
PHYSICAL REVIEW B 103, 054415 (2021)

Nonanalytic momentum dependence of spin susceptibility for Heisenberg magnets
in the paramagnetic phase and its effect on critical exponents
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We study the momentum dependence of static magnetic susceptibility χ (q) in the paramagnetic phase of
Heisenberg magnets and its relation to critical behavior within the nonlinear sigma model (NLSM) at arbitrary
dimension 2 < d < 4. In the first order of 1/N expansion, where N is the number of spin components, we
find χ (q) ∝ {q2 + ξ−2[1 + f (qξ )]}−1+η/2, where ξ is the correlation length, q is the momentum, measured from
the magnetic wave vector, and the universal scaling function f (x) describes the deviation from the standard
Landau-Ginzburg momentum dependence. In agreement with previous studies at large x we find f (x � 1) �
(2B4/N )x4−d ; the absolute value of the coefficient B4 increases with d at d > 5/2. Using NLSM, we obtain the
contribution of the “anomalous” term ξ−2 f (qξ ) to the critical exponent ν, comparing it to the contribution of
the nonanalytical dependence, originating from the critical exponent η (the obtained critical exponents ν and η

agree with previous studies). In the range 3 � d < 4 we find that the former contribution dominates and fully
determines the 1/N correction to the critical exponent ν in the limit d → 4.

DOI: 10.1103/PhysRevB.103.054415

I. INTRODUCTION

The spatial or momentum dependence of response func-
tions plays an important role in physical properties. The
energy, corresponding to the spatial dependence of the order
parameter field nr, weakly changing in space, is proportional
to (∇nr )2 (as in the Ginzburg-Landau theory [1]). At the
critical point this yields SR ∼ R−(d−2) decay of the correlation
function SR = 〈nα

0 nα
R〉 with the distance R, with d being the

dimensionality of the system. At the same time, the interaction
results in the appearance of an anomalous critical exponent
η, which determines the long-range behavior of correlation
functions R−(d−2+η) (see, e.g., Ref. [2]). The exponent η can
vary from a rather small value for the three-dimensional (3D)
Heisenberg model (η ≈ 0.04) to a substantial value for the
two-dimensional Ising model (η = 1/4); substantial values
of η = 0.2–0.4 were recently also obtained for deconfined
spinon theories [3,4].

The scaling considerations away from the critical point
predict the spatial dependence of the correlation function
SR = R−(d−2+η) f (R/ξ ), where f (x) is some function and
ξ is the correlation length. In momentum space the corre-
sponding dependence reads Sq = q−2+ηg(qξ ). The simplest
function which fulfills this form is Sq = A/(q2 + ξ−2)1−η/2

(cf. Ref. [5]). This dependence generalizes the Ornstein-
Zernike result to include an anomalous exponent η.

However, the Ornstein-Zernike form (even with the expo-
nent η) was argued to be not sufficient to explain experimental
data. In this respect, nonanalytic subleading corrections to
the scaling functions were proposed within the Fisher-Langer
theory [6,7] to explain the anomalies of the resistivity of tran-
sition metals near the magnetic phase transition [8–10]. These

corrections were also invoked to explain the peculiarities of
the density-density correlation function near the gas-liquid
critical point [11,12].

Theoretically, the corrections to the correlation functions
were obtained [13–20] in the large-momentum q limit within
the linear sigma model (LSM). In the case of the specific heat
critical exponent α < 0, the corresponding leading nonanalyt-
ical term in the spin correlation function reads Sq ∝ q−2+η−1/ν

[13–20], where ν is the critical exponent of the correlation
length. This momentum dependence implies that the magnon
self-energy, defined by Sq = A/(q2 + �q + ξ−2)1−η/2, ac-
quires the nonanalytic contribution �q ∼ q2−1/ν . This result
can also be confirmed by the renormalization group (RG) ap-
proach of Refs. [21–23] in d = 2 + ε dimensions, where ν =
1/(d − 2) + O(1) and therefore �q ∼ q4−d . The RG anal-
ysis [23,24] and 1/N expansion [25] of d = 2 Heisenberg
magnets also agree with the above result for the self-energy
since they yield the nonanalytical momentum dependence
�q ∼ q2 ln−1/(N−2)(qξ ) at q � ξ−1 (N is the number of spin
components) and 1/ν → 0 in two dimensions (the critical
exponent η = 0 for d = 2, N > 2).

For the number of order parameter components N > 1, the
momentum dependence �q ∼ q4−d , discussed above for d
close to 2, is identical to that obtained for the self-energy, cor-
responding to the longitudinal correlation function deeply in
the ordered phase [26]. The latter dependence is produced by
a pair of spinons and therefore reflects spinon deconfinement
in the presence of the long-range magnetic order [27–29]. On
approaching the magnetic transition temperature the q2 term
in the inverse Green’s function becomes progressively more
important (see, e.g., Refs. [30,31]). Identical form of the above
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discussed corrections to the self-energy in the paramagnetic
and ordered phase stresses a possible relation between the
nonanalytical terms and the spinon (de)confinement. The non-
analytical terms, obtained within LSM, also reminiscent of
nonanalytic contributions to the spin susceptibility χq ∼ qd−1

in itinerant systems [32,33].
Previous theoretical studies of the momentum dependence

of the susceptibility of the d > 2 Heisenberg model con-
centrated mainly on the large-momentum asymptotics q �
ξ−1 of correlation functions and the interpolation formulas
between the Ornstein-Zernike and nonanalytic dependences
[34]. To study the universal properties of the Heisenberg
model, in particular the momentum dependence of correlation
functions in the long-wavelength limit, this model can be
mapped to the nonlinear sigma model (NLSM). The classical
version of this model describes well the thermodynamic and
statistical properties of Heisenberg magnets at finite, but not
too low, temperature [21–23,25,30,35]. The NLSM has certain
advantages over the linear sigma model, previously used to
calculate the asymptotics of correlation functions, since it is
applicable outside the critical regime. Also, in the NLSM the
universal part of the magnon self-energy is directly related to
the correlation length via the constraint equation, reflecting a
fixed spin value. This allows us to study the effect of nonana-
lytical terms on the critical exponents.

In the present paper we consider the derivation of non-
analytic contributions to the momentum dependence of the
spin susceptibility in the paramagnetic phase of Heisenberg
magnets within the NLSM and study in detail their structure
with varying dimensionality and their effect on the critical
behavior. We determine a closed analytical expression for
the coefficient of the leading nonanalytical term q4−d in the
self-energy to first order in 1/N in the arbitrary dimension
2 < d < 4. The absolute value of the coefficient of the anoma-
lous term becomes larger with the increase of the system
dimensionality d , which is related to stronger spinon confine-
ment with increasing dimensionality. We also argue that the
nonanalytic term yields a substantial contribution to the crit-
ical exponent ν and therefore, via scaling relations, all other
critical exponents, except the exponent η, which is shown to
be independent of the presence of the term.

II. 1/N EXPANSION IN THE NONLINEAR SIGMA MODEL

We consider the classical nonlinear O(N ) sigma model

Z[h] =
∫

DσDλ exp

{
− 1

2t

∫
dd r[(∇σ)2

+ iλ(σ 2 − 1) − 2thσ]

}
, (1)

where σ(r) is the N-component field, d is the space dimen-
sionality, t = T/ρs is the coupling constant, and ρs is the
spin stiffness. The constraint condition σ 2 = 1 is taken into
account by introducing the auxiliary field λ(r). To calcu-
late the correlation functions we also introduce the external
nonuniform magnetic field h(r). The model (1) is applicable
to classical and quantum ferro- and antiferromagnets at finite
temperatures (in the quantum case the temperature should not
be too low: JSξ−1 
 T , where J is the exchange integral and

S is the spin value; see Refs. [23,25,30,35]). The applicability
of the classical model (1) to quantum ferro- and antiferromag-
nets at finite, but not very low, temperatures is related to the
fact that quantum renormalizations at finite temperatures can
be absorbed by the spin stiffness ρs. The model (1) is also
applicable to quantum antiferromagnets in the ground state,
in which case t ∼ 1/S and d is the space-time dimensionality.

To study nonanalytical terms in the self-energy, we
use 1/N expansion, which is performed in the standard
way [15,25,36,37]. In contrast to the (self-consistent) spin-
wave theory [38] and 2 + ε renormalization group approach
[21–23] this method allows us to study systems with dimen-
sionality d not close to 2 at not too low temperatures. After
integrating over σ the partition function takes the form

Z [h] =
∫

Dλ exp(Seff [λ, h]) (2)

Seff [λ, h] = N

2
ln det Ĝ + 1

2t
Sp(iλ) + t

2
Sp[hĜh], (3)

where

Ĝ = [−∇2 + iλ]−1.

Since N enters (2) only as a prefactor in the exponent, expand-
ing near the saddle point generates a series in 1/N . Below we
treat the paramagnetic phase, where the value of λ = λ0 at
the saddle point is determined by the sum rule (constraint)
〈σ 2〉 = 1, which takes the form

1 = Nt
∫

dd k
(2π )d

Gnn(k), (4)

where n = 1, . . . , N and we account for the fact that the
Green’s function of the field σ ,

Gnn′
(k)= 1

tZ[0]

[
∂2Z[h]

∂hn(k)∂hn′ (−k)

]
h=0

, (5)

depends only on k = |k| due to rotational symmetry in the
considered long-wavelength limit and h(k) is the Fourier
transform of h(r). Note that only diagonal elements Gnn′

are
nonzero. We use the cutoff k < � of momentum integrations.
The Green’s function represents the rescaled (staggered) spin
susceptibility χnn′

(k) = (S2/ρs)Gnn′
(k) and may be expressed

within the 1/N expansion as

Gnn(k) = [k2 + �(k) + m2]−1, (6)

where �(k) is the bosonic self-energy, defined such that
�(0) = 0, and m is the renormalized mass of spin excitations
to first order in 1/N . We split the mass as m2 = m2

0 + δm2,
where we define m0 in such a way that it absorbs all nonuni-
versal (�-dependent) contributions, except logarithmic terms
(the latter contribute to critical exponents and are included,
along with regular terms, in δm2; see below). The terms
included in m0 determine the value of the magnetic phase
transition temperature (or critical coupling constant), which
is defined by vanishing m0 (the quantity δm2 vanishes simul-
taneously; see below).

The self-energy �(k) in the first order of the 1/N expansion
is given by [25]

�(k) = 2

N

∫
dd q

(2π )d

G0(|k + q|) − G0(q)

�(q)
, (7)
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where

�(q) =
∫

dd p
(2π )d

G0(p)G0(|p + q|) (8)

and G0(k) = (k2 + m2
0 )−1. To first order in 1/N the sum rule

(4) takes the form

1 = Nt
∫

dd k
(2π )d

G0(k)

− Nt
∫

dd k
(2π )d

G2
0(k)[�(k) + δm2]. (9)

III. RESULTS

A. Three dimensions

In three dimensions the polarization operator (8) reads

�(q) = 1

4πq
arctan

q

2m0
. (10)

Using this expression, we find from Eq. (7) (see details in
Sec. A 1)

�(k) = ηk2 ln
�(

k2 + m2
0

)1/2 + 2

N
m2

0F (k/m0), (11)

where � is the momentum cutoff, η = 8/(3π2N ) is the
standard exponent determining the correlation function de-
cay to first order in 1/N for the 3D O(N ) model (cf.
Refs. [25,30,39]), and we have introduced a universal
function,

F (x) = 1

π

∫ ∞

0
q2dq

{[
1

2qx
ln

(x + q)2 + 1

(x − q)2 + 1
− 2

q2 + 1

]
× q

arctan(q/2)
− 4x2

3πq3
θ (q −

√
x2 + 1)

}
. (12)

Evaluating the asymptotics of this function, we find

F (x) �
{

4x2

9π2 − 2x
π

− 4
π4 (16 − π2) ln x + 1.10334 x � 1,

−0.24553x2 x 
 1.

(13)

One can see that at k � m0 apart from quadratic term Ak2

the self-energy contains also subleading nonanalytical terms,
proportional to k and ln(k/m0) with the coefficients, which
agree with Ref. [15], but expressed in terms of elementary
functions. These terms are not related to the exponent η, in-
troduced by the first term in Eq. (11). The plot of the function
F (x) together with its asymptotes is shown in Fig. 1. Note
that although the function F (x) is not positively defined, it is
quadratic at small x, and therefore, the leading term k2 in the
propagator overcomes the negative contribution in the second
line of Eq. (13), and the whole spectrum is positively defined
at large N (including N = 3).

The transition temperature (or critical coupling constant)
to first order in 1/N is obtained from Eq. (9) by putting m0 =
δm = 0. We find

tc = 2π2

N�

(
1 + 32

9π2N

)
. (14)

�

�

�
�

FIG. 1. Plot of the function F (x) (solid line) and its large- and
small-x asymptotes (dashed lines).

The details of the calculation of the mass terms m0 and δm are
presented in Sec. A 1. The mass m0 behaves near the phase
transition as [see Eq. (A3)]

m0 ∝ 1

tc
− 1

t
. (15)

Summation of logarithmic contributions to Eq. (9) yields

δm2 = δm2
η + δm2

k + · · · =
(

3η + 16

π2N

)
m2

0 ln
�

m0
+ · · · ,

(16)

where δm2
η and δm2

k (as well as the respective terms on the
right-hand side) denote the contribution of the first (propor-
tional to η ) term in the self-energy �k , Eq. (11), and linear
in k term in �k , originating from the second term in Eq. (11)
[the other terms in Eq. (13), apart from the linear one, do not
contribute to the singular term in Eq. (16)]; the dots stand
for the nonsingular terms proportional to m2

0. Collecting all
logarithmic contributions, which are of the order of 1/N , to
the Green’s function and transforming them to the respective
powers to introduce 1/N corrections to critical exponents, we
obtain (see Sec. A 1)

G(k) = 1

{k2 + ξ−2[1 + f (kξ )]}1−η/2 , (17)

where f (x) = (2/N ){F (x) − [2/(3π2)] ln[1/(x2 + 1)]}, ξ =
m−ν

0 ∝ (t − tc)−ν is the correlation length, and ν = 1 − η −
νk is the corresponding critical exponent. The contribution
η originates again from the first term in the self-energy �k ,
Eq. (11), while νk = 8/(π2N ) originates from the linear in k
term in �k . Although the sum of the two terms yields the stan-
dard result ν = 1 − 32/(3π2N ) � 0.64 (N = 3) [25,30,39],
our result allows us to discriminate the contribution of nonan-
alytic terms originating from the anomalous exponent η and
the linear in k term in the self-energy. One can see that the
latter is three times larger than the former; that is, the main
contribution to the 1/N correction to the critical exponent ν

originates from the linear in k term of the self-energy. Indeed,
excluding, at N = 3, the term related to η yields ν = 0.73,
but excluding the linear in k term we get ν = 0.9, which is
far from the 1/N result. This shows the importance of the
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ξ

�

FIG. 2. The dependence of the ratio of Green’s functions G/GOZ

on qξ at N = 3 (solid line) in comparison to the correction G−η/2
OZ

according to the modified Ornstein-Zernike dependence (dashed line;
see text).

nonanalytic contribution to the self-energy for critical expo-
nents in three dimensions.

To estimate the deviation from the Ornstein-Zernike form
we introduce the Green’s function GOZ = 1/(ξ−2 + κk2),
where the coefficient κ = 1 + 8/(9π2N ) takes into account
renormalization of the coefficient at k2 by the first-order 1/N
expansion [see Eq. (13)]. The momentum dependence of the
ratio of the Green’s function (17) to the Ornstein-Zernike one
is shown in Fig. 2. One can see that the obtained Green’s func-
tion G(k) essentially differs from both the Ornstein-Zernike
GOZ(k) and modified dependence G1−η/2

OZ (k). In particular, in
comparison to the G1−η/2

OZ (k) dependence two flection points
appear. Interestingly, these flection points can be seen on
the experimental data near the liquid-gas critical point [12],
although the present theory, based on 1/N expansion, is not
applicable directly to the N = 1 case.

B. Arbitrary 2 < d < 4

Let us now generalize the obtained results to an arbitrary
dimension 2 < d < 4. Performing integration in Eq. (7), we
find in this case (see Sec. A 2)

�(k) = ηk2 ln
�(

k2 + m2
0

)1/2 + 2

N
m2

0Fd (k/m0), (18)

with η = −(2/N )(4 − d ) sin (πd/2)�(d − 1)/[πd�(d/2)2]
being the value of the exponent for the correlation function
to first order in 1/N [39] and the function Fd (x) being given
by Eq. (A9). The expansion of this function at x � 1 reads

Fd (x)
x�1= B0 + B′

0 ln x + B2x2 + B4x4−d + B6x6−2d

+ B8x8−3d + · · · , (19)

where the coefficients at ln x and at the highest power of x
(apart from the quadratic term) are given by

B′
0 = 2(2d − 5) sin2(πd/2)�

(
2 − d

2

)
�(d − 2)

π2�(d/2)
,

B4 = (5 − 2d )�(d − 1)

2�(d/2)2 . (20)

�

�

�

FIG. 3. The dependence of the coefficient B4 at the leading power
k4−d of the momentum dependence of the self-energy on the dimen-
sionality d .

The first terms of the expansion (19) were considered within
the LSM in Ref. [15]; the obtained coefficients B′

0 and B4

coincide numerically with those obtained in LSM [40], al-
though here we present a simple analytical expression for
B4 instead of the series obtained in Ref. [15]. A plot of the
dependence of B4 on dimensionality d is shown in Fig. 3.
The coefficient B4 decreases with increasing dimensionality
and becomes negative for d > 5/2. We note the following
peculiarities of the function Fd (x).

(i) At d → 2 we have B′
0 = 0, while all the powers of

x = k/m0 in Eq. (19) approach 2. This yields the nonana-
lytic momentum dependence obtained in Ref. [25], F2(x) ∼
x2 ln ln x. Moreover, as argued in Ref. [25], in this limit
the summation of an infinite series of the 1/N expan-
sion is required, which yields k2[1 − (1/N ) ln ln(k/m0)] →
k2 ln−1/(N−2)(k/m0). Therefore, in the limit d → 2 one cannot
restrict oneself to the finite number of terms either in the
expansion (19) or in the 1/N expansion (the latter problem
can, however, be solved by the replacement N → N − 2 in
the lowest-order 1/N term and transforming logarithmic con-
tributions into powers; cf. Ref. [25]).

It was observed earlier that the case of d close to 2 is
described well by the d = 2 + ε expansion [21,22] and that
for N = 3 is described well by the 1/M expansion of the
noncompact CPM−1 model [27]. Since the latter model was ar-
gued to be applicable near deconfined quantum critical points
[4,41], the limit d → 2 can be viewed as corresponding to
the weakly confined spinons (cf. Ref. [28]). Fully deconfined
spinons are characterized by kd−4 dependence of the spin
correlation function (obtained as a convolution of two spinon
Green’s functions, each with the dependence 1/q2) [27–29],
similar to the longitudinal correlation function in the ordered
phase [26]. Therefore, the obtained leading nonanalytical term
in Eq. (19), B4x4−d , for d close to 2 can be considered a
“trace” of this tendency to deconfinement. This term, however,
does not dominate over the k2 dependence, and the tendency
to confinement dominates.

(ii) With decreasing dimensionality from d = 4 at the set
of dimensions di = 2i/(i − 1), where i > 2 is an integer, i.e.,
at d = 3, 8/3, 5/2, . . . , the term proportional to B2i in the ex-
pansion (19) becomes relevant since the corresponding power
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changes sign. The dimensions di coincide with those at which
the operators (φ2)i in the LSM (which can be viewed as a
soft constraint version of the NLSM) become relevant and
corresponding new fixed points in the renormalization group
flow appear. Since the fixed-point structures of the LSM and
NLSM are expected to be the same, one can consider the
nonanalytical terms to be related to these fixed points. One
can verify that the corresponding coefficients B2i are loga-
rithmically singular in these special dimensions di, providing
an additional contribution to B′

0. From this point of view,
the leading nonanalytical term k4−d is always relevant for
d < 4, and it is related to the non-Gaussian Wilson-Fisher
fixed point (cf. Refs. [13,14,16]). However, in contrast to
the other coefficients B2i at the dimensions d → di, the co-
efficient B4 contains at d → 4 the ratio of two logarithms
ln(k/m)/ ln(�/k) (see Sec. A 3): the numerator reflects the
logarithmic divergence of the integral in Eq. (7), while the
denominator appears because of the logarithmic divergence
of �(q) in four dimensions.

(iii) For d not too close to 2 only the leading terms B2x2 +
B4x4−d are important; the latter provides the nonanalytical
contribution to the self-energy, which, as we will see below,
yields the contribution to the critical exponents, similar to the
d = 3 case. We note that neither the results of the 2 + ε expan-
sion nor the 1/M expansion of the noncompact CPM−1 model
become applicable for the d � 3 nonlinear sigma model (see,
e.g., the discussion in Ref. [27]). This is in line with the sug-
gestion of Ref. [42] (see also Ref. [43]) that a sharp change in
critical exponents occurs somewhere in the range 2 < d < 3
and may imply stronger spinon confinement at d � 3.

Following the same strategy as for d = 3, we obtain the
correction to the magnetic transition temperature (or critical
coupling constant)

tc = d − 2

NAd�d−2

[
1 + η

d − 2
+ B2

]
. (21)

The calculation of the masses m0 and δm, as well as the critical
exponent ν, is performed in the same way as for d = 3 and
detailed in Sec. A 2. We find m0 ∝ (t − tc)1/(d−2), and the 1/N
correction to the mass reads

δm2 = ηd + (8B4/πN ) sin (πd/2)

d − 2
m2

0 ln
�

m0
+ . . . , (22)

where the first and second terms in the numerator correspond
to the contribution of the first term in Eq. (18) and the x4−d

term in the asymptotic Fd (x) and the dots stand for the non-
logarithmic terms. From these contributions, we obtain

ν = 1

d − 2

[
1 − η + (4B4/πN ) sin (πd/2)

d − 2

]
. (23)

This critical exponent also coincides with the earlier known
result of the 1/N expansion [39], but we again individuate
here contributions of two different effects: the anomalous
exponent η and the k4−d term in the self-energy. The con-
tributions of these two effects to the critical exponent ν at
N = 3 and various dimensionality d are plotted in Fig. 4. One
can see that while for d → 2 these two effects almost cancel
each other, with increasing dimensionality d the k4−d term of
the self-energy gives a progressively larger contribution; for
d → 4, where the anomalous exponent η vanishes, the k4−d

FIG. 4. The dependence of the critical exponent ν of the N = 3
nonlinear sigma model on dimensionality d in various approaches:
zeroth-order 1/N result (dotted line), first-order 1/N approach ne-
glecting the exponent η (long-dashed line), first-order 1/N approach
with only correction from the exponent η included (dash-dotted line),
full first-order 1/N result (solid line), and first-order 1/N result
with the replacement N → N − 2, which has to be performed for
d → 2 (short-dashed line). Dots show the results of the functional
renormalization group approach of Ref. [43].

term gives the major contribution to the 1/N correction to
the critical exponent ν. For completeness we also show in
Fig. 4 the result of the 1/N expansion with the replacement
N → N − 2, which, according to Refs. [25,27], should be
performed in the limit d → 2, allowing us, e.g., to achieve
agreement with 2 + ε expansion and recent results of the
functional renormalization group approach of Ref. [43]. One
can see that at d ∼ 5/2 the exponent ν is expected to sharply
change from the result of the 1/N expansion with N → N − 2
to that without the replacement, which seems to correspond
to the transition predicted in Ref. [42] and/or the crossover
discussed recently in Ref. [43]. Following the discussion in
points (i) and (iii) above, this transition (or crossover) would
correspond to the change from weak to strong spinon confine-
ment. Interestingly, at the dimension d = 5/2 the coefficient
B4 changes sign, which may be related to the weak-strong
confinement transition since vanishing of this coefficient re-
flects full confinement of spinons.

IV. CONCLUSIONS

In summary, we have obtained the momentum dependence
of the self-energy of spin excitations in the Heisenberg model
in the first-order 1/N expansion. The obtained dependence
contains the nonanalytic contribution B4k4−d ; the coefficient
B4 decreases from positive values at d → 2 to negative values
at d → 4. We have argued that the nonanalytical term likely
originates from the Wilson-Fisher non-Gaussian fixed point.
In the general dimension d , there are also subleading terms
B2ik2i−(i−1)d with integer values i > 2 which correspond to the
new fixed points, appearing at dimensions di = 2i/(i − 1) and
related also to the relevance of the operators (φ2)i in the linear
sigma model.

We have shown that the critical exponent ν in the first
order in 1/N is determined by two contributions. The first
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contribution originates from the exponent η, while the second
is proportional to the coefficient B4 of the nonanalytic term.
While at d → 2 the two contributions almost compensate
each other, at 3 � d < 4 the second contribution dominates
and fully determines the value of the 1/N correction to the ex-
ponent ν for d → 4. The change in sign of the coefficient B4 at
d = 5/2 is associated with the transition (or crossover) from
weak to strong spinon confinement. This is also in line with
the predicted sharp change in critical exponents at d ∼ 5/2
[42,43].

Apart from the importance of the obtained results for the
interpretation of numerical and experimental data for Heisen-
berg magnets, they may have some importance for itinerant
antiferromagnets. Indeed, at half filling the Hubbard model
can be effectively reduced to the nonlinear sigma model for
arbitrary on-site Coulomb repulsion U (see Ref. [44]). There-
fore, one can expect the appearance of the nonanalytical terms
in the susceptibility in itinerant half-filled antiferromagnets as
well. These terms may be rather hard to obtain from purely
fermionic approaches since they correspond to greater than
four-point fermion interaction vertices. Although the numer-

ically correct value of the critical exponent ν was obtained
previously within the dynamic vertex approximation (D�A)
[45] and dual-fermion approach [46] (see also the review
[47]), the conclusions drawn in these studies possibly need
to be reexamined in light of the results of the present paper, as
well as of the most recent D�A calculations [48].

Investigation of the connection between spinon
(de)confinement and the nonanalytic term k4−d in the
self-energy of spin excitations represents another important
topic for future studies.
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APPENDIX: EVALUATION OF SELF-ENERGY AND MASS CORRECTIONS

1. Dimension d = 3

The self-energy is obtained from Eqs. (7) and (10) and reads

�(k) = 2

N

∫
d3q

(2π )3

[
1

k2 + 2kq+q2 + m2
0

− 1

q2 + m2
0

]
4πq

arctan[q/(2m0)]

= 2

πN

∫ �

0
q2dq

[
1

2kq
ln

(k + q)2 + m2
0

(k − q)2 + m2
0

− 2

q2 + m2
0

]
q

arctan[q/(2m0)]
. (A1)

By picking out the singular contribution

�1(k) = ηk2 ln
[
�/
(
k2 + m2

0

)1/2]
the integral can be made convergent. Taking the limit � → ∞ in the remaining part and rescaling the variable of the integration
by m0, we obtain Eq. (11) of the main text. In the following we denote � = �1(k) + �2(k) + �3(k) + �4(k), where

�2(k) = 8k2

9π2
, �3(k) = −4km0/(πN ),

and �4(k) = (2/N )m2
0F (k/m0) − 8k2/(9π2) + 4km0/(πN ) is the remaining part, obtained by subtracting and adding the

asymptotic value of the integrand at large q, where the function F (x) is given by the Eq. (13). Evaluation of the integrals
which enter Eq. (9) yields ∫

d3k
(2π )3

G0(k) = 1

2π2

(
� − πm0

2

)
,∫

d3k
(2π )3

G2
0(k)�1(k) = η

2π2

[
� − 3π

4
m0 ln

�

m0

]
,∫

d3k
(2π )3

G2
0(k)�2(k) = 1

2π2

8�

9π2N
,∫

d3k
(2π )3

G2
0(k)�3(k) = − 1

2π2

4m0

πN
ln

�

m0
,∫

d3k
(2π )3

G2
0(k)�4(k) = 1

2π2

2m0I

πN
,∫

d3k
(2π )3

G2
0(k) = 1

8πm0
, (A2)
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where I = ∫∞
0

k2dk
(k2+1)2 (F (k) − 4k2

9π
+ 2k) is a universal number. Collecting contributions to the sum rule (9), which are linear in

� or m0 and do not contain logarithmic terms, we find

m0 = 4π

N

(
1 − 4

π2N
I

)(
1

tc
− 1

t

)
, (A3)

where tc is defined according to Eq. (14). The remaining contributions to Eq. (9) taking into account the last integral in Eqs. (A2)
lead to the mass correction (16) in the main text. The resulting Green’s function reads

G(k) = 1

k2 + m2 + ηk2 ln
[
�
/(

k2 + m2
0

)1/2]+ (2m2
0

/
N
)
F (k/m0)

. (A4)

Transforming log to a power, which is usual in the 1/N expansion, and neglecting higher-order terms in 1/N , we obtain

G(k) = 1

{k2 + m2
[
1 − η ln

[
�
/(

k2 + m2
0

)1/2]]+ (2m2
0

/
N
)
F (k/m0)}1−η/2

; (A5)

the remaining log contributes to ν (see below), and the function F (k/m), obtained above, describes the nonanalytic contribution
to the expression in square brackets. Using m2 = m2

0 + δm2 and the expression for the mass correction δm (16), we obtain for
the Green’s function

G(k) = 1{
k2 + m2

0[1 + 2(η + 8/(π2N )) ln(�/m0)] + (2m2
0

/
N
)
F̃ (k/m0)

}1−η/2 , (A6)

where F̃ (x) = F (x) − [2/(3π2)] ln[1/(x2 + 1)]. Transforming again the logarithmic term into the power m2(ν−1)
0 , denoting ξ =

m−ν
0 , and neglecting the terms of the higher order of 1/N , we obtain Eq. (17).

2. Arbitrary 2 < d < 4

In this case we find the polarization operator

�(q) = md−4
0 �̃(q/m0),

�̃(x) = 2− d
2 πAd

x
csc(πd/2)(4 + x2)

d
4 −1

×
[

(
√

4 + x2 − x)d/2−1
2F1

(
2 − d

2
,

d

2
− 1,

d

2
;

1

2
− x

2
√

4 + x2

)
− (
√

4 + x2 + x)d/2−1
2F1

(
2 − d

2
,

d

2
− 1,

d

2
;

1

2
+ x

2
√

4 + x2

)]
, (A7)

where 2F1(a, b, c; z) is the hypergeometric function and Ad = 21−dπ−d/2/�(d/2). For the self-energy we obtain

�(k) = 4Ad

N

�
(

d
2

)
√

π�
(

d−1
2

) ∫ qd−1dq sind−2 θdθ

�(q)

(
1

k2 + 2kq cos θ+q2 + m2
0

− 1

q2 + m2
0

)

= 2Ad

N

∫ �

0
qd−1dq

⎡⎣ 2F1
(
1, d−1

2 , d − 1; − 4kq
(k−q)2+m2

0

)
(k − q)2 + m2

0

− 1

q2 + m2
0

⎤⎦ 1

�(q)
. (A8)

By subtracting and adding the asymptotic of the integrand at q → ∞, taking the limit � → ∞ in the convergent integral, and
rescaling again the variable of integration by m0, the result can be put in the form of Eq. (11), with

Fd (x) = Ad

∫ ∞

0
qd−1dq

{[
2F1
(
1, d−1

2 , d − 1; − 4xq
(x−q)2+1

)
(x − q)2 + 1

− 1

q2 + 1

]
1

�̃(q)

− 2d−2(d − 4)π
d
2 −1 sin

(
πd
2

)
�(d − 1)

�(d/2 + 1)
x2q−dθ (q −

√
x2 + 1)

}
, (A9)

which yields Eq. (18) in the main text. The lowest-order coefficients in the expansion of Fd (x) at large x are given by Eq. (20)
and

B2 = Nη

2

∫ ∞

0
tdt

{
d

4 − d

[
t2

(t − 1)2 2F1

(
1,

d − 1

2
, d − 1; − 4t

(t − 1)2

)
− 1

]
− 1

t2
θ (t − 1)

}
.
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Evaluating integrals entering Eq. (9), we find∫
dd k

k2 + m2
0

= Ad

[
�d−2

d − 2
+ π

2
csc

(
πd

2

)
md−2

0

]
,∫

dd k(
k2 + m2

0

)2 k2 ln
�√

k2 + m2
0

= Ad

[
�d−2

(d − 2)2
+ πd

4
csc

(
πd

2

)
md−2

0 ln
�

m0
+ · · ·

]
,

∫
k2dd k(

k2 + m2
0

)2 = Ad

d − 2
�d−2,

md−2
0

∫
dd k(

k2 + m2
0

)2 k4−d = Ad md−2
0 ln

�

m0
,

∫
dd k(

k2 + m2
0

)2 = −Ad
π (d − 2)

4
csc

(
πd

2

)
md−4

0 . (A10)

Collecting the terms proportional to �d−2 or md−2
0 , we find the equation for m0,

1 = tAd
N�d−2

(d − 2)

[
1 − η

d − 2
− 2

N
B2

]
+ NtAd

π csc (πd/2)

2
md−2

0 . (A11)

By defining tc according to Eq. (21) we obtain

m0 =
[
− 2

NAdπ csc(πd/2)

(
1

tc
− 1

t

)]1/(d−2)

.

The correction δm2 is obtained then straightforwardly from the remaining terms in the sum rule (9) and given by the Eq. (22).
Repeating the calculation of the Green’s function similarly to that for the d = 3 case, we find

G(k) = 1

{k2 + m2
0

[
1 + [2η + (8B4/πN ) sin (πd/2)]/(d − 2) ln(�/m0)

]+ (2m2
0/N
)
F̃d (k/m0)}1−η/2

, (A12)

where F̃d (x) = Fd (x) − (Nη/4) ln[1/(x2 + 1)]. After transforming the logarithm into power we obtain again the result (17) with
ξ = m−ν(d−2)

0 ∝ (t − tc)−ν , where ν is given by Eq. (23).

3. Dimension d = 4

For completeness, let us also present some results in four dimensions. Performing integration in Eq. (8), we obtain

�(q) = 1

8π2

⎡⎣ln

(
�

m0

)
−
√

4m2
0 + q2

2q
tanh−1

⎛⎝q
√

4m2
0 + q2

2m2
0 + q2

⎞⎠+ 1

2

⎤⎦. (A13)

The corresponding contribution to the self-energy reads

�(k) = 1

4π2N

∫
q3dq

1

�(q)

⎡⎣k2 + q2 + m2
0 −
√

k4 + (q2 + m2
0

)2 − 2k2
(
q2 − m2

0

)
2k2q2

− 1

q2 + m2
0

⎤⎦. (A14)

After evaluating the integral in the limit k � m0 and neglecting terms of the order of k2/l and m2
0/l , where l = ln(�/k),

ln(�/m0), or ln(k/m0), we obtain

�(k) = −6m2
0

N

[
2 ln(k/m0)

1 + 2 ln(�/k)
− ln

(
2 ln(�/m0)

1 + 2 ln(�/k)

)]
. (A15)

We note that the coefficient in front of the square brackets is equal to 2B4(d → 4)/N . Performing integrations in Eq. (9), we
obtain with logarithmic accuracy ∫

d4k

(2π )4

1(
k2 + m2

0

) = 1

8π2

(
�2

2
− m2

0 ln
�

m0

)
,

∫
d4k

(2π )4

1(
k2 + m2

0

)2 �(k) = 3m2
0

4π2N
ln

�

m0

(
2 − ln ln

�

m0

)
,

∫
d4k

(2π )4

1(
k2 + m2

0

)2 = 1

8π2
ln

�

m0
. (A16)
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Putting m0 = δm = 0, we find the critical temperature tc = 16π2/(�2N ). Absorbing ln(�/m0) contributions into the bare mass
m0, we find

m2
0 ln

�

m0
= 8π2

N + 12

(
1

tc
− 1

t

)
. (A17)

Finally, the remaining contributions to Eq. (9) yield

δm2 = 6m2
0

N
ln ln

�

m0
. (A18)

In Eqs. (A17) and (A18) we recognize the zeroth- and first-order terms in the 1/N expansion of the one-loop renormalization
group result (see, e.g., Ref. [49]) m2 ∝ (t − tc)/ ln(N+2)/(N+8)(�/m).
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