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Optical Hall response in spin-orbit coupled metals: Comparative study of
magnetic cluster monopole, quadrupole, and toroidal orders
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The optical Hall response is theoretically studied for spin-orbit coupled metals with ferroic orders of
cluster-type magnetic multipoles. We find that different magnetic multipoles give rise to distinct spectra in the
optical Hall conductivity. In the cases of monopole and quadrupole orders, the optical Hall response appears
predominantly in high- and low-energy regions, which correspond to the energy scales of electron correlation
and kinetic energy, respectively, while the response is dispersed and rather weak in the case of toroidal order.
By decomposing the spectra into different interband contributions, we reveal selection rules stemming from the
interplay between the antisymmetric spin-orbit coupling and the underlying multipoles. Our results suggest that
the optical Hall measurement is useful to detect and distinguish the cluster-type magnetic multipole orders.
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I. INTRODUCTION

In condensed matter physics, multipoles provide a key con-
cept to understand physical properties through classification
of spatial distributions of electrons with charge, spin, and
orbital degrees of freedom. Typical examples are the mul-
tipoles defined in the atomic scale, which have been used
to characterize electronic and magnetic phases in f -electron
systems [1,2]. Multipoles can also be defined in an extended
scale over several atomic sites and such cluster-type ex-
tensions have recently garnered great attention as a source
of intriguing phenomena [3–11]. For instance, a magnetic
toroidal dipole induces the second harmonic generation in
LiCoPO4 [12], and the magnetocurrent effect in UNi4B [6,13]
and Ce3TiBi5 [14], a magnetic octupole plays a crucial role in
the anomalous Hall effect [7,15], the anomalous Nernst effect
[16], and the magneto-optical Kerr effect [17] in Mn3Sn,
and a magnetic quadrupole causes the magnetoelectric effect
in A(TiO)Cu4(PO4)4 (A=Ba, Sr, and Pb) [18–21]. Thus it
is useful to identify relevant multipoles for predicting the
electronic, magnetic, transport, and optical properties. At the
same time, measurement of these properties enables us to
identify the relevant multipoles. For instance, in the linear re-
sponse, the diagonal, traceless symmetric, and antisymmetric
parts of the magnetoelectric effect have one-to-one correspon-
dence with the magnetic monopole, quadrupole, and toroidal
dipole, respectively [4]. Such studies have been extensively
performed in the DC limit. Although the AC responses would
also serve as useful tools as shown for the optical responses in
insulating materials, they have not been studied systematically
thus far.

In the present study, we theoretically study the optical Hall
response for different types of cluster-type magnetic multi-
poles. For a minimal model defined on a layered structure
where spatial inversion symmetry is broken at each lattice
site, we compute the electronic band structure and the op-
tical Hall conductivity in the presence of ferroic orders of

the cluster-type magnetic monopole, quadrupole, and toroidal
dipole (toroidal). We reveal that despite a similarity in the
band structure, the optical Hall responses exhibit distinct fre-
quency dependence for the three types of the multipoles. By
decomposing the responses into the interband contributions
and analyzing them with the atomic bases, we show that the
distinct behaviors can be understood from optical selection
rules arising from the interplay between the antisymmetric
spin-orbit coupling and the coupling of electrons to the un-
derlying multipole orders.

This paper is organized as follows. In Sec. II, we introduce
the model with the cluster-type magnetic multipole orders.
We present the results for the electronic band structure in
Sec. III A and the optical Hall conductivity in Sec. III B. From
the decomposition into the interband contributions, we find
optical selection rules in Sec. III C. In Sec. IV, we discuss the
origin of the optical selection rules by applying the perturba-
tion theory in the atomic limit. Section V is devoted to the
summary. We also study a variant of the model in Appendix
to confirm the generality of the optical selection rules.

II. MODEL

We consider a minimal model with ferroic orders of
cluster-type magnetic multipoles. We adopt a single-band
tight-binding model on a layered lattice structure, where each
layer consists of a periodic array of four-site square clusters,
as shown in Fig. 1(a). Each square cluster can accommodate
magnetic cluster multipoles composed of four spins, such as
monopole, quadrupole, and toroidal, as shown in Figs. 1(c),
1(d), and 1(e), respectively. Note that spatial inversion sym-
metry is broken at each lattice site, while it is retained at
the centers of square plaquettes in each layer and of cuboids
defined by two squares in adjacent layers. A similar model
with hexagonal clusters was discussed in the previous study
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FIG. 1. Schematics of (a) a perspective view and (b) a top view
of the layered square-cluster lattice. In (a), the transfer integrals t1,
t2, and tz are shown. a and c are the lattice constants in the xy
plane and in the z direction, respectively. In (b), ã represents the
size of the square cluster. The dotted square indicates a unit cell (a
square cluster) with four sublattices α, β, γ , and δ. The gray arrows
denote the directions of Dl at each site; see Eqs. (7) and (8). (c)–(e)
Schematics of cluster-type magnetic multipoles composed of four
magnetic dipoles (red arrows): (c) monopole (d) quadrupole, and (e)
toroidal.

[6] (see Appendix). The Hamiltonian of our model is given by

H = Ht + HASOC + HMF + HZeeman, (1)

where
Ht = −

∑
i, j

∑
σ

ti j (c
†
iσ c jσ + H.c.), (2)

HASOC = 2
∑
k,l

[skl × Dkl ]z, (3)

HMF = −
∑

i

Mi · si, (4)

HZeeman = −B ·
∑

i

si. (5)

Ht in Eq. (2) describes the hoppings of electrons. c†
iσ (ciσ )

is the creation (annihilation) operator for an electron at site
i with spin σ . We take into account three types of transfer
integrals between neighboring sites: the intralayer ones t1 and
t2 within and between the clusters, respectively, and the inter-
layer one tz [see Fig. 1(a)]. All of the other transfer integrals
between further-neighbor sites are assumed to be zero.

HASOC in Eq. (3) describes the antisymmetric spin-orbit
coupling. It originates from the interplay among the atomic
spin-orbit coupling, off-site orbital hybridization, and the
crystalline electric field [6]. skl is the Fourier transform of
the spin operator at site i, si = 1

2

∑
σ,σ ′ c†

iσ σσσ ′ciσ ′ , where σ

is the vector of the Pauli matrices; k and l denote momentum
and sublattice, respectively. Dkl represents a sublattice-
dependent vector antisymmetric with respect to kz, which is
given by

Dkl = Dl sin(kzc), (6)

with

Dl = D
(

cos θD
l , sin θD

l , 0
)
. (7)

Here, D is the coupling constant and

θD
l = π

2
nl − 3π

4
, (8)

where nl = 0, 1, 2, and 3 correspond to the sublattices l = α,
β, γ , and δ, respectively. The directions of Dl are shown by
the gray arrows in Fig. 1(b). The kz dependence in Eq. (6)
comes from the off-site orbital hybridization along the z axis,
where c is the lattice constant in the z direction [6].

HMF in Eq. (4) describes the exchange coupling be-
tween itinerant electron spins and magnetic multipoles at
the mean-field level. The multipoles are composed of mag-
netic moments M i, which can be regarded as localized
moments coupled to itinerant electrons or mean fields
decoupled from the Coulomb interaction between itiner-
ant electrons. We assume ferroic orders of three types
of cluster-type magnetic multipoles, monopole, quadrupole,
and toroidal as shown in Figs. 1(c), 1(d), and 1(e),
respectively. Then, Mi depends only on the sublattice
l as

Ml = M
(

cos θM
l , sin θM

l , 0
)
, (9)

where M denotes the magnitude of the magnetic moments and

θM
l = π

2
nl − 3π

4
for monopole, (10)

θM
l = −π

2
nl − π

4
for quadrupole, (11)

θM
l = π

2
nl − π

4
for toroidal. (12)

HZeeman in Eq. (5) represents the Zeeman coupling to an
external magnetic field B. We assume that the magnetic field
couples only to the electron spins and neglect a canting of the
magnetic moments Mi by B.

III. RESULT

In this section, we present the results of the electronic
and transport properties for the model in Eq. (1) in the pres-
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FIG. 2. Electronic band structures of the model in Eq. (1) in the
presence of the ferroic order of monopole (dashed blue), quadrupole
(dash-dotted red), and toroidal (black solid). The inset shows the first
Brillouin zone and the green lines indicate the symmetric lines on
which the electronic band structures are presented. The results are
obtained with a = c = 1, ã = 0.35, t1 = 1.25, t2 = 0.75, tz = 1, D =
0.5, M = 8, and B = (0.5, 0, 0).

ence of ferroic orders of the cluster-type magnetic multipoles.
In Sec. III A, we show that the electronic band structures
look similar to each other for the monopole, quadrupole, and
toroidal orders. Despite the similarity, however, we show that
the frequency dependences of the optical Hall conductivity are
substantially different in Sec. III B. In Sec. III C, to discuss the
origin of the differences, we analyze the contributions from
different interband processes. All the following calculations in
this section are obtained for the model parameters, a = c = 1,
ã = 0.35, t1 = 1.25, t2 = 0.75, tz = 1, D = 0.5, M = 8, and
B = (0.5, 0, 0), which correspond to the strongly correlated
metal under a small magnetic field.

A. Electronic band structure

Figure 2 shows the electronic band structures of the model
in Eq. (1) in the presence of ferroic orders of the cluster-type
magnetic multipoles: monopole, quadrupole, and toroidal. In
all cases, we obtain eight bands corresponding to the four
sublattices and spin degrees of freedom. The eight bands are
split into two groups by the exchange coupling to the magnetic
multipoles, HMF in Eq. (4): four lower(higher)-energy bands
correspond to the bands with spins si (anti)parallel to the
magnetic moments M i. Further splitting of each four into two
groups is brought by Ht in Eq. (2) and the smallest splitting is
caused by HZeeman in Eq. (5) (see the discussion in Sec. IV).
The overall band structures are similar to each other for the
three types of multipoles, but nevertheless they lead to distinct

optical Hall responses as shown in the next subsection. We
note that the band top and bottom are shifted along the kz

direction (	-Z) in the case of the toroidal order, which is
parallel to the toroidal moment [5,6], whereas no such a shift
is seen for the monopole and quadrupole orders, as shown in
Fig. 2.

B. Optical Hall conductivity

We calculate the optical Hall conductivity σμz(ω) for an
electric current in the μ direction induced by that in the z
direction. It is obtained by using the Kubo formula as

σμz(ω) =
∑
m,n

σμz
m,n(ω), (13)

where

σμz
m,n(ω) =

∑
k

e2

h̄

1

iV

f (εnk) − f (εmk)

εnk − εmk

〈nk| jμk |mk〉 〈mk| jz
k|nk〉

h̄ω + εnk − εmk + iδ
. (14)

Here, V is the system volume, f (ε) is the Fermi-Dirac
distribution function, εmk and |mk〉 are the eigenvalue and
eigenstate of H for band m with momentum k, respectively
(we label the bands m = 1, 2, . . . , 8 from the lowest energy to
the highest one), and jμk = −∂Hk/∂kμ is the current operator
in the μ direction with momentum k, where Hk is the Fourier
component of H defined as H = ∑

k Hk. In the following, we
take the elementary charge e = 1, the Dirac constant h̄ = 1,
the temperature kBT = 0.1 (kB is the Boltzmann constant),
and the broadening factor δ = 0.02.

In our model, the optical Hall conductivity becomes
nonzero only for σ yz(ω) in B ‖ [100] or σ xz(ω) in B ‖ [010]
and has the antisymmetric relation σ yz(ω) = −σ xz(ω) from
the fourfold rotational symmetry in the xy plane. σ yz(ω) van-
ishes in either case when B = 0 or D = 0. We therefore focus
on the results of σ yz(ω) in the following. Figure 3 shows
σ yz(ω) as a function of the energy ω for the (a) monopole,
(b) quadrupole, and (c) toroidal orders. The electron filling
ne = 1

2N

∑
i,σ 〈c†

iσ ciσ 〉 is set to 0.1 so that the chemical po-
tential lies in the lowest two bands with the energies ε1k

and ε2k (N is the total number of lattice sites). We find that
the optical Hall conductivity exhibits distinct ω dependence
for different types of the multipole orders. For the monopole
and quadrupole orders, σ yz(ω) shows its primary responses
in rather high-energy (ω � 6) and low-energy (0 � ω � 6)
regions, as shown in Figs. 3(a) and 3(b), respectively. On
the other hand, in the toroidal ordered state, the optical Hall
responses in the low- and high-energy regions are comparable
to each other, and the overall amplitude is strongly suppressed,
as shown in Fig. 3(c).

In order to demonstrate that the distinct responses are
generic for any electron filling ne, we compute the integrated
intensities I low and Ihigh of the absolute values of the real part
of σ yz(ω) in the low- and high-energy ranges,

I low =
∫ ω1

0
dω |Re σ yz(ω)| (15)
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FIG. 3. Optical Hall conductivity σ yz(ω) as a function of the
energy ω in the presence of the multipole orders of (a) monopole,
(b) quadrupole, and (c) toroidal. The green solid (black dashed) line
indicates the real (imaginary) part of σ yz(ω). The results are com-
puted at the electron filling of ne = 0.1 with kBT = 0.1 and δ = 0.02
in Eqs. (13) and (14). The other model parameters are common to
those in Fig. 2.

and

Ihigh =
∫ ω2

ω1

dω |Re σ yz(ω)|, (16)

respectively, where we take ω1 = 6 and ω2 = 20. Figure 4
shows the results as functions of ne. They are symmet-
ric with respect to the half filling ne = 1/2 because of the
particle-hole symmetry between the states of (kx, ky, kz, σ )
and (−kx,−ky,−kz + π,−σ ). The optical Hall response van-
ishes at the half filling as well as empty and full fillings, where
the system becomes insulating. For generic filling, however,
σ yz(ω) becomes nonzero. Ihigh and I low are predominant for
the monopole and quadrupole orders as shown in Figs. 4(a)
and 4(b), respectively, while both responses are comparable to
each other and relatively weak for the toroidal order as shown
in Fig. 4(c).

FIG. 4. Integrated intensities of |Re σ yz(ω)| as functions of the
electron filling ne in the presence of (a) monopole, (b) quadrupole,
and (c) toroidal orders [see Eqs. (15) and (16)]. The parameters
except for ne are common to those in Fig. 3.

C. Decomposition into interband contributions

In order to clarify which electronic bands play an impor-
tant role in the optical Hall responses, we decompose the
integrated intensities into the interband contributions as

I low
m,n =

∫ ω1

0
dω

∣∣Re σ yz
m,n(ω)

∣∣ (17)

and

Ihigh
m,n =

∫ ω2

ω1

dω
∣∣Re σ yz

m,n(ω)
∣∣. (18)

We focus on the cases with n = 1, 2 (partially occupied bands)
and m = 3, 4, . . . , 8 (unoccupied bands) at ne = 0.1. The
results are plotted in Fig. 5. For the monopole order, the large
values of Ihigh

m,n are found for (m, n) = (6, 1) and (5, 2), as
shown in Figs. 5(a) and 5(b), respectively. Meanwhile, for the
quadrupole order, the dominant contributions in I low

m,n appear
for (m, n) = (3, 1) and (4, 2), as shown in Figs. 5(c) and 5(d),
respectively. For the toroidal case shown in Figs. 5(e) and 5(f),
I low
m,n is distributed for (m, n) = (4, 1), (5, 1), (3, 2), and (6, 2),

while Ihigh
m,n is concentrated on (5, 1) and (6, 2).
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FIG. 5. Histogram of the integrated intensities of the interband
contributions. The blue and red bars represent the low- and high-
energy intensities, I low

m,n in Eq. (17) and Ihigh
m,n in Eq. (18), respectively,

in the presence of (a) and (b) monopole, (c) and (d) quadrupole, and
(e) and (f) toroidal orders. The results are shown for n = 1 in (a), (c),
and (e), while n = 2 in (b), (d), and (f). The parameters are common
to those in Fig. 3.

We confirm that the distinct ω dependences shown in Fig. 3
are qualitatively explained by these dominant interband con-
tributions. For the monopole order, as shown in Fig. 6(a), the
large response in the high-energy region is well accounted for
by the dominant contributions from (m, n) = (6, 1) and (5, 2).
Similarly, for the quadrupole case, as shown in Fig. 6(b),
the large low-energy response is explained by the dominant
contributions from (m, n) = (3, 1) and (4, 2), in spite of large
cancellation between them. Also in the toroidal ordered state,
as shown in Fig. 6(c), the broad and weak response is well
reproduced by the dominant interband contributions found in
Figs. 5(e) and 5(f). Thus the optical Hall responses under
different multipole orders originate predominantly from these
different interband contributions.

IV. DISCUSSION

In this section, we discuss the origin of the optical selection
rules for the optical Hall conductivity found in the previous
section for the different multipole orders. For this purpose, we
approximately estimate σμz

m,n(k, ω) in Eq. (14) by examining
the matrix elements of the current operators, 〈mk| jz

k|nk〉 and
〈nk| jy

k|mk〉.
Let us begin with the case of the quadrupole order. First,

we consider only the exchange coupling term HMF, which
has the largest energy scale in our calculations. We denote
the eigenstates of HMF by using the Bloch state with spin
s and momentum k at sublattice l as |s〉kl . To describe the
multipole ordered states with the magnetic moments lying on
the xy plane as shown in Figs. 1(c)–1(e), we use an arrow for
representing the spin direction s in the xy plane, e.g., |↘〉kα for
the state at sublattice α (lower left) in Fig. 1(d). HMF splits the

FIG. 6. Dominant interband contributions σ yz
m,n(ω) in the pres-

ence of (a) monopole, (b) quadrupole, and (c) toroidal orders. The
parameters are common to those in Fig. 3.

energy levels of the eight Bloch states in a four-site cluster into
the fourfold low-energy ones with the eigenenergy of −M/2
and the other fourfold high-energy ones with the eigenenergy
of +M/2. The eigenstates are given by (|↘〉kα , |↙〉kβ , |↖〉kγ ,
|↗〉kδ) and (|↖〉kα , |↗〉kβ , |↘〉kγ , |↙〉kδ), respectively [see
Fig. 1(d)].

Next, we discuss the effect of electron hoppings Ht on the
four low-energy states. In the following treatment of Ht and
HZeeman, we neglect the hybridization between the low-energy
and high-energy states. By using the basis set of (|↘〉kα ,
|↙〉kβ , |↖〉kγ , |↗〉kδ), Htk, which is defined by the Fourier
decomposition as Ht = ∑

k Htk, is expressed in the matrix
form of

1√
2

⎛
⎜⎜⎝

0 τ ∗
x 0 τ ∗

y
τx 0 −τ ∗

y 0
0 −τy 0 τx

τy 0 τ ∗
x 0

⎞
⎟⎟⎠ + τzI, (19)

where

τx = −t1eikx ã − t2e−ikx (a−ã), (20)

τy = −t1eikyã − t2e−iky (a−ã), (21)

τz = −2tz cos (kzc), (22)
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and I is the 4 × 4 identity matrix. The four eigenstates of
Eq. (19) are split into two manifolds, each of which is doubly
degenerate. One has the eigenvalue of −Cxy/

√
2 + τz and the

eigenstates of

1√
2

⎛
⎜⎜⎝

cos ρ e−iη

0
sin ρ eiφ

−1

⎞
⎟⎟⎠,

1√
2

⎛
⎜⎜⎝

sin ρ e−iφ

−1
− cos ρ eiη

0

⎞
⎟⎟⎠, (23)

while the other has the eigenvalue of Cxy/
√

2 + τz and the
eigenstates of

1√
2

⎛
⎜⎜⎝

cos ρ e−iη

0
sin ρ eiφ

1

⎞
⎟⎟⎠,

1√
2

⎛
⎜⎜⎝

sin ρ e−iφ

1
− cos ρ eiη

0

⎞
⎟⎟⎠. (24)

Here, Cxy = √|τx|2 + |τy|2 > 0, τx = Cxy sin ρ eiφ , and τy =
Cxy cos ρ eiη with ρ ∈ [0, π

2 ], (φ, η) ∈ [0, 2π ). Note that PT
symmetry of Ht + HASOC + HMF results in the twofold de-
generacy in Eqs. (23) and (24).

The remaining degeneracy is lifted by the Zeeman coupling
HZeeman. In the first-order perturbation, HZeeman is given by a
2 × 2 matrix for each Kramers doublet as

−B cos ρ

2
√

2

(
cos ρ sin ρ ei(−φ+η)

sin ρ e−i(−φ+η) − cos ρ

)
. (25)

By diagonalizing Eq. (25), we obtain the eigenstates:

|1k〉 = 1√
2

⎛
⎜⎝

c̃θ∗
+

−s̃θ−
s̃θ+

−c̃θ∗
−

⎞
⎟⎠, |2k〉 = 1√

2

⎛
⎜⎝

−s̃θ∗
+

c̃θ−
c̃θ+

−s̃θ∗
−

⎞
⎟⎠, (26)

for Eq. (23) and

|3k〉 = 1√
2

⎛
⎜⎝

c̃θ∗
+

s̃θ−
s̃θ+
c̃θ∗

−

⎞
⎟⎠, |4k〉 = 1√

2

⎛
⎜⎝

−s̃θ∗
+

−c̃θ−
c̃θ+
s̃θ∗

−

⎞
⎟⎠, (27)

for Eq. (24), where c̃ = cos(ρ/2), s̃ = sin(ρ/2), and θ± =
exp[i(φ ± η)/2].

Similar procedures of the degeneracy lifting by HMF, Ht ,
and HZeeman hold for the high-energy four states. Conse-
quently, the eightfold degenerate states in the four-site cluster
are split into |1k〉 , |2k〉 , · · · , |8k〉, as schematically shown
in Fig. 7. The eight states yield the band structure shown in
Fig. 2.

Since the chemical potential is set in the lowest two bands
(n = 1, 2) in the present calculations, dominant contributions
to σ

yz
m,n(k, ω) come from the matrix elements of 〈mk| jz

k|nk〉 in
Eq. (14) for n = 1 or 2, and m = n. Among the four terms in
Eq. (1), only Ht and HASOC contribute to jz

k = −∂Hk/∂k as

jz
tk = − ∂Htk

∂kz
= −2tz sin (kzc)

∑
n

c†
nkcnk (28)

and

jz
ASOCk = − ∂HASOCk

∂kz
= 2c cos(kzc)

∑
l

�l · skl , (29)

FIG. 7. Schematic picture of the energy levels. The eightfold
degeneracy in a four-site cluster is lifted successively by HMF, Ht ,
and HZeeman.

respectively, where HASOC = ∑
k HASOCk and �l is given by

(Dy
l ,−Dx

l , 0) within the unit cell [Dμ

l is the μ component
of Dl ; see Eq. (7)]. Note that �l is regarded as an effective
magnetic field which has a toroidal-like configuration at the
four sublattices. Since jz

tk in Eq. (28) is diagonal in momentum
space, it has only nonzero values for the intraband contribu-
tions 〈1k| jz

tk|1k〉 and 〈2k| jz
tk|2k〉. On the other hand, jz

ASOCk in
Eq. (29) gives interband contributions, which is essential for
nonzero σ yz(ω). The nonzero values of 〈mk| jz

ASOCk|nk〉 are
found only for n = 1 or 2 and 1 � m � 4 within the present
approximation because all of the bases |↘〉kα , |↙〉kβ , |↖〉kγ ,
and |↗〉kδ (the low-energy eigenstates of HMF) are the eigen-
states of jz

ASOCk with the toroidal-like �l which is parallel or
antiparallel to the quadrupole order Ml at each sublattice. For
the basis set of the four low-energy states, jz

ASOCk is written in
the matrix form of

−2c cos(kzc)

⎛
⎜⎝

D 0 0 0
0 −D 0 0
0 0 D 0
0 0 0 −D

⎞
⎟⎠. (30)

Consequently, in the quadrupole ordered state, we obtain the
selection rule for the interband contributions:

〈mk| jz
k|nk〉

=
{−2Dc cos (kzc) for (m, n) = (3, 1), (4, 2)

0 otherwise. (31)

The other matrix element 〈nk| jy
k|mk〉 in σ

yz
m,n(k, ω) is also

estimated by the same basis set. Considering Eq. (31), the
important contributions are calculated as

〈1k| jy
k|3k〉 = − 〈2k| jy

k|4k〉 = i

2
√

2
Im

[(
∂τy

∂ky

)∗
eiη

]
. (32)

Combining Eqs. (31) and (32), σ
yz
m,n(k, ω) for the quadrupole

ordered state is approximately given as

σ yz
m,n(k, ω)

=
⎧⎨
⎩

{ f (ε1k) − f (ε3k)}�(k, ω) for (m, n) = (3, 1)
−{ f (ε2k) − f (ε4k)}�(k, ω) for (m, n) = (4, 2)
0 otherwise

,

(33)
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where

�(k, ω) = 1

V

Dc cos (kzc) Im[(∂τy/∂ky)∗eiη]√
2Cxy(h̄ω − √

2Cxy + iδ)
. (34)

The results explain well the dominant interband contributions
found in Sec. III C: the dominant contributions appear only
for (m, n) = (3, 1) and (4,2) with opposite sign in rather
low-energy regions where h̄ω ∼ √

2Cxy in the denominator
in Eq. (34) [see Figs. 5(c), 5(d), and 6(b)]. Thus the optical
selection rule for the quadrupole ordered state is rooted in the
selection rule of 〈mk| jz

k |nk〉 in Eq. (31).
Next, we discuss the monopole case. A difference between

the quadrupole and monopole orders lies in the relative angles
between the magnetic moments Ml and the effective magnetic
field �l in Eq. (29): while Ml is parallel or antiparallel to
�l for the quadrupole order, it is perpendicular to �l for
the monopole order. Thus the eigenstates of HMF for the
monopole order, |↙〉kα , |↘〉kβ , |↗〉kγ , and |↖〉kδ are spin
flipped by jz

ASOCk. This means that the matrix elements be-
come nonzero for the interband processes with m belonging
to the four high-energy levels split by HMF. Consequently, the
selection rule for this case is given by

〈mk| jz
k|nk〉

=
{−2Dc cos (kzc) for (m, n) = (6, 1), (5, 2)

0 otherwise . (35)

Following a similar procedure to the quadrupole case above,
we end up with

σ yz
m,n(k, ω)

=
⎧⎨
⎩

f (ε1k)�+(k, ω) for (m, n) = (6, 1)
− f (ε2k)�−(k, ω) for (m, n) = (5, 2)
0 otherwise

, (36)

where

�±(k, ω) = 1

V

Dc cos (kzc) Im[(∂τy/∂ky)∗eiη]√
2M±(h̄ω − M± + iδ)

, (37)

M± = M ± 1√
2

B cos ρ. (38)

Thus the optical Hall responses in the monopole ordered state
appear dominantly in rather high-energy regions correspond-
ing the energy scale of HMF, namely, h̄ω ∼ M±. The result
explains well again the findings in Figs. 5(a), 5(b), and 6(a),
as in the case of the quadrupole order.

Finally, in the case of the toroidal order, M l is in the same
direction to �l . This means that jz

ASOCk is proportional to
an identity matrix in the four low-energy eigenstates. Hence,
jz
ASOCk as well as jz

tk does not lead to any interband exci-
tations, resulting in σ

yz
m,n(k, ω > 0) = 0 for all (m, n) within

the present approximation. This explains the small responses
found in Figs. 5(e), 5(f), and 6(c); they originate in the contri-
butions beyond the present approximation.

Since the optical selection rules discussed here are based
on the atomic bases under strong correlation, they are generic
to spin-orbit coupled metals under strong influence of the
cluster multipole orders, irrespective of the lattice structures
and detailed electronic band structures. To confirm this, we

study a honeycomb-lattice variant in Appendix, and obtain
optical Hall spectra obeying similar optical selection rules.

V. SUMMARY

In summary, we have theoretically investigated the optical
Hall responses in spin-orbit coupled metals with ferroic orders
of cluster-type magnetic multipoles. Taking a minimal model
with monopole, quadrupole, and toroidal orders, we unveiled
that the optical Hall conductivity shows distinct frequency de-
pendence for the three types of multipoles. In the cases of the
monopole and quadrupole orders, the predominant response
appears in high- and low-energy regions, which correspond to
characteristic energy scales of electron correlation and kinetic
energy, respectively. Meanwhile, in the case of the toroidal
order, the response is spread over both energy regions with
relatively suppressed intensity. Careful analysis on the in-
terband contributions showed that these distinct optical Hall
responses are rooted in the optical selection rules coming from
the interplay between the antisymmetric spin-orbit coupling
and the underlying cluster multipole ordering.

Our results indicate that the careful investigation of the
optical Hall conductivity would be helpful to probe and distin-
guish the magnetic multipole orders in experiments. It would
also be interesting to extend our study to electric multipoles,
which are often more difficult to detect compared to the mag-
netic ones. While our model includes the essential ingredients
for the spin-orbit coupled metals and the optical selection rule
is expected to be universal, distinctive electronic parameters
should be taken into account for obtaining the spectra quan-
titatively for candidate materials, such as UNi4B [6,13,22],
Cd2Re2O7 [23–26], and PbRe2O6 [27]. Our work would serve
as a starting point for such future studies.
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APPENDIX: LAYERED HONEYCOMB LATTICE

In order to show the generality of the optical selection
rules, we calculate the optical Hall conductivity σμz(ω) in
Eq. (13) for the layered honeycomb lattice schematically
shown in Fig. 8(a). We adopt a similar Hamiltonian to Eq. (1).
In Eq. (2), we consider two types of transfer integrals: the
intralayer one t and the interlayer one tz [see Fig. 8(a)]. All
of the other transfer integrals between further-neighbor sites
are assumed to be zero. Note that despite an uniform bond
length a and the uniform transfer integral t within each layer,
spatial inversion symmetry is broken at each lattice site in the
honeycomb case, in contrast to the square case in Fig. 1. We
choose θD

l in Eq. (7) as

θD
l = π

3
nl , (A1)
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FIG. 8. Schematics of (a) a perspective view and (b) a top view
of the layered honeycomb lattice. In (a), the transfer integrals t and
tz are shown. a and c are the lattice constants in and out of the plane,
respectively. In (b), the dotted hexagon indicates the six-sublattice
magnetic unit cell. The gray arrows denote the directions of Dl at
each sublattice; see Eqs. (7) and (A1). (c)–(e) Schematics of cluster-
type magnetic multipoles composed of six magnetic dipoles (red
arrows): (c) monopole (d) quadrupole-type, and (e) toroidal.

and θM
l in Eq. (9) as

θM
l = π

3
nl for monopole, (A2)

θM
l = −π

3
nl for quadrupole-type, (A3)

θM
l = π

3
nl + π

2
for toroidal, (A4)

where nl = 0, 1, 2, 3, 4, and 5 identify the six sublattices
in the magnetic unit cell surrounded by the dashed hexagon
in Fig. 8(b). The directions of Dl specified by Eq. (A1) are
shown by the gray arrows in Fig. 8(b), and those of Ml

specified by Eqs. (A2)–(A4) are displayed by the red arrows
in Figs. 8(c)–8(e), respectively. The model is an extension of
that considered in Ref. [6].

Figure 9 shows the optical Hall conductivities σ yz(ω) and
σ xz(ω) in a magnetic field applied along the x and y axes,
respectively, as functions of the energy ω for the (a) and (b)
monopole, (c) and (d) quadrupole-type, and (e) and (f) toroidal
orders. The electron filling ne is set to 0.04 so that the chemical

FIG. 9. Optical Hall conductivities (a), (c), and (e) σ yz(ω) and
(b), (d), and (f) σ xz(ω) as functions of the energy ω in the presence of
the multipole orders of (a) and (b) monopole, (c) and (d) quadrupole-
type, and (e) and (f) toroidal. The green solid (black dashed) line
indicates the real (imaginary) part of the optical Hall conductivities.
The results are obtained at a = c = 1, t = tz = 1, D = 0.5, M = 8,
kBT = 0.1, and δ = 0.02. The electron filling is set at ne = 0.04. The
magnetic field is applied along the x and y directions for σ yz(ω) and
σ xz(ω) as B = (0.5, 0, 0) and B = (0, 0.5, 0), respectively.

FIG. 10. Histogram of the integrated intensities of the interband
contributions σ yz

m,n(ω). The blue and red bars represent the low-
and high-energy intensities, I low

m,n in Eq. (17) and Ihigh
m,n in Eq. (18),

respectively, in the presence of (a) and (b) monopole, (c) and (d)
quadrupole-type, and (e) and (f) toroidal orders. The results are
shown for n = 1 in (a), (c), and (e), while n = 2 in (b), (d), and (f).
The parameters are common to those in Fig. 9.
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potential lies in the lowest two bands. We find that σ yz(ω) and
σ xz(ω) show distinct ω dependence for different types of the
multipole orders in a similar manner to the square lattice case
in Sec. III B: dominant intensities in rather high-energy (ω �
6) and low-energy (0 � ω � 6) regions for the monopole and
quadrupole orders, respectively, while suppressed responses
in both energy regions for the toroidal order.

We also confirm similar optical selection rules by de-
composing the integrated intensities into the interband con-
tributions I low

m,n and Ihigh
m,n with n = 1, 2 (partially occupied

bands) and m = 3, 4, . . . , 12 (unoccupied bands). As shown
in Fig. 10, the trend is common to those in Fig. 5, which
supports that similar optical selection rules to those discussed
in Sec. IV are applicable to this honeycomb case.
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