, the nsk = 1 skyrmion crystal turns into the
anisotropic triple-Q state, which is characterized by the equal
intensities in (mα

Q1
)2 and (mα

Q2
)2 for α = y and z, in addition to

(mx
Q3

)2, as shown in the middle two panels of Fig. 18(a). This
triple-Q state has a single-Q chirality modulation at Q3, as
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FIG. 19. Real-space spin configuration of the nsk = 2 skyrmion
crystals at (a) Hx = 0.1 and (b) Hx = 0.3, and (c), (d) the nsk = 2
skyrmion crystal at Hx = 0.5 for K = 0.3 and A = 0.2. In panels
(a)–(c), the contour shows the z component of the spin moment, and
the arrows represent the xy components. In panel (d), the contour
shows the x component of the spin moment.

shown in the lowest panel of Fig. 18(a). The spin and chirality
configurations are shown in Figs. 20(a)–20(d). These are sim-
ilar to those in the high-field region in Figs. 13(a) and 13(b)
by a replacement of the spin components (x, y, z) → (z, y, x).
This indicates that the effect of Hx for A > 0 is similar to that
of Hz for A < 0. With a further increase of Hx, this triple-Q
state turns into the single-Q fan state at Hx � 1.8, and finally
becomes the fully polarized state at Hx � 2.4.

The result for larger A = 0.4 at K = 0.3 is shown in
Fig. 18(b). The nsk = 2 and nsk = 1 skyrmion crystals appear
in a similar manner to the case with A = 0.2 in Fig. 18(a), but
in a narrower field range for 0 � Hx � 0.4. The state stabi-
lized for 0.4 � Hx � 0.6, where (χ0)2 vanishes, is dominantly
characterized by a sinusoidal spin structure with (mz

Q1
)2 with

small additional intensities at (mQ2
)2 and (mQ3

)2, as shown
in the middle two panels of Fig. 18(b). This is a different
triple-Q state from the anisotropic one found for A = 0.2.
While increasing Hx, (χ0)2 as well as χQ3

becomes nonzero
again for 0.6 � Hx � 0.9. In this region, the spin structure
has double-Q modulations for the y and z components and the
single-Q modulation for the x component. This is regarded
as a square-type vortex crystal with nonzero uniform scalar
chirality, whose real-space spin and chirality structures are
plotted in Figs. 20(e)–20(h).

It is interesting to note that this triple-Q vortex crys-
tal is hardly distinguished from that found for 0.7 � Hx �
1.8 at A = 0.2 solely from the spin structure. As shown in
Figs. 20(a)–20(c) and 20(e)–20(g), their spin patterns appear
to be similar: Both are represented by the checker-board-type
modulation in the y and z components and the sinusoidal
modulation in the x component. The difference, however, lies
in the relative phases among the constituent waves. For Hx =
0.9 and A = 0.2 [Figs. 20(a)–20(c)], Sx shows the maximum
value where Sy becomes zero, while Sx and |Sy| take their
maximum at the same positions for Hx = 0.8 and A = 0.4
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FIG. 20. Real-space spin and chirality configurations of (a)–(d)
the anisotropic triple-Q state at Hx = 0.9 and A = 0.2 and (e)–(h)
the nsk = 2 skyrmion crystal at Hx = 0.8 and A = 0.4. The contour
shows the (a), (e) z, (b), (f) x, and (c), (g) y components of the
spin moment, and the arrows in panels (a) and (e) represent the
xy components. In panels (d) and (h), the contour shows the scalar
chirality.

[Figs. 20(e)–20(g)]. Thus, these two double-Q states are dis-
tinguished by the phase shift among the constituent triple-Q
waves [31]. Reflecting the phase shift, the chirality behaves
differently between the two states: The positive and negative
contributions of the scalar chirality are canceled out for the
former state, while there is no cancellation for the latter state,
as shown in Figs. 20(d) and 20(h), respectively. By calculating
the skyrmion number for the latter state, we find that it exhibits
the skyrmion number of two in the magnetic unit cell. This
indicates that the obtained square-type vortex crystal can also
be regarded as the nsk = 2 skyrmion crystal, although the
skyrmion cores are arranged in a one-dimensional way rather
than a threefold-symmetric way.

While further increasing Hx in Fig. 18(b), (my
Q1

)2 and

(my
Q2

)2 decrease, and the system undergoes a phase transition

to another triple-Q state without (χ0)2 and χQ3
at Hx � 0.9. At
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FIG. 21. Hx dependence of (first row) mx
0 and (χ0)2, (second row)

(mx
Qν

)2 and (my
Qν

)2, (third row) (mz
Qν

)2, and (fourth row) (χQν
)2 for

K = 0 at (a) A = −0.1 and (b) A = −0.3.

Hx � 1.5, the triple-Q state turns into the single-Q fan state,
and finally into the fully polarized state at Hx � 2.8.

2. With easy-plane anisotropy

Next, we investigate the case of the easy-plane anisotropy
under Hx. Figures 21–23 show the results for A = −0.1 and
−0.3. First, we discuss the result at A = −0.1 and K = 0 in
Fig. 21(a). By introducing Hx, (mx

Q1
)2 and (my

Q1
)2 become

inequivalent in the single-Q helical spiral state in the low-
field region. While further increasing Hx, the single-Q state
turns into the triple-Q state for 0.4 � Hx � 0.6 where (mz

Q2
)2

and (mz
Q3

)2 are slightly induced in addition to (χQ2
)2 and

(χQ3
)2. At Hx � 0.6, the system undergoes a phase transition

to the nsk = 1 skyrmion crystal. The skyrmion core has Sx �
−1 similar to that stabilized by the easy-axis anisotropy in
Figs. 19(c) and 19(d). This result indicates that the skyrmion
crystal can be stabilized by an in-plane magnetic field in
itinerant magnets with the easy-plane anisotropy even without
K . For larger Hx, the nsk = 1 skyrmion crystal is replaced with
other states: the anisotropic triple-Q state for 1.1 � Hx � 1.5,
the single-Q conical state for 1.5 � Hx � 1.7, the single-Q
fan state for 1.7 � Hx � 2, and the fully polarized state for
Hx � 2. The spin configurations in these states are shown in
Fig. 24. It is noted that the anisotropic triple-Q and single-Q
conical states have small but nonzero (χ0)2 as shown in the
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FIG. 22. The same plots as in Fig. 21 for K = 0.1.

top panel of Fig. 21(a), due to the staggered arrangement of
the scalar chirality.

By increasing the easy-plane anisotropy, (mz
Qν

)2 are sup-
pressed as shown in Fig. 21(b) in the case of A = −0.3. The
low-field state for 0 < Hx � 0.7 remains unchanged from the
single-Q helical spiral state at A = −0.1 for 0 < Hx � 0.3.
On the other hand, the intermediate phase for 0.7 � Hx � 1.2
is a different triple-Q state from those for A = −0.1 because
of the absence of (mz

Qν
)2, in spite of a similar magnetization

curve to that for A = −0.1 as shown in the top row of Fig. 21.
This triple-Q state has zero (χ0)2 and a similar in-plane vortex
structure of (mx

Qν
)2 and (my

Qν
)2 to that in the nsk = 1 skyrmion

crystal at A = −0.1. The real-space spin configuration is
shown in Figs. 25(a)–25(c). Interestingly, the bubble structure
appears in the x-spin component in Fig. 25(b) where the cores
with Sx � −1 form an anisotropic triangular lattice. We note
that similar bubble structures were obtained for an out-of-
plane magnetic field in frustrated magnets [67] and itinerant
magnets [106] with strong easy-axis anisotropy. However, the
present bubble state exhibits a coplanar spin structure with
additional modulation in the y component, in contrast to the
collinear bubble structures for the easy-axis anisotropy. The
in-plane component orthogonal to the magnetic field gains
the energy under the easy-plane anisotropy and contributes to
the stabilization of the coplanar bubble state.

While further increasing Hx, the system undergoes a phase
transition to the single-Q fan state at Hx � 1.2, as shown in
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FIG. 23. The same plots as in Fig. 21 for K = 0.3.

Fig. 21(b). Finally, the system turns into the fully polarized
state for Hx � 2.

When we introduce K , the multiple-Q states found for K =
0 tend to be more stabilized, as shown in Fig. 22 for K = 0.1.
For A = −0.1 in Fig. 22(a), the low-field single-Q state is
suppressed and the nsk = 1 skyrmion crystal is stabilized from
a smaller Hx compared to the K = 0 case in Fig. 21(a). In the
higher field region, the anisotropic triple-Q state is also ex-
tended up to a larger Hx, while the spin structure is modulated
from the K = 0 case so that the dominant peaks at Q1 and Q2
have the same intensities. Meanwhile, for A = −0.3 shown
in Fig. 22(b), there are no additional phases compared to the
K = 0 case in Fig. 21(b), while the region of the triple-Q state
is extended.

For larger K , the multiple-Q states are more stabilized
and take over the single-Q states, as shown in Fig. 23 for
K = 0.3. In addition, for A = −0.1, the nsk = 2 skyrmion
crystal appears for 0 � Hx � 0.2, as shown in Fig. 23(a).
The spin texture is modulated in an anisotropic manner with
larger intensities for the xy components than the z component,
which is opposite to the case with the easy-axis anisotropy
in Fig. 18(a). The narrow triple-Q state for Hx � 0.2 has
different spin and chirality textures from those for the lower
field state; it is characterized by nonzero (my

Q2
)2 = (my

Q3
)2

and (mz
Q2

)2 = (mz
Q3

)2 in addition to (mx
Q1

)2. The triple-Q state
turns into the nsk = 1 skyrmion crystal at Hx � 0.3 with a
finite jump of (χ0)2, as shown in the top panel of Fig. 23(a).
The nsk = 1 skyrmion crystal is stabilized for 0.3 � Hx �
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FIG. 24. Real-space spin configurations of (a) the anisotropic
triple-Q state at Hx = 1.1, (b) the single-Q conical state at Hx = 1.6,
(c) the single-Q fan state at Hx = 1.8, and (d) the fully polarized
state at Hx = 2 for K = 0 and A = −0.1. The contour shows the
z component of the spin moment, and the arrows represent the xy
components.
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FIG. 25. Real-space spin configurations of (a)–(c) the triple-Q
coplanar bubble crystal at K = 0, A = −0.3, and Hx = 1 and (d)–(e)
the triple-Q coplanar fan state at K = 0.3, A = −0.1, and Hx = 1.8.
The contour shows the (a), (d) z, (b), (e) x, and (c), (f) y components
of the spin moment, and the arrows in panels (a) and (d) represent
the xy components.

1, whose region is larger compared to that at K = 0.1 in
Fig. 22(a). For 1.1 � Hx � 1.8, we find a triple-Q state with
similar spin and chirality structures to the state for Hx � 0.2.
In the higher field region for 1.8 � Hx � 2, a different type
of the triple-Q state appears, which is characterized by the
triple-Q fan structure by superposing (my

Qν
)2 for ν = 1–3 with

equal intensities, as shown in Fig. 23(a). Figures 25(d)–25(f)
show the real-space spin textures of the triple-Q fan state.
The result indicates that there are no modulations for x- and
z-spin components, while the y component forms a staggered
hexagonal lattice satisfying threefold rotational symmetry.

In the case of A = −0.3 in Fig. 23(b), the behavior of
the xy components is qualitatively similar to that for A =
−0.1 in Fig. 23(a), except for the anisotropic triple-Q state
at Hx � 0.2 and 0.3 � Hx � 1.1. For 0 < Hx � 0.2, the in-
plane anisotropic triple-Q state with nonzero (my

Q1
)2, (mx

Q2
)2,

and (my
Q3

)2 is stabilized. For 0.2 � Hx � 1.2, the xy-spin
components are similar to those in the state for 0.3 � Hx �
1.1 at A = −0.1 in Fig. 23(a); i.e., the xy-spin structures are
characterized by the dominant (my

Q1
)2 and the subdominant

(mx
Q1

)2, (mx
Q2

)2, (my
Q2

)2, (mx
Q3

)2, and (my
Q3

)2. We note that there
are two types of the triple-Q state for 0.2 � Hx � 1.2, which
are almost energetically degenerate: One has equal intensities
with (mx

Q2
)2 and (mx

Q3
)2 [and (my

Q2
)2 and (my

Q3
)2], and the

other does not. These two states are interchanged with each
other depending on the value of Hx. Meanwhile, the states
for 1.2 � Hx � 1.7 and 1.7 � Hx � 2 have similar spin struc-
tures to the triple-Q state for 1.1 � Hx � 1.8 and the triple-Q
fan state for 1.8 � Hx � 2 at A = −0.1, respectively.

3. Discussion

The results obtained in this section are summarized in
Fig. 1(b). Similar to the case with the magnetic field along
the z direction in Sec. IV B, we found a variety of multiple-Q
instabilities in the presence of the single-ion anisotropy A
by applying the magnetic field along the x direction. Among
them, we obtained both nsk = 2 and nsk = 1 skyrmion crys-
tals, although their spin and chirality textures are different
from those in Sec. IV B. In the following, we discuss the
characteristics of the skyrmion crystals comparing the effects
of easy-axis and easy-plane anisotropy.

The nsk = 2 skyrmion crystal is widely stabilized for large
K under easy-axis anisotropy A > 0, as shown in Fig. 18.
The in-plane magnetic field modulates its spin patterns from
the triple-Q sinusoidal waves to the single-Q sinusoidal and
double-Q checker-board-type waves, as shown in Fig. 19.
Meanwhile, for easy-plane anisotropy A < 0, the nsk = 2
skyrmion crystal is limited to large K and small |A|, as shown
in Fig. 23(a). The critical field to destabilize the nsk = 2
skyrmion crystal is larger for A > 0 [Fig. 18(a)] than A < 0
[Fig. 23(a)].

We also obtained the nsk = 2 skyrmion crystal in
the intermediate-field region for K = 0.3 and A = 0.4
[Fig. 18(b)], where the spin texture is characterized by
a superposition of the single-Q sinusoidal and double-Q
checker-board-type waves in Figs. 20(e)–20(h). This indicates
that the materials with easy-axis anisotropy may show the
nsk = 2 skyrmion crystal in the in-plane magnetic field.
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On the other hand, the nsk = 1 skyrmion crystal is found
only for K = 0.3 and A = 0.2 under easy-axis anisotropy, as
shown in Fig. 18(a). This suggests that large K and moderate A
are necessary to stabilize the nsk = 1 skyrmion crystal under
the in-plane field, which is in contrast to the case under the
out-of-plane field in Sec. IV B 2. On the other hand, the nsk =
1 skyrmion crystal appears for small |A| irrespective of K for
easy-plane anisotropy with A < 0, as shown in Figs. 21(a),
22(a), and 23(a). Furthermore, the nsk = 1 skyrmion crystal is
stabilized even without K for A < 0, similar to the situation
for A > 0 and Hz > 0 in Sec. IV B 2. These results indicate
that the materials showing a single-Q spiral state in the xy
plane at zero field under easy-axis anisotropy are potential
candidates for the field-induced nsk = 1 skyrmion crystal in
the in-plane magnetic field.

Besides the skyrmion crystals, we found several intriguing
multiple-Q spin textures under the in-plane magnetic field.
In particular, for A < 0, we found two types of interest-
ing magnetic structures without scalar chirality: The triple-Q
coplanar bubble crystal with additional in-plane modulations
for large |A| irrespective of K shown in Figs. 25(a)–25(c),
and the triple-Q coplanar fan state for large K shown in
Figs. 25(d)–25(f). While the former triple-Q coplanar bubble
crystal shows a similar magnetization curve to the nsk = 1
skyrmion crystal, it is useful to measure the topological Hall
effect to distinguish the triple-Q state with and without uni-
form scalar chirality. Meanwhile, the latter triple-Q coplanar
fan state appears only for large K , its observation provides an
evidence of the importance of the itinerant nature of electrons.

D. Field rotation in the xz plane

In this section, we examine the multiple-Q instability
by rotating the magnetic field in the xz plane as H =
H (sin θ, 0, cos θ ) for 0◦ � θ � 90◦. We fix the magnitude of
the field at H = 0.8 for which the skyrmion crystals are stabi-
lized at θ = 0◦, i.e., for the [001] field, and θ = 90◦, i.e., for
the [100] field. The results are the same for the magnetic field
rotated in the yz plane due to spin rotational symmetry in the
xy plane in the absence of the bond-dependent anisotropy, i.e.,
HBA = 0. We show the results under the easy-axis anisotropy
in Sec. IV D 1 and the easy-plane anisotropy in Sec. IV D 2.
We discuss the results in this section in Sec. IV D 3.

1. With easy-axis anisotropy

First, we discuss the results for easy-axis anisotropy with
A = 0.2 shown in Figs. 26(a), 27(a), and 28(a). Figure 26(a)
shows the result for K = 0. The nsk = 1 skyrmion crys-
tal with (mQ1

)2 = (mQ2
)2 = (mQ3

)2 is stabilized at θ = 0◦,
whose spin texture is presented in Fig. 7(a). With an increase
of θ , the intensities of the triple-Q peaks in the spin structure
factor become different and split into two and one; see the
dashed and solid lines in the second panel of Fig. 26(a).
This means that the threefold rotational symmetry is broken
by the in-plane component of the applied field. The symme-
try breaking can be clearly seen in the real-space spin and
chirality configurations, exemplified for θ = 5◦ and 45◦ in
Fig. 29. While increasing θ , the almost circular skyrmions in
Fig. 29(a) are slightly deformed in an elliptical form along
the Q1 direction, as shown in Fig. 29(e). At the same time,
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FIG. 26. θ dependence of (first row) mz
0, mx

0, and (χ0)2, (second
row) (mx

Qν
)2 and (my

Qν
)2, (third row) (mz

Qν
)2, and (fourth row) (χQν

)2

for K = 0 at (a) A = 0.2 and (b) A = 0.4. In the second row in panel
(a), the dashed line represents (mxy

Q1
)2, while the solid lines represent

(mxy
Q2

)2 and (mxy
Q3

)2. The magnitude of the magnetic field is fixed at
H = 0.8.

the x-spin component shows an elongated hexagonal crystal
of the bubbles as shown in Fig. 29(f), whose centers defined
by the minima of Sx are different from those of the skyrmions
with the minima of Sz, as indicated by the green squares and
circles in Figs. 29(e) and 29(f). The y-spin component shows
checker-board type modulation for both θ = 5◦ and θ = 45◦,
as shown in Figs. 29(c) and 29(g), respectively. These spin
configurations imply that the spin axis at the skyrmion cores
is tilted from the z to x direction by increasing θ . Accordingly,
the texture of the scalar chirality is modulated in an asym-
metric form in the x direction while increasing θ , as shown in
Figs. 29(d) and 29(h). This is due to the fact that the intensities
of (χQν

)2 are also split into two and one, as shown in the
lowest panel of Fig. 26(a).

The nsk = 1 skyrmion crystal remains stable against the
rotation of the magnetic field up to θ � 49◦ and then changes
into a different triple-Q state, as shown in Fig. 26(a). The
triple-Q state for 49◦ � θ � 63◦ is characterized by the dom-
inant peak at Q1 and two subdominant peaks at Q2 and Q3 in
the spin and by the two peaks at Q2 and Q3 in the chirality.
While further increasing θ , this state smoothly changes into
the single-Q helical state discussed in Sec. IV C 1. It should
be noted that a small (χ0)2 is induced for θ � 49◦ due to the
staggered arrangement of the scalar chirality.
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FIG. 27. The same plots as in Fig. 26 for K = 0.1.

0.0

0.2

0.4

(a) K = 0.3, A = 0.2

0.0

0.2

0.4

(b) K = 0.3, A = 0.4

0.00

0.04

0.08

0.12

0.00

0.04

0.08

0.00

0.04

0.08

0.12

0.0

0.1

0.2

0.00

0.04

0.08

0 30 60 90
θ

0.000

0.004

0.008

0 30 60 90
θ

FIG. 28. The same plots as in Fig. 26 for K = 0.3.
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FIG. 29. Real-space spin and chirality configurations of the
nsk = 1 skyrmion crystals at (a)–(d) θ = 5◦ and (e)–(h) θ = 45◦ for
K = 0 and A = 0.2. The contour shows the (a), (e) z, (b), (f) x,
and (c), (g) y components of the spin moment, and the arrows in
panels (a) and (e) represent the xy components. In panels (d) and (h),
the contour shows the scalar chirality. In panels (e)–(h), the green
squares and circles represent the positions of the minima of Sz and
Sx , respectively.

When we switch on K , the nsk = 1 skyrmion crystal be-
comes more robust against θ ; it extends up to θ � 63◦ for
K = 0.1 as shown in Fig. 27(a). Meanwhile, the single-Q
helical state for large θ is unstable and taken over by the triple-
Q state found in the region for 49◦ � θ � 63◦ in Fig. 26(a).
In the large-θ region, however, the triple-Q state changes its
symmetry for θ � 85◦ with the different intensities at Q2 and
Q3 in both spin and chirality. The tendency that K favors the
multiple-Q states is consistent with the results in Secs. IV B
and IV C.

For larger K , the region where the nsk = 1 skyrmion crystal
is stabilized is further extended to larger θ � 67◦ for K = 0.3,
as shown in Fig. 28(a). Within the region, however, mQν

and χQν
show discontinuity at θ � 45◦, while (χ0)2 appears

to be continuous. The discontinuity is ascribed to further
deformation of the skyrmions. We show the real-space spin
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FIG. 30. Real-space spin and chirality configurations of the
nsk = 1 skyrmion crystal at θ = 63◦ for K = 0.3 and A = 0.2. The
contour shows the (a) z, (b) x, and (c) y components of the spin
moment, and the arrows in panel (a) represent the xy components. In
panel (d), the contour shows the scalar chirality. The green squares
and circles represent the positions of the minima of Sz and Sx ,
respectively.

and chirality configurations at θ = 63◦ in Fig. 30. Due to
the anisotropic triple-Q structure for the y spin component in
Fig. 30(c), in contrast to the double-Q structure in Fig. 29(c),
the positions of the minima of Sx and Sz are different in not
only the x but also y direction, as shown by the green squares
and circles in Figs. 30(a) and 30(b). Accordingly, the scalar
chirality is distributed in an asymmetric form in both x and y
directions, as shown in Fig. 30(d). These spin configurations
imply that the spin axis at the skyrmion cores is tilted from
the z to both x and y directions. We thus deduce that the phase
transition at θ � 45◦ is caused by a phase shift among the
constituent waves, similar to that found in Sec. IV C 1 (see
Fig. 20). For larger θ , the nsk = 1 skyrmion crystal changes
into the anisotropic triple-Q state at θ � 67◦, which smoothly
turns into the state obtained at θ = 90◦ in Sec. IV C 1.

The results for larger single-ion anisotropy A = 0.4 are
shown in Figs. 26(b), 27(b), and 28(b). The critical angles
where the nsk = 1 skyrmion crystal is destabilized are almost
the same as those at A = 0.2 in the cases of K = 0 and
K = 0.1, although (χ0)2 is suppressed due to the reduction
of (mx

Qν
)2 and (my

Qν
)2, as shown in Figs. 26(b) and 27(b).

Meanwhile, the situation for K = 0.3 looks more compli-
cated than for K = 0 and 0.1, as shown in Fig. 28(b). In this
case, we find two skyrmion crystals: the nsk = 1 skyrmion
crystal for 0◦ � θ � 18◦ and the nsk = 2 skyrmion crystal for
81◦ � θ � 90◦. The former is similar to that found at K = 0.1
in Fig. 27(b). We also obtain the other chiral magnetic states
which are topologically trivial (the skyrmion number is zero)
next to the skyrmion crystal (18◦ � θ � 22◦) and in the in-
termediate field region (54◦ � θ � 67◦). The real-space spin
and chirality configurations of the intermediate-field state are
shown in Figs. 31(a) and 31(b), respectively. Although the
spin texture looks similar to the nsk = 1 skyrmion crystal in

(a) (b)

-1

 0

 1

FIG. 31. Real-space spin and chirality configurations of the
triple-Q state with nonzero (χ0)2 at θ = 58.5◦ for K = 0.3 and
A = 0.4. The contour shows panel (a) the z component of the spin
moment, and the arrows represent the xy components. In panel (b),
the contour shows the scalar chirality.

Fig. 30(a), this state has zero skyrmion number. The results
imply that the topological nature can be switched by keen
competition among the different spin textures in the rotated
magnetic field under the strong influence of itinerant nature of
electrons. Between these chiral states, we obtain two triple-Q
states with (χ0)2 = 0 for 22◦ � θ � 54◦ and 67◦ � θ � 81◦.
While the latter is similar to the one found in the case with A =
0.2 in Fig. 28(a), the former appears only for larger A and has
a bubble crystal-like structure. The spin and chirality config-
urations are shown in Figs. 32(a) and 32(b), respectively. The
xy spin components do not rotate around the cores denoted by
the blue regions in Fig. 32(a); they rotate in an opposite way
between the left and right sides of the cores. Thus, the local
scalar chirality with the opposite sign is induced around the
core, but they are canceled out with each other, as shown in
Fig. 32(b).

2. With easy-plane anisotropy

Figures 33–35 show the results in the presence of easy-
plane anisotropy when the field is rotated in the xz plane.
For A = −0.1, the nsk = 1 skyrmion crystal is stabilized at
θ = 90◦ irrespective of K , as shown in Figs. 33(a), 34(a), and
35(a). The critical angles where the nsk = 1 skyrmion crystal
is destabilized are θ � 65◦ for K = 0, θ � 42◦ for K = 0.1,
and θ � 42◦ for K = 0.3. This indicates that nonzero K en-
hances the stability of the nsk = 1 skyrmion crystal, while
the critical angle appears to saturate for large values of K .
By further tilting the magnetic field to the z direction, the

-1

 0

 1(a) (b)

-1

 0

 1

FIG. 32. Real-space spin and chirality configurations of the
triple-Q state with the bubble crystal like structure at θ = 31.5◦ for
K = 0.3 and A = 0.4. The contour shows (a) the z component of the
spin moment, and the arrows represent the xy components. In panel
(b), the contour shows the scalar chirality.
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FIG. 33. θ dependence of (first row) mz
0, mx

0, and (χ0)2, (second
row) (mx

Qν
)2 and (my

Qν
)2, (third row) (mz

Qν
)2, and (fourth row) (χQν

)2

for K = 0 at (a) A = −0.1 and (b) A = −0.3. The magnitude of the
magnetic field is fixed at H = 0.8.

nsk = 1 skyrmion crystal at K = 0 is replaced with the triple-
Q state accompanied with the double-Q chirality density wave
and the staggered component of (χ0)2 for θ � 65◦, as shown
in Fig. 33(a). While further decreasing θ , the intensities of
(mQ2

)2 and (mQ3
)2 are suppressed and become zero at θ �

33◦. In other words, the anisotropic triple-Q state changes
into the single-Q state, in which (mα

Q1
)2 change gradually so

that the spiral plane keeps being perpendicular to the field
direction. For K = 0.1, the behavior against θ is similar to
that for K = 0 except that another triple-Q state with dif-
ferent intensities at Q1, Q2, and Q3 appears for θ � 11◦,
which continuously turns into the state at θ = 0◦ obtained in
Sec. IV B 3, as shown in Fig. 34(a). In the case of K = 0.3,
as shown in Fig. 35(a), yet another triple-Q state with the
single-Q chirality density wave is realized for θ � 42◦, which
also continuously turns into the state at θ = 0◦ obtained in
Sec. IV B 3.

When the easy-plane anisotropy becomes stronger, the
nsk = 1 skyrmion crystal is destabilized for all K , as shown
in Figs. 33(b), 34(b), and 35(b) for A = −0.3. For K = 0 and
0.1, there remains a phase transition between the single-Q
conical state realized at θ = 0◦ and the anisotropic triple-
Q state realized at θ = 90◦, at θ � 47◦ for K = 0 and θ �
34◦ for K = 0.1, as shown in Figs. 33(b) and 34(b), re-
spectively. For K = 0.3, however, the single-Q conical state
disappears and there are multiple phase transitions between
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FIG. 34. The same plots as in Fig. 33 for K = 0.1.
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FIG. 35. The same plots as in Fig. 33 for K = 0.3.
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three different types of triple-Q states, as shown in Fig. 35(b).
The state for 0◦ < θ � 7◦ is continuously modulated from
the anisotropic double-Q state found for the θ = 0 case in
Fig. 13(b), by acquiring a small nonzero (my

Q3
)2 for nonzero

θ . On the other hand, the state for 47◦ � θ < 90◦ is also con-
tinuously modulated from the one for θ = 90◦ in Fig. 23(b).
For 7◦ � θ � 47◦, the state for 47◦ � θ < 90◦ is almost en-
ergetically degenerate with a different triple-Q state, and the
competition causes phase transitions at θ � 16◦ and 25◦, as
found in Fig. 23(b) while changing Hx.

3. Discussion

The results obtained in this section are summarized in
Fig. 1(c). We found a similar tendency with respect to the
stability of the nsk = 1 skyrmion crystal for both A > 0 and
A < 0; the range of the field angle θ for the nsk = 1 skyrmion
crystal becomes wider for larger K . We found, however, that
the spin axis at the skyrmion cores is tilted from the z direction
to the xy plane in the case of A > 0, as shown in Figs. 29(e),
29(f), 30(a), and 30(b). In the case of A < 0, a similar tilting
occurs from the x direction to the yz plane (not shown).

In addition to the skyrmion crystal, we found a triple-Q
state with nonzero (χ0)2 in the rotated field, as shown in
Fig. 31. We also found a bubble crystal with (χ0)2 = 0 be-
tween the topological states, where the opposite sign of the
scalar chirality is distributed around the single core, as shown
in Fig. 32. As these peculiar states are obtained only for
large K and A, it is desired to target the materials with large
spin-charge coupling and easy-axis anisotropy for exploring
them.

V. BOND-DEPENDENT ANISOTROPY

In this section, we examine the effect of the bond-
dependent exchange interaction IA by considering the
Hamiltonian H = HBBQ + HBA + HZ (i.e., HSIA = 0). The
magnetic phase diagram at zero magnetic field is shown in
Sec. V A. In Sec. V B, we present the results in the magnetic
field applied to the z direction. In contrast to the case with
single-ion anisotropy, we could not find any instability toward
the skyrmion crystals in the in-plane magnetic field, and hence
we do not show the results for the in-plane magnetic field as
well as the rotated field. We discuss the results in this section
in Sec. V C.

A. At zero field

First, we present the magnetic phase diagram for the model
in Eq. (1) with HSIA = HZ = 0 obtained by the simulated an-
nealing in Fig. 36. There are six phases including the single-Q
spiral state at K = 0 and IA = 0, whose spin and chirality con-
figurations are exemplified in Figs. 37 and 38. The spin- and
chirality-related quantities are plotted in Fig. 39 as functions
of IA for K = 0, 0.1, and 0.3.

At K = 0, the introduction of IA stabilizes a double-Q state
with different intensities at Q1 and Q2; the dominant com-
ponent is characterized by Q1 whose spiral plane lies on the
yz plane, i.e., (mQ⊥

Q1
)2 and (mz

Q1
)2, whereas the subdominant

component is induced along the direction perpendicular to Q2,

nsk=2 skyrmion

 0.0

 0.1

 0.2

 0.3

0.0 0.2 0.4  0.6  0.8  1.0

2Q helical

2Q coplanar

2Q 
chiral stripe 2Q’ coplanar

1Q 
spiral

FIG. 36. Magnetic phase diagram of the model in Eq. (1) with
HSIA = HZ = 0 obtained by the simulated annealing at T = 0.01.

i.e., (mQ⊥
Q2

)2, as shown in the middle two panels of Fig. 39(a).

The Q2 component is increased by IA. We note that (m
Q‖
Q1

)2 and

(m
Q‖
Q2

)2 are also induced by IA, as shown in the second panel of
Fig. 39(a). The real-space spin and chirality configurations in

(c) (d)

-1

 0

 1

-1

 0

 1

(e) (f)

-1

 0

 1

-1

 0

 1

(a) (b)

-1

 0

 1

-1

 0

 1

FIG. 37. Real-space spin configurations of (a) the double-Q (2Q)
chiral stripe state at K = 0.1 and IA = 0.1, (c) the 2Q helical state at
K = 0.1 and IA = 0.4, and (e) the nsk = 2 skyrmion crystal at K =
0.3 and IA = 0.5. The contour shows the z component of the spin
moment, and the arrows represent the xy components. Panels (b), (d),
and (f) display the real-space chirality configurations corresponding
to panels (a), (c), and (e), respectively.
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(a) (b)

-1

 0

 1

-1

 0

 1

FIG. 38. Real-space spin configurations of (a) the double-Q (2Q)
coplanar state at K = 0.1 and IA = 0.6 and (b) the anisotropic 2Q
(2Q′) coplanar state at K = 0.1 and IA = 1. The contour shows the
z component of the spin moment, and the arrows represent the xy
components.

this phase obtained by the simulated annealing are exemplified
in Figs. 37(a) and 37(b), respectively. The chirality has a
stripe pattern with the Q2 component, as indicated by nonzero
(χQ2

)2 in the lowest panel of Fig. 39(a). The result indicates
that the single-Q spiral state at IA = 0 turns into the double-Q
chiral stripe state even in the case of K = 0.

While increasing IA, the double-Q chiral stripe state
changes into the double-Q helical state for 0.37 � IA � 0.47.
In this state, the spin pattern is characterized by two domi-
nant contributions from (mQ⊥

Q1
)2 and (mQ⊥

Q2
)2 and subdominant

contributions from (mz
Q1

)2, (mz
Q2

)2, (m
Q‖
Q1

)2, and (m
Q‖
Q2

)2, as
shown in the middle two panels of Fig. 39(a). Due to the
small contributions from (mz

Q1
)2 and (mz

Q2
)2, this spin state is

noncoplanar, which is also indicated from nonzero (χQ1
)2 and

(χQ2
)2 shown in the lowest panel of Fig. 39(a). The real-space

spin and chirality configurations in this phase are shown in
Figs. 37(c) and 37(d), respectively.

While further increasing IA, (χQ1
)2 and (χQ2

)2 vanish con-
tinuously at IA � 0.47, whereas the xy components of (mQ1

)2

and (mQ2
)2 are almost unchanged. This means that a double-

Q coplanar state is realized for IA � 0.47. There are two
types of the double-Q coplanar states: the isotropic one with
(mQ1

)2 = (mQ2
)2 for 0.47 � IA � 0.58 (denoted as 2Q copla-

nar in Fig. 36) and the anisotropic one with (mQ1
)2 > (mQ2

)2

for IA � 0.58 (denoted as 2Q′ coplanar in Fig. 36). The spin
configurations of these two states are shown in Figs. 38(a) and
38(b).

Thus, the results indicate that the anisotropic bond-
dependent interaction IA induces various double-Q states even
for K = 0 and Hz = 0. This is in contrast to the result under
the single-ion anisotropy in Sec. IV A where no multiple-Q
states appear for K = 0 and Hz = 0.

These double-Q states remain robust against the intro-
duction of K , as shown in Fig. 36. At IA = 0, the system
undergoes the phase transitions from the single-Q spiral state
at K = 0, to the double-Q chiral stripe state for 0 < K � 0.19,
and to the nsk = 2 skyrmion crystal for K � 0.19. The result is
consistent with that obtained in Ref. [85]. The phase boundary
between the double-Q chiral stripe and the nsk = 2 skyrmion
crystal shifts downward while increasing IA, as shown in
Fig. 36; namely, IA stabilizes the nsk = 2 skyrmion crystal
against the double-Q chiral stripe state. This is qualitatively
understood from their spin configurations as follows. For

IA > 0, the spin pattern in the nsk = 2 skyrmion crystal is
modulated so that all the parallel components of the magnetic
moments with Qν , (m

Q‖
Qν

)2, become zero, as shown in the

second panel of Fig. 39(c); namely, the spin texture for IA > 0
is characterized by a superposition of three sinusoidal waves
perpendicular to Qν , as schematically shown in Fig. 40(a).
Each sinusoidal component is composed of a linear combi-
nation of mQ⊥

Qη
and m

Qz

Qη
. On the other hand, the spin pattern

in the double-Q chiral stripe state is given by a superposition
of the single-Q helical and single-Q sinusoidal waves. As the
sinusoidal direction is perpendicular to the helical plane in
spin space, the second-Q (Q2) component is represented by

a linear combination of (mQ⊥
Q2

)2 and (m
Q‖
Q2

)2, as schematically
shown in Fig. 40(b). Thus, the double-Q chiral stripe state
has both (mQ⊥

Qη
)2 and (m

Q‖
Qη

)2 components for η = 1 and 2,
as shown in the middle two panels of Fig. 39(b). Since the
bond-dependent interaction IA prefers a proper screw with the
spiral plane perpendicular to the helical direction, the above
argument suggests that the energy gain by the introduction of
IA becomes larger for the nsk = 2 skyrmion crystal than the
double-Q chiral stripe state. This is consistent with our result
in Fig. 36 where the phase boundary between the two states is
shifted to lower K while increasing IA in the small IA region.

In the nsk = 2 skyrmion crystal in the large K region, the
uniform ferromagnetic moment along the z direction, mz

0, is
induced by the introduction of IA, as shown in the top panel of
Fig. 39(c). The real-space spin and chirality configurations ob-
tained by the simulated annealing are shown in Figs. 37(e) and
37(f), respectively; they show a positive out-of-plane magne-
tization (mtotal = ∑

i Sz
i > 0) and a negative scalar chirality

(χ total = ∑
R χR < 0). We note that the state is energetically

degenerate with the one with mtotal < 0 and χ total > 0. This
is in contrast to the situation in the absence of IA where
mtotal = 0 and χ total takes either a positive or negative value.
The nonzero mtotal indicates that the remaining degeneracy for
IA > 0 can be lifted by a magnetic field, as indeed shown in
Sec. V B.

In the region for 0.37 � IA � 0.47, the double-Q helical
state changes into the nsk = 2 skyrmion crystal in the range
of 0.1 � K � 0.15, as shown in Fig. 36. The phase boundary
moves upward while increasing IA, which indicates that the
energy gain by IA is larger for the double-Q helical state than
the nsk = 2 skyrmion crystal, in contrast to the case for the
double-Q chiral stripe state discussed above. The isotropic
double-Q state for 0.47 � IA � 0.58 shows a similar behav-
ior; it changes into the nsk = 2 skyrmion crystal in the range
of 0.15 � K � 0.2, where the critical value of K increases
while increasing IA. For IA � 0.58, the anisotropic double-Q
state turns into the isotropic double-Q state and then into the
nsk = 2 skyrmion crystal while increasing K . In this region,
the critical value of K between the isotropic double-Q state
and the nsk = 2 skyrmion crystal is almost unchanged against
IA, indicating the energy gain from IA is almost the same for
these two states in the large IA region.

Meanwhile, the phase boundaries between the four dif-
ferent double-Q states show distinct behavior in the IA-K
plane, as shown in Fig. 36. This is qualitatively understood as
follows: In the double-Q chiral stripe state, the Q2 component
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FIG. 39. IA dependence of (first row) mz
0 and (χ0)2, (second row) (mQ⊥

Qν
)2 and (m

Q‖
Qν

)2, (third row) (mz
Qν

)2, and (fourth row) (χQν
)2 for

(a) K = 0, (b) K = 0.1, and (c) K = 0.3 in the absence of the magnetic field.

becomes more dominant and mz
Q1

becomes smaller for larger
K , namely, the state is gradually modulated to approach the
adjacent double-Q helical one. This suggests that the phase

)b()a(

FIG. 40. Schematic pictures of (a) three sinusoidal waves con-
sisting the nsk = 2 skyrmion crystal and (b) the single-Q helical and
single-Q sinusoidal waves consisting of the double-Q chiral stripe
state in Fig. 36 for IA > 0 at zero field. See also Figs. 37(a), 37(b),
37(e), and 37(f).

boundary between the two states shifts to a smaller IA region
while increasing K as shown in Fig. 36, although the boundary
looks almost independent of IA in the small-K region. With
regard to the boundary between the double-Q helical and
isotropic double-Q states, both states are isotropic with re-
spect to the two components, and hence the energy gain from
K is almost the same and the boundary is almost independent
of IA. On the other hand, the boundary between the isotropic
and anisotropic double-Q states shifts to a larger IA region
while increasing K , as K favors the isotropic multiple-Q state.

B. Field along the z direction

Next, we examine the effect of the magnetic field along the
z direction, Hz, on each magnetic phase obtained in Fig. 36. In
the following, we present the results for the 3 × 3 parameter
sets with K = (0, 0.1, 0.3) and IA = (0.2, 0.4, 0.6) to show
the systematic evolution with Hz of the five multiple-Q phases
in Fig. 36.

Figure 41 shows the result at IA = 0.2 for K = 0, 0.1, and
0.3. For K = 0 in Fig. 41(a), the introduction of Hz induces
small Q3 components, e.g., (m‖

Q3
)2 � 0.001 and (m⊥

Q3
)2 �

0.004 at Hz = 0.3. This means that nonzero Hz changes the
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FIG. 41. Hz dependence of (first row) mz
0 and (χ0)2, (second row) (mQ⊥

Qν
)2 and (m

Q‖
Qν

)2, (third row) (mz
Qν

)2, and (fourth row) (χQν
)2 for

K = 0 for (a) K = 0, (b) K = 0.1, and (c) K = 0.3 at IA = 0.2.

double-Q chiral stripe state into a triple-Q state. The triple-Q
state turns into the nsk = 1 skyrmion crystal at Hz � 0.4. It is
noteworthy that IA can result in the nsk = 1 skyrmion crystal
even without K . There are two types of the nsk = 1 skyrmion
crystals, which are separated at Hz � 0.65 where (χ0)2 ex-
hibits a clear jump, as shown in the top panel of Fig. 41(a).
The spin structure for 0.4 � Hz � 0.65 is characterized by the
dominant double-Q peak at Q1 and Q2 and the subdominant
single-Q peak at Q3, while that for 0.65 � Hz � 1.3 is by the
triple-Q peak with equal intensities, as shown in the middle
two panels of Fig. 41(a). Accordingly, the chirality structure is
characterized by (χQ1

)2 = (χQ2
)2 > (χQ3

)2 in the lower-field
state, whereas (χQ1

)2 = (χQ2
)2 = (χQ3

)2 in the higher field
state, as shown in the lowest panel of Fig. 41(a). Thus, the
threefold rotational symmetry is broken in the former, while it
is recovered in the latter. The symmetry difference is clearly
seen in the real-space spin and chirality configurations as
well, as shown in Fig. 42: The spin and chirality distributions
around the skyrmion cores are elongated along the Q3 direc-
tion in the lower-field state as shown in Figs. 42(a) and 42(b),
while they are isotropic with respect to Q1, Q2, and Q3, and
form a hexagonal lattice in the higher field one as shown in
Figs. 42(c) and 42(d).

For these nsk = 1 skyrmion crystals, the application of Hz

in the presence of IA chooses the state with fixed signs of
mtotal > 0 and χ total < 0, as deduced in the end of in Sec. V A.
In terms of the helicity and vorticity, the obtained skyrmion
crystals are categorized into the Bloch-type ones with the
helicity ±π/2 and the vorticity 1, where the states with the
helicity π/2 or −π/2 are energetically degenerate in con-
trast to the skyrmion crystals stabilized in the chiral lattice
structures by the DM interaction [19]. When the sign of IA

is reversed, the Néel-type skyrmions with the helicity 0 or π

and the vorticity 1 are realized. The antiskyrmions with the
vorticity −1, however, are not stabilized in the present system.

While increasing Hz, the z spin component at the skyrmion
core takes almost zero and the chirality reduces, as shown in
Figs. 43(a) and 43(b), while the skyrmion number remains
one. It turns into another triple-Q state at Hz � 1.4, as shown
in Fig. 41(a). This state is characterized by the dominant
double-Q structure with (mQ⊥

Q1
)2 and (mQ⊥

Q2
)2, accompanied by

a small (mz
Q3

)2, which results in the chirality density wave

with (χQ3
)2, as shown in the lowest panel of Fig. 41(a). The

uniform component (χ0)2 vanishes in this state, as shown in
the top panel of Fig. 41(a). The real-space spin and chirality
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FIG. 42. Real-space spin and chirality configurations of the
nsk = 1 skyrmion crystals at K = 0 and IA = 0.2. The magnetic field
is taken at Hz = 0.5 for panels (a) and (b) and at Hz = 1 for panels
(c) and (d). In panels (a) and (c), the contour shows the z component
of the spin moment, and the arrows represent the xy components. In
panels (b) and (d), the contour shows the scalar chirality.

configurations in this state are shown in Fig. 44. It is noted
that this state has an additional component at Q1 − Q2 in
the chirality in addition to that at Q3 (not shown), leading
to the checkerboard-like pattern shown in Fig. 44(b). While
further increase of Hz, the triple-Q state changes its spin and
chirality structures to have the same intensities at Q1, Q2, and
Q3 for 1.9 � Hz � 2.4, as shown in the middle two panels
of Fig. 41(a). The real-space spin structure changes into a
periodic array of two types of vortices with the vorticity 1 and
−2, as shown in Fig. 45(a). The opposite sign of the vorticity

(a) (b)

-1

 0

 1

-1

 0

 1

(c) (d)

-1
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 1

-1

 0

 1

FIG. 43. Real-space spin and chirality configurations of the (a),
(b) nsk = 1 skyrmion crystal at K = 0 and (c), (d) the triple-Q crystal
at K = 0.1 for IA = 0.2 and Hz = 1.3. In panels (a) and (c), the
contour shows the z component of the spin moment, and the arrows
represent the xy components. In panels (b) and (d), the contour shows
the scalar chirality.
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FIG. 44. Real-space spin and chirality configurations of the
anisotropic triple-Q state at K = 0, IA = 0.2, and Hz = 1.5. In panel
(a), the contour shows the z component of the spin moment, and the
arrows represent the xy components. In panel (b), the contour shows
the scalar chirality.

leads to the opposite sign of the scalar chirality, as shown in
Fig. 45(b). The number of vortices with the vorticity 1 is twice
as that of vortices with the vorticity −2, and (χ0)2 cancels out
between the two types of the vortices, as plotted in the top
panel of Fig. 41(a).

For K = 0.1 and 0.3, the results are qualitatively the same
as those for K = 0, except for the low-field region for 0 <

Hz � 0.4 and the intermediate-field region for 1.3 � Hz �
1.4, as shown in Figs. 41(b) and 41(c), respectively. For
both values of K , there are four phases in addition to the
fully polarized state for Hz � 2.4. The low-field phase for
0 < Hz � 0.4 corresponds to the nsk = 2 skyrmion crystal
with mtotal > 0 and χ total < 0 similar to the case with IA = 0.
Meanwhile, in the region for 0.4 � Hz � 1.2, we obtain only
one type of the nsk = 1 skyrmion crystal, which has threefold
rotational symmetry similar to the one found for 0.65 � Hz �
1.4 at K = 0. This is presumably owing to the tendency that
K favors isotropic multiple-Q states rather than anisotropic
ones. Such a tendency is also found in the case of IA = 0,
where the anisotropic double-Q chiral stripe is replaced by the
isotropic nsk = 2 skyrmion crystal, as discussed in Sec. V A.
In the higher field region, there are two states, the triple-Q
crystal with nonzero (χ0)2 for 1.3 � Hz � 1.4 and the other
triple-Q crystal for 1.4 � Hz � 2.4, both of which have the
same intensities at Q1, Q2, and Q3. The latter triple-Q crystal
corresponds to the state for 1.9 � Hz � 2.4 at K = 0. The
change of the skyrmion number at Hz � 1.3 is owing to the
positive z spin component at the vortex core in Fig. 43(c),
which is in contrast to the small negative z spin component

(a) (b)

-1

 0

 1

-1

 0

 1

FIG. 45. Real-space spin and chirality configurations of the
isotropic triple-Q state at K = 0, IA = 0.2, and Hz = 2. In panel
(a), the contour shows the z component of the spin moment, and the
arrows represent the xy components. In panel (b), the contour shows
the scalar chirality.
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FIG. 46. The same plots as in Fig. 41 for IA = 0.4.

at the vortex core in the nsk = 1 skyrmion crystal [for com-
parison, see Fig. 43(a) as an example]. Meanwhile, the scalar
chirality distributions for these states are similar to each other,
as shown in Figs. 43(d) and 43(b). Compared to the results
at K = 0, these isotropic states appear in wider field ranges,
overcoming the anisotropic triple-Q state for 1.4 � Hz � 1.9
at K = 0, from the same reason stated above.

Next, we discuss the results for IA = 0.4 shown in Fig. 46.
For K = 0, a small but nonzero (χ0)2 is induced by applying
the magnetic field to the double-Q helical state, as shown in
the top panel of Fig. 46(a). This is in contrast to the result
for IA = 0.2, where no (χ0)2 is induced from the double-Q
chiral stripe state by the magnetic field [see the top panel of
Fig. 41(a)]. The spin and chirality patterns at Hz = 0.1 are
shown in Figs. 47(a) and 47(b), respectively. The in-plane
magnetic moments form a vortex crystal and the out-of-plane
ones Sz

i show a checkerboard modulation, both of which
are represented by the dominant double-Q structure with Q1
and Q2 shown in the middle two panels of Fig. 46(a). The real-
space distribution of the chirality χR also has a checkerboard
modulation, which is described by the anisotropic triple-Q
structure in χQν

shown in the lowest panel of Fig. 46(a). In
Figs. 47(a) and 47(b), the magnitude of Sz

i (χR) in the red
(blue) regions is larger than that in the blue (red) regions,
resulting in nonzero mz

0 [(χ0)2] in the top panel of Fig. 46(a).
By calculating the skyrmion number, we find that this state for
0 < Hz � 0.1 has nsk = 1 consisting of three vortices with a

positive topological charge around 1/2 denoted as the green
triangle in Fig. 47(a) and one vortex with a negative topo-
logical charge around −1/2 denoted as the green square in
Fig. 47(a) in the magnetic unit cell. Since these vortices have
meron-like spin textures and the skyrmion number becomes
+1 by summing up the skyrmion number in the magnetic unit
cell, we call this state the nsk = 1 meron crystal.

While increasing Hz, another topological spin texture ap-
pears for 0.1 � Hz � 0.4. In this state, (mQ⊥

Qν
)2 and (m

Q‖
Qν

)2 are

similar to those in the lower field meron crystal, while (mz
Qν

)2

and (χQν
)2 show distinct features with a single-Q structure, as

shown in the lower three panels of Fig. 46(a). The real-space
spin and chirality configurations are shown in Figs. 47(c) and
47(d), respectively. Interestingly, we find that this state has
nsk = 2 in the magnetic unit cell, although the spin texture
looks very different from that in the nsk = 2 skyrmion crystal
exemplified in Fig. 37(e). In fact, the real-space spin texture
is characterized by the periodic array of the clockwise and
counterclockwise vortices, as shown in Fig. 47(c). In other
words, the spin structure includes four different vortices in
the magnetic unit cell, all of which have negative topological
charges. Since this is regarded as four meron-like structures in
each magnetic unit cell in the real-space picture, we call this
state the nsk = 2 meron crystal.

With a further increase of Hz, there is a topological phase
transition from the nsk = 2 meron crystal to another triple-Q
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FIG. 47. Real-space spin and chirality configurations at K = 0
and IA = 0.4. The magnetic field is taken at Hz = 0.1 for (a), (b)
the nsk = 1 meron crystal, Hz = 0.3 for (c), (d) the nsk = 2 meron
crystal, and Hz = 1.2 for (e), (f) the anisotropic triple-Q state. In
panels (a), (c), and (e), the contour shows the z component of the
spin moment, and the arrows represent the xy components. In panels
(b), (d), and (f), the contour shows the scalar chirality. The green tri-
angles and squares represent the cores with the positive and negative
skyrmion numbers, respectively.

state with nsk = 0 at Hz � 0.4. Despite the change in nsk, the
spin and chirality related quantities are continuous through
this transition, as shown in Fig. 46(a). The spin texture looks
similar to that in the lower field nsk = 2 meron crystal, as
shown in Fig. 47(e). By closely looking into the spin config-
urations in Figs. 47(c) and 47(e), however, we notice that two
of four vortices in the nsk = 2 meron crystal have a negative
z spin component at the cores, while all the vortices for the
higher field triple-Q state have a positive z spin component at
the cores. Thus, the skyrmion number is canceled out for the
higher field triple-Q state and becomes zero. The correspond-
ing chirality pattern is displayed in Fig. 47(f); the regions with
positive and negative chirality form a stripy pattern, but the
cancellation between them is not perfect and results in the
nonzero (χ0)2, as plotted in the top panel of Fig. 46(a). As
Hz increases, the cancellation approaches perfect, and (χ0)2

decreases with the suppression of (mz
Q3

)2 plotted in the third

panel of Fig. 46(a). (χ0)2 vanishes at Hz � 1.9, where the
system undergoes a transition to the triple-Q state whose spin
and chirality configurations are similar to those obtained at
IA = 0.2 in Figs. 45(a) and 45(b), respectively.

For K = 0.1 and 0.3, the Hz dependences of (mQν
)2 and

(χQν
)2 are similar to each other, except for the low-field

region for Hz � 0.2, as shown in Figs. 46(b) and 46(c). In
the case with K = 0.1, the nsk = 2 meron crystal is obtained
for 0 < Hz � 0.2, and the nsk = 2 skyrmion crystal is realized
for 0.2 � Hz � 0.6. The spin and chirality configurations are
similar to those in Figs. 47(c), 47(d), 37(e), and 37(f). Mean-
while, for K = 0.3, the nsk = 2 skyrmion crystal is stabilized
for 0 < Hz � 0.5, and the nsk = 2 meron crystal does not
appear. For both K = 0.1 and 0.3, there are three triple-Q
states in the larger Hz region, and all of them retain the
threefold rotational symmetry with equal intensities at the
three wave numbers, as shown in the lower three panels of
Figs. 46(b) and 46(c). In this field region, the uniform (χ0)2

decreases monotonically as increasing Hz as shown in the top
panels of Figs. 46(b) and 46(c). There are two topological
phase transitions with changes in nsk: One is from the nsk = 2
skyrmion crystal to the nsk = 1 skyrmion crystal at Hz � 0.6
for K = 0.1 and at Hz � 0.5 for K = 0.3 and the other is
from the nsk = 1 skyrmion crystal to another chiral magnetic
state with nsk = 0 at Hz � 1.1 for K = 0.1 and at Hz � 1
for K = 0.3. While further increasing Hz, (χ0)2 vanishes at
Hz � 1.8 for K = 0.1 and at Hz � 1.6 for K = 0.3, where
the system undergoes a phase transition to a nonchiral triple-Q
state. We note that similar changes with monotonous decrease
of (χ0)2 while keeping equal intensities (mQ1

)2 = (mQ2
)2 =

(mQ3
)2 against the magnetic field have also been found in

itinerant magnets with an anisotropic bond interaction on a
square lattice [108,147].

The spin and chirality configurations for the three triple-Q
states as well as the nsk = 2 skyrmion crystal are displayed
in Fig. 48 for K = 0.3. In the nsk = 2 skyrmion crystal for
0 < Hz � 0.5, the spin and chirality patterns in Figs. 48(a)
and 48(b), respectively, look similar to those obtained at zero
field in Figs. 37(e) and 37(f). By closely looking into the real-
space spin structure in Fig. 48(a), the spin texture consists of
two types of vortices: one with vorticity −2 around Sz � +1
(denoted as the green triangle) and the other with vorticity
+1 around Sz � −1 (denoted as the green square and circle).
The number of the former is half of the latter. It is noted that
the latter vortices are equivalent between the green square
and circle ones in this state, although they show different
behaviors in the states for larger Hz, as discussed below. In
the following, we call the green square ones type-I vortices,
while the green circle ones are type-II vortices. In this state,
all the vortices give a negative chirality as shown in Fig. 48(b).

When the system enters into the nsk = 1 skyrmion crystal
by increasing Hz, the type-I and type-II vortices with vortic-
ity +1 becomes inequivalent; the z spin component near the
type-I vortex core changes gradually from negative to positive,
while that near the type-II vortex remains Sz

i < 0, as shown in
Fig. 48(c). Accordingly, the scalar chirality around the type-I
vortex is reversed, as shown in Fig. 48(d). In spite of the
continuous changes of the spin and chirality configurations,
we find that the skyrmion number remains one in the entire
region of 0.5 � Hz � 1.

While further increasing Hz to the state for 1 � Hz � 1.6
appearing after the nsk = 1 skyrmion crystal, the z spin com-
ponents in the type-I and type-II vortices become equivalent,
as shown in Figs. 48(e) and 48(f), each of which retains
the same skyrmion number. Consequently, these contributions
cancel out that from the vortex with vorticity −2, resulting in
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FIG. 48. Real-space spin and chirality configurations at K = 0.3
and IA = 0.4. The magnetic field is taken at Hz = 0.1 for (a), (b) the
nsk = 2 skyrmion crystal, Hz = 0.6 for (c), (d) the nsk = 1 skyrmion
crystal, Hz = 1.3 for (e), (f) the triple-Q state with nonzero (χ0)2,
and Hz = 1.6 for (g), (h) the triple-Q state without (χ0)2. In panels
(a), (c), (e), and (g), the contour shows the z component of the spin
moment, and the arrows represent the xy components. In panels (b),
(d), (f), and (h), the contour shows the scalar chirality. In panels
(a)–(f), the green squares and circles represent the cores of the type
I and II vortices with vorticity +1, respectively, whereas the green
triangles represent the cores of the vortices with vorticity −2. See
the main text in the details.

the skyrmion number of zero, although (χ0)2 retains a nonzero
small value as shown in the top panel of Fig. 46(c). While fur-
ther increasing Hz, (χ0)2 vanishes continuously in the triple-Q
state for Hz � 1.8, whose spin and chirality configurations
remain similar, as shown in Figs. 48(g) and 48(h).

Figure 49 shows the results at IA = 0.6. For K = 0, the
anisotropic double-Q coplanar state stabilized at Hz = 0 is
deformed to show nonzero (mz

Q3
)2, as shown in the third panel

of Fig. 49(a). Accordingly, (χ0)2 is induced, as shown in
the top panel of Fig. 49(a). The spin and chirality structures
are similar to those in Figs. 47(e) and 47(f). While further
increasing Hz, this triple-Q state changes into an isotropic

one with (mQ1
)2 = (mQ2

)2 = (mQ3
)2 and (χQ1

)2 = (χQ2
)2 =

(χQ3
)2 for 2.1 � Hz � 2.5, whose spin and chirality textures

are similar to those shown in Figs. 48(e) and 48(f) for IA =
0.4. The skyrmion number is zero also in this state despite
nonzero (χ0)2. Finally, (χ0)2 vanishes at Hz � 2.5, and the
system turns into the nonchiral triple-Q state.

In the case of K = 0.1, where the double-Q coplanar state
with equal intensities at Q1 and Q2 is stabilized at zero field,
the nsk = 2 meron crystal with nonzero (χ0)2 appears for
0 < Hz � 0.3, as shown in Fig. 49(b). It turns into the other
triple-Q state at Hz � 0.3. This is a triple-Q state with a
small contribution from (mz

Q3
)2 as shown in the third panel of

Fig. 49(b), leading to the nonzero (χ0)2. While increasing Hz,
the system undergoes a phase transition at Hz � 0.5 by show-
ing a jump of (χ0)2 as shown in the top panel of Fig. 49(b); the
spin texture changes into the isotropic triple-Q structure and
the skyrmion number changes from 0 to 2. In other words, the
anisotropic triple-Q state changes into the nsk = 2 skyrmion
crystal at this transition. The spin and chirality structures in
this nsk = 2 state are shown in Figs. 50(a) and 50(b), which is
similar to those in Figs. 48(a) and 48(b). While increasing Hz,
the nsk = 2 skyrmion crystal changes into the triple-Q state
with nsk = 0 at Hz � 0.7. The spin and chirality configura-
tions in this state are shown in Figs. 50(c) and 50(d), which
is similar to the triple-Q state in Figs. 48(e) and 48(f). While
further increasing Hz, the system undergoes a phase transition
to the state with vanishing (χ0)2 at Hz � 2.1. The spin and
chirality textures are similar to those obtained at K = 0.1; see
Figs. 48(g) and 48(h).

The result at K = 0.3 and IA = 0.6 shown in Fig. 49(c) is
similar to that at K = 0.3 and IA = 0.4 shown in Fig. 46(c),
except for the nsk = 1 skyrmion crystal for IA = 0.4; in the
case with IA = 0.6, the nsk = 2 skyrmion crystal directly
turns into the chiral triple-Q state with nsk = 0 at Hz � 0.6.
While increasing Hz, the chiral triple-Q state turns into the
triple-Q state with vanishing (χ0)2 at Hz � 1.9.

C. Discussion

The results obtained in this section are summarized in
Fig. 1(d). While the bond-dependent anisotropy IA and the
single-ion anisotropy A are both rooted in the spin-orbit
coupling, we obtained a further variety of the multiple-Q
instabilities by IA, especially toward chiral magnetic spin
textures different from the nsk = 1 and nsk = 2 skyrmion crys-
tals. In the following, we discuss the main results obtained in
this section.

In the absence of the magnetic field, we obtained the nsk =
2 skyrmion crystal in the wide parameter range of IA and K .
We showed that IA induces nonzero out-of-plane magnetiza-
tion in the nsk = 2 skyrmion crystal. The sign of the scalar
chirality is set to be opposite to that of the magnetization. This
is in contrast to the situation in the absence of IA where the
magnetization is zero and the sign of the chirality is free due
to the in-plane spin rotational symmetry. We also showed that
IA brings about multiple-Q instabilities even without K and
Hz, which is also in contrast to the case with the single-ion
anisotropy A.

When the magnetic field is applied along the z direction, we
found further intriguing chiral phases including the skyrmion
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FIG. 49. The same plots as in Fig. 41 for IA = 0.6.
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FIG. 50. Real-space spin and chirality configurations of the
nsk = 1 skyrmion crystals at K = 0.1 and IA = 0.6. The magnetic
field is taken at Hz = 0.5 for panels (a) and (b) and Hz = 1 for panels
(c) and (d). In panels (a) and (c), the contour shows the z component
of the spin moment, and the arrows represent the xy components. In
panels (b) and (d), the contour shows the scalar chirality.

crystals. Similar to the cases with nonzero A, we obtained
the nsk = 1 skyrmion crystal for nonzero IA even without K ,
as shown in Fig. 41(a). The difference from the result for
nonzero A is found in the degeneracy lifting between the states
with different vorticity; the Bloch (Néel) type of skyrmion
is stabilized for IA > 0 (IA < 0), while in the absence of
IA, the energy for different types of the skyrmion crystals is
degenerate for A �= 0.

Besides the skyrmion crystals, we obtained a variety of chi-
ral magnetic states with nonzero scalar chirality, which have
not been obtained in the case with the single-ion anisotropy.
The double-Q helical state is modulated to exhibit nonzero
scalar chirality by applying the magnetic field, with the
nsk = 1 meron crystal composed of one meron-like and three
antimerion-like spin textures in the magnetic unit cell for
0 < Hz � 0.1 at K = 0 and IA = 0.4 [Fig. 46(a)]. We also ob-
tained the nsk = 2 meron crystal composed of four meron-like
spin textures in the magnetic unit cell [Figs. 46(a), 46(b), and
49(b)]. Moreover, we found multiple-Q states with nonzero
scalar chirality in the wide range of Hz (Figs. 41, 46, and
49). The competition between these multiple-Q states leads
to a plethora of topological phase transitions accompanied by
changes in the skyrmion number.
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The present results are useful to narrow down the origin of
the multiple-Q magnetic states found in experiments. The con-
ditions for the emergence of the nsk = 1 and nsk = 2 skyrmion
crystals are similar to those in the case of the single-ion
anisotropy. The nsk = 2 skyrmion crystal is realized only for
nonzero K , while the nsk = 1 one is stabilized even without
K . Meanwhile, the stability of the other multiple-Q states
except for the skyrmion crystals are strongly dependent on
the type of anisotropy and K , as shown in Fig. 1. Thus, the
systematic study of the phase diagram in the magnetic field
in experiments provides which interactions play an important
role in the target materials.

VI. CONCLUDING REMARKS

We have theoretically investigated the instabilities to-
ward multiple-Q states in centrosymmetric itinerant magnets,
focusing on the effects of single-ion anisotropy and bond-
dependent anisotropy. By performing the simulated annealing
for the effective spin model on a triangular lattice, we found
a plethora of multiple-Q states with and without the scalar
chirality in the wide range of the model parameters. As we
have already shown the brief summary of the results in Sec. II
and the discussions in Secs. IV B 4, IV C 3, IV D 3, and V C,
we here make some remarks on the relevant parameters to the
emergence of topological spin textures, which would be useful
for experimental identification of the microscopic mechanism.

On the whole, we obtained four types of topological
spin textures with nonzero skyrmion numbers: the nsk = 1
skyrmion crystal, the nsk = 2 skyrmion crystal, the nsk = 1
meron crystal, and the nsk = 2 meron crystal. Among them,
we showed that there are several mechanisms for stabilizing
the nsk = 1 skyrmion crystal in a magnetic field; either
the biquadratic interaction, single-ion anisotropy, or bond-
dependent anisotropy can stabilize it. Thus, one can expect
that the nsk = 1 skyrmion crystal prevails in a wider range
of materials compared to the other topological spin tex-
tures in centrosymmetric itinerant magnets. In fact, the nsk =
1 skyrmion crystal has been recently observed in several
centrosymmetric compounds, such as Gd2PdSi3 [121–125],
Gd3Ru4Al12 [126], and GdRu2Si2 [128,129].

Meanwhile, the various stabilization mechanisms for the
nsk = 1 skyrmion crystal make it difficult to identify its mi-
croscopic origin. To narrow down the origin of the nsk =
1 skyrmion crystal, it is useful to investigate the magnetic
phases around it, especially (i) in the lower and higher field
regions and (ii) in the different field directions. With respect
to (i), our results indicate that the lower field state becomes the
single-Q spiral state when the single-ion anisotropy is the key
parameter for the nsk = 1 skyrmion crystal. When the itinerant
nature of electrons becomes important (i.e., the biquadratic
interaction becomes large in our model), the lower field
state of the nsk = 1 skyrmion crystal becomes the anisotropic
triple-Q state or the nsk = 2 skyrmion crystal. Meanwhile, the
nsk = 1 and nsk = 2 meron crystals will be observed when
the bond-dependent interaction has a significant contribution.
On the other hand, in the higher field region, the anisotropic
triple-Q state appears under the biquadratic interaction and the
single-ion anisotropy, whereas the isotropic triple-Q state is
stabilized under the bond-dependent anisotropy. With respect
to (ii), the nsk = 1 skyrmion crystal remains stable against the
field rotation when the biquadratic interaction is predominant
owing to spin-rotational symmetry, while it is unstable when
the single-ion or bond-dependent anisotropy is relevant.

In this way, the systematic investigation of the phase dia-
gram by changing the magnitude and direction of the magnetic
field in experiments will provide which interaction plays an
important role in stabilizing the skyrmion crystals. Our study
gives a good starting reference to understand the origin of
topological magnetism and a guiding principle to explore
further exotic magnetic textures in centrosymmetric itinerant
electrons.
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