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Effects of exchange distortion and spin rotation in the magnetic Kagome Lattice
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This study examines the effect of distorted triangular magnetic interactions in the kagome lattice. Using a
Holstein-Primakoff expansion, we determine the analytical solutions for classical energies and the spin-wave
modes for various magnetic configurations. By understanding the magnetic phase diagram, we characterize
the changes in the spin waves and examine the spin distortions of the ferromagnetic, antiferrimagnetic, and
120◦ phases that are produced by variable exchange interactions and lead to various noncollinear phases,
which provides a deeper understanding of the magnetic fingerprints of these configurations for experimental
characterization and identification.
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I. INTRODUCTION

Complex magnetic lattice configurations have gained at-
tention both theoretically and experimentally during the last
decade as part of the search for topological and noncollinear
magnetic orders, flatband and Kitaev interactions, and the elu-
sive quantum spin liquid state [1–12]. These magnetic systems
are so interesting because of their potential in technology for
sustainable, energy-efficient memory devices, and computa-
tional power [13].

One such lattice that has increased in popularity is the
kagome lattice, which is described as a two-dimensional trian-
gular three-sublattice structure and the foundational structure
for the three-dimensional pyrochlore lattice [14–17]. This
extra sublattice helps distinguish the kagome from the two-
sublattice honeycomb lattice [18]. As shown in Fig. 1(a), the
kagome lattice consists of a lattice of coupled trimers, which
introduces multiple inversion points. Theoretical studies on
materials with kagome lattices have qualified their relevance
to these technologies and have been further probed for numer-
ous magnetic and electronic properties [19–31]. Experimental
studies have offered a different perspective on many of the
same properties [32–39].

Previously, Boyko et al. examined the spin-wave dynamics
of the kagome lattice for three different magnetic configu-
rations [out-of-plane ferromagnetic (FM), out-of-plane anti-
ferrimagnetic (AfM), and 120◦ phase] and various isotropic
nearest, next-nearest, and next-next-nearest-neighbor interac-
tions [40]. In that paper, it was shown that, to first order, the
FM phase produced three modes, wherein two modes were
dispersive, long-range order modes, and one was a nondis-
persive, clusterlike flat band. These types of cluster modes
are not unheard of as they have been observed in structures
like the pyrochlore lattice [16]. Furthermore, Boyko et al.
also revealed that, to first order, the 120◦ phase mimics the
antiferromagnetic (AFM) honeycomb lattice due to the net in
and out spin configurations [40]. However, unlike the AFM

honeycomb lattice, the kagome lattice can break this degener-
acy with second- and third-order interactions.

When considering the collinear Heisenberg model, ex-
change competition can produce frustration in the system
and require an axial anisotropy to stabilize due to underlying
noncollinear states [6,12,40,41]. Frustrated states can also
come from the interactions between orbitals that typically
result in FM or AFM orders but may become complicated by
the competition between interactions as well as any induced
crystal-field anisotropies. The frustration in the triangular in-
teractions can lead to the need for more complex interactions
to describe the excitations of the system, which is a fairly stan-
dard approach as any deviation of a known model indicates the
need for new and exciting physics. In the kagome lattice, this
complexity tends to lead researchers into the realm of more
exotic interactions like Kitaev model and spin liquids [1–3].

Another avenue that can alleviate these frustrations is the
presence of some underlying, possibly noncollinear, mag-
netic ground state that is not considered [5]. Given the large
number of magnetic configurations for this structure, many
groups are forced to examine numerical methods to interpret
and understand neutron scattering experiments. While these
numerical methods provide critical information for the charac-
terization and identification of magnetic systems, there is little
understanding of how the system’s interactions compete to
produce the given state, which can hinder further development
of magnetic materials. By examining analytical solutions and
the evolution of complexity for simple models, one can gain
insight into the effects of exchange interactions on various
configurations of spins in the kagome lattice. These insights
can aid experimentalists and theorists (or modelers) in the
identification of different magnetic orders by simple compar-
ison, which can, in turn, allow for the tunability of structures.

In this paper, we look to understand many of the kagome
lattice’s magnetic configurations by first producing analytical
solutions for the spin waves of in-plane and out-of-plane FM
and AfM arrangements along with the in-plane 120◦ phase,
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FIG. 1. The atoms in a kagome lattice are colored by spin
orientation. The various spin configurations are the ferromagnetic
(FM—all spin angles in the same direction) (a), antiferrimagnetic
(AfM—spin angles are antialigned) (b), and the 120◦ phase, where
each spin is rotated 120◦ away from its neighbors (c). The 120◦ phase
makes up triangular in and out atomic spin groups (e), which further
illustrate its AFM nature (d).

then numerically characterizing various spin states with a
distorting nearest neighbor interaction. The term AfM denotes
a mixed composition of AFM and FM aligned spins, which
result in a structure that still produces a net magnetic moment
[shown in Fig. 1(b)]. Using a Heisenberg spin-spin exchange
Hamiltonian with on-site anisotropy, we determine the energy
phase diagrams for this distorted system as well as the spin-
wave dynamics. Furthermore, we look beyond the 120◦ phase
and push the analytical limit by generalizing the in-plane
magnetism to a 120◦ + dθ phase, where dθ goes from −120◦
(FM phase) to 60◦ (AfM phase).

These calculations allow for a detailed understanding of the
changes in the spin-wave dynamics expected for various con-
figurations of the magnetic kagome lattice, which is useful for
experimental identification and interpretation. Furthermore,
deviation from these spin-wave dynamics provides evidence
for nonstandard interactions like those determined by the
Kitaev model or other non-Heisenberg models.

II. SPIN-EXCHANGE HAMILTONIAN

To gain a complete understanding of how local interac-
tion changes can affect the spin state of the kagome lattice,
a Heisenberg spin-spin Hamiltonian is used to model first-
order interactions with variable exchange values [shown in
Fig. 2(a)]. From this Hamiltonian, the energy eigenstates and
spin-wave dynamics are examined within the analytical limit

FIG. 2. (a) The triangular subgeometry on which our calculations
are focused. The exchange interactions (Ji j ), which may not all
be equal between all atom pairs. (b) A top-down view of the FM
spin waves in a kagome lattice with symmetry points M, K, and �

overlaid.

and expanded numerically to explore the spin evolution of the
magnetic properties, where the spin-spin exchange Hamilto-
nian with z-axis anisotropy is given as

H = −1

2

∑
i �= j

Ji j S̄i · S̄ j − D
∑

i

S̄2
iz. (1)

Here, Ji j is the exchange interaction between the spin sites and
D is the anisotropy energy [6,12]. Since the kagome lattice
can produce numerous collinear and noncollinear phases, we
must be able to consider the azimuthal and polar angles of the
site spins. Therefore, the Hamiltonian must be shifted to study
noncollinear spin configurations. As described in Ref. [6],
the spin rotation is performed using an Euler rotation matrix
U upon the Hamiltonian, which is dependent on spherical
coordinates θ (azimuthal) and φ (polar) between the two spins
[5,6]. Applying this rotation to the Hamiltonian gives

H = −1

2

∑
i �= j

Ji j S̄i · U iU
−1
j S̄ j − D

∑
i

U −1
i S̄2

iz. (2)

Through a (1/S) Holstein-Primakoff expansion of this
Hamiltonian, the system breaks into various orders

H = E0 + H1 + H2 + · · ·. (3)

Here, E0 is the classical energy, which can be used to de-
termine the system’s overall ground state for a given spin
configuration. The H1 term is the vacuum contribution to
the spin dynamics, which vanishes in a stable system. H2

produces the first-order contributions to the spin-wave dy-
namics within the quadratic limit. Higher order terms can
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FIG. 3. The spin angles for the three-atom structure are repre-
sented as deviations from a default state both in and out of the xy
plane. (a) The azimuthal spin angles θ , illustrated by the red arrows
on each atom, are represented as deviations from the angles θFM (gray
arrows) that reflect the FM state. As the significance of these angles
is their relation to one another rather than absolute orientation, the
angle θA was set arbitrarily to 0. Deviation angles q and r are taken
as the difference between angle θ and θFM. (b) The in-plane spin
angles φ, illustrated by the red arrows on each atom, are represented
as deviations from the angles φ120 (gray arrows) which make up the
120◦ phase. The angle φA is set as π/2. Deviation angles g and h are
taken as the difference between angle φ and φ120.

also be determined. However, these terms produce quantum
fluctuations which can be ignored for large S [6].

The kagome system can produce many spin configurations.
The most well-known are collinear FM and AfM systems. The
spins in these configurations can be either in-plane or out-of-
plane and make distinct changes in the spin dynamics. Outside
of the collinear systems is the noncollinear 120◦ phase [shown
in Figs. 1(c)–1(e)], which is typically an in-plane rotation of
spin produced through AFM frustration.

First, we examine the classical energy for this system and
then move on to the spin dynamics. Within these sections, we
will investigate the out-of-plane and in-plane structures for
the FM and AfM phases. With those established, we will then
enable a magnetic distortion of the exchange interactions and
simulate the evolution of the spin dynamics of both collinear
and noncollinear phases with various parameters.

III. CLASSICAL ENERGY

Before determining the spin-wave dynamics for specific
configurations, the classical energy of the system is used
to determine the ground-state spin configuration within the
three-sublattice (3-SL) kagome system.

The classical energy of each magnetic configuration is
given by

E0 = −1

2

∑
i, j

Ji jS
2(sin(θi ) sin(θ j ) cos(φ j − φi )

+ cos(θi ) cos(θ j )) − DS2
∑

i

cos2(θi ), (4)

where the various spin angles are illustrated in Fig. 3 [6].
Within the different spin configurations, we will specialize
angles for the purpose of achieving analytical and understand-
able solutions.

A. Out-of-plane spin configurations

The out-of-plane spin configurations have collinear spins
with θ = 0 or π . Here, the classical energy can be written as

E0

|J|S2
= −2

3
(α cos(θA) cos(θB) + β cos(θA) cos(θC )

+J cos(θB) cos(θC )) − D, (5)

where J ≡ J/|J| = ±1 and determines the general exchange
interaction of the system. Additionally, D ≡ D/|J|, α ≡ J ′

|J|
and β ≡ J ′′

|J| . By pulling out an overall J and looking at
the ratio of exchange interactions, we reduce the number of
variables and produce an overall scaling factor that helps
determine the energy scale of a material system.

For ease of calculation, angles θA, θB, and θC are replaced
with the values 0, 0 + q, and 0 + r, respectively, where q
and r are deviation angles from the FM state, as illustrated in
Fig. 3(a). The energy becomes

E0

|J|S2
= −2

3
(α cos(q) + β cos(r) + J cos(q) cos(r)) − D.

(6)
Assuming no magnetic field nor anisotropy, the energy func-
tion was inspected for minima and maxima. The values for
α and β that minimize E0 out of the plane belong to the
sinusoids α = −J cos(r) and β = −J cos(q). It is impor-
tant to remember that this relationship is only accurate for
θ values that are multiples of π , as the consideration of
any other value reinstates the necessity for the first term of
Eq. (4), leading these relationships to oscillate discretely be-
tween −1 and 1 as (−1)n+1J where n is q/π for α and r/π
for β.

The case where β and α are equal to each other, but not
necessarily to J , is termed the isosceles case. While r and q
are not mathematically required to be equivalent when α and
β are equal, it is likely that the angles will be equal through
symmetry. The minimizing formula is then α = −J cos(q),
which is shown in Fig. 5. To minimize E0, J ′ may never exceed
J in magnitude. Assuming a positive J value, the maximum
value J ′ = J requires the AfM configuration (q = π ) to min-
imize energy and the minimum value (J ′ = −J) requires the
FM (q = 0) configuration for minimization.

The simplest case, where all exchange interactions are
equal (β = α = J ), is termed the equilateral case. In
this state, the value for g that minimizes E0/|J|S2 is π ,
which represents the AfM configuration. E0/|J|S2 is max-
imized by g = 0, indicating the FM configuration. These
configurations are therefore the focus of our out-of-plane
analyses.

The classical energy for the out-of-plane FM configuration
(θ = 0) is reduced to

E0,FM

|J|S2
= −2

3
(α + β + J ) − D (7)
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FIG. 4. (a) Phase diagram for spin waves out of the plane for
all values of J and D. (b) and (c) are the in-plane diagrams for all
values of D, where (b) is for positive J values and (c) for negative
values. The phase borders were determined by setting the simplified
classical energies for each pair of phases equal to each other. The
configuration for each region was determined by testing which phase
offered the lowest energy for the α and β values encompassed by that
region. There may be other spin configurations to consider in thor-
oughly characterizing these phases. However, these would require a
considerable amount of extra parametrization. To remain within two
dimensions and make as few assumptions as possible, we consider
only the most basic configurations for this portion of the analysis.

and the AfM energy to

E0,AfM

|J|S2
= −2

3
(−α − β + J ) − D. (8)

These energies were used to generate the phase diagram in
Fig. 4(a).

B. In-plane spin configurations

For in-plane configurations (θ = π/2), the classical energy
becomes

E0

|J|S2
= −2

3
[α cos(φA − φB) + β cos(φA − φC )

+J cos(φB − φC )]. (9)

To reduce the number of variables, the energy is rearranged
in terms of deviation from the 120◦ phase such that φA, φB,
and φC become (1/2)π , (7/6)π + g, and (11/6)π − h, re-
spectively, as shown in Fig. 3(b). Assuming all variables are
real valued, the energy becomes

E0

|J|S2
= 2

3

[
α sin

(
π

6
+ g

)
+ β sin

(
π

6
+ h

)

+J cos

(
π

3
+ g + h

)]
. (10)

It is important to note that since we are using the isotropic
Heisenberg model, all spins in this configuration can be ro-
tated in the plane by any phase factor of φ′ as it is energetically
degenerate. We choose this particular orientation to simplify

FIG. 5. α as a function of q and g such that classical energy
is minimized for the out-of-plane and in-plane spin configurations,
respectively, where J is positive. Negative J values are characterized
by a reflection of this graph about the α axis.

the expressions. Using this system, the relationships between
spin angle and exchange interaction strength which minimize
the classical energy are determined analytically as

α = J
sin

(
π
3 + g + h

)
cos

(
π
6 + g

) and β = J
sin

(
π
3 + g + h

)
cos

(
π
6 + h

) . (11)

Unlike the out-of-plane case, these relationships hold true for
all values of g and h.

In the isosceles case, the minimizing relationship becomes

α = J
sin

(
π
3 + 2g

)
cos

(
π
6 + g

) . (12)

Equation (12), illustrated in Fig. 5, shows that to minimize
E0, the absolute value of exchange interaction J ′ may never
exceed twice the value of J . It may also be observed that
when J is positive, the maximum value J ′ = J requires the
AfM configuration (g = π

3 ) to minimize classical energy and
the minimum value J ′ = −J requires the FM configuration
(g = − 2π

3 ).
Examination of the equilateral case showed that the min-

ima and maxima of E0/|J|S2, regardless of the sign of J , are
produced by the 120◦ and FM configurations, respectively.
The 120◦ phase has the lowest energy of all equilateral struc-
tures in and out of the plane and is determined as the ground
state.

The AfM configuration features as a local minimum for
the classical energy, yet proved too unstable for spin-wave
examination in the equilateral case. It is analyzed, however,
with further distortions.

The FM, AfM, and 120◦ phases will therefore be the initial
subjects for in-plane analyses. In the plane, the FM energy is
simplified to

E0,FM

|J|S2
= −2

3
(α + β + J ), (13)
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the 120◦ configuration energy to

E0,120

|J|S2
= 1

3
(α + β + J ), (14)

and the AfM energy to

E0,AfM

|J|S2
= 1

3
(−α − β + J ). (15)

Overall, the classical energies allow for the general under-
standing of where these few configurations are stable with
respect to each other. It is important to note that other mag-
netic structures, especially canted noncollinear or > 3-SL
magnetic configurations could also exist. However, there are
too many to meaningfully characterize all possibilities here.
Therefore, it is essential to look at the spin dynamics to gain
insight into the spin configurations’ stability. If a system is a
stable ground state according to the classical considerations
but unstable from the standpoint of the spin dynamics, then
this is an indication of the presence of a canted noncollinear
state. Therefore, the next step is to evaluate these configura-
tions for dynamic stability.

IV. SPIN-WAVE DYNAMICS

Exploring the spin-wave dynamics for the five most inter-
esting spin configurations determined by the classical energy,
we first generate solutions to the simplest case where all ex-
change interactions are equal, no magnetic field is applied, the
spin angles are held constant, the physical distance between
each atom remains static, and the only variation is anisotropy.
Beyond this, we produce spin-wave solutions for the sublattice
where exchange interactions are no longer equal, first explor-
ing only one distortion (the isosceles case), then examining
the case where no two interactions are equal, termed the
scalene case. Considering purely in-plane spin configurations,
the latter two cases are further probed by varying the spin
angles. The varied spin angles considered belong to the classi-
cal energy minimizing relationships discussed in the previous
section.

There are a few formatting rules applied throughout the
figures in the next section. For every 3D spin-wave graph, a
color scale is applied which spans all colors from purple to
red, where purple reflects the minimum ω/|J|S value 0 and
red indicates the maximum ω/|J|S value between all graphs
in the group of graphs to which that color scale is applied. For

example, in Fig. 6, the 120◦ graphs (k) and (l) are grouped, and
the color scale for both spans from purple at 0 to red at 4.5,
where 4.5 is the highest ω/|J|S value between both graphs.
The color grouping used between graphs is specified in each
figure caption.

To contextualize the spin waves’ form with respect to the
reciprocal lattice, all 3D spin-wave graphs include a projec-
tion of the equilateral FM configuration’s central energy level
[pictured in Fig. 6(a)] onto the k plane. The projection is a
heat map whose colors are scaled relative to that single energy
level’s minima and maxima, as in Fig. 2(b).

The 2D spin-wave graphs in the isosceles figures include
only three α values, as opposed to the six considered in the
3D graphs, because the inclusion of all six α values created
massive overlap in the lines defining the energies, rendering
the graphs unreadable. Any destabilizing α values were thus
excluded from these representations to offer greater clarity.

All spin-wave figures after the equilateral figure include
small triangular diagrams. These are included to visualize
the proportions of the exchange interaction strengths between
atoms. Red lines indicate negative valued interactions and
black positive. The atoms are colored to reflect the spin con-
figurations as in Fig. 1, save those in the isosceles graphs: As
the FM and AfM configurations share triangle diagrams, the
diagrams were colored to reflect the AfM mode.

A. Out-of-plane configurations

1. Ferromagnetic phase

Since all spins in the FM phase point in the same direction,
it is expected this phase is stable when each of the exchange
interactions between these aligned sites (J , α, and β) are
positive. We examine the effects of interaction competition on
the FM phase to understand when it becomes unstable from a
spin-wave standpoint.

Figures 6(b) and 6(c) show how the equilateral (α = β =
J = +1) out-of-plane FM spin waves evolve with anisotropy.
The anisotropy present in Fig. 6(c) is equal to the exchange
interaction (D = +1). It is observed that, without anisotropy,
the spin waves are identical to the FM configuration pointing
in the plane, Fig. 6(h). As expected, easy-plane anisotropy
present in the out-of-plane configuration simply adds uni-
formly across the k-plane to all energy states. The spin-wave
energies ωi are represented analytically as

ω0/|J|S = 2D + 6J ,

ω±/|J|S = 2D + 3J ±
√

8J 2 cos(kx )2 cos

(
kx

2
−

√
3ky

2

)2

+ 8J 2 cos

(
kx

2
±

√
3ky

2

)
cos(kx ) sin(kx ) sin

(
kx

2
−

√
3ky

2

)
+ J 2.

(16)

Moving to the first distortion of exchange interactions, the
spin-wave dynamics of various isosceles states (α = β) are
explored for the FM configuration in Fig. 7, which illustrates
the transformation of the spin waves as the value of α changes.

With an α value of 2, the interaction between atoms B and
C has half the magnitude of the other two. This distortion
is reflected in the dispersion shown in the ky direction when
inspecting the spin-wave diagram. A similar, perpendicular
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FIG. 6. The spin-wave dynamics for the simplest spin configurations, where J = J ′ = J ′′ (α = β = J ) and no magnetic field is present.
(a), (d), (g), and (j) draw out the spin waves through the path in k space which passes through symmetry points �, M, K, then back to � for
the out-of-plane FM, out-of-plane AfM, in-plane FM, and 120◦ configurations, respectively. (b) and (c) are the out-of-plane FM (J = 1) spin
waves with anisotropies D = 0 and D = 1, respectively. (e) and (f) show a similar evolution in the AfM configuration (J = −1). However,
since the equilateral spin waves are not stable without anisotropy, the anisotropies here are D = 1 (e) and D = 2 (f). (h) and (i) are the in-plane
FM (J = 1) spin waves with anisotropies D = 0 and D = −1, respectively. (k) and (l) are spin waves for the 120◦ (J = −1) configuration.
Although stable with none, (k) and (l) reflect a large anisotropy value of −3 to illustrate the full transformation that this configuration’s spin
waves undergo as this parameter is amplified. Color scales applied to the spin waves are grouped by configuration/column. All 3D figures
include a projection of the central energy level of the FM configuration spin waves onto the k plane to visualize the symmetry points. The heat
map projection’s colors are scaled relative to that of the single energy level’s minima and maxima, as in Fig. 2(b).

phenomenon can be seen in the α = 1
2 case. The inclusion

of anisotropy energy, predictably, has a similar additive ef-
fect to that observed in the equilateral spin waves. As the
spins are unidirectional in a ferromagnet, it is expected that
the exchange interactions are all positive and that negative
interactions do not reflect a stable system. This instability
is confirmed visually by inspecting the negative α-valued
graphs, except for the α = −2 spin waves, which seem to
become stable due to a symmetry effect in the interactions.
More negative α values produce equally stable-looking waves.
It becomes apparent, however, that this state is not truly stable
when considering its behavior with anisotropy. Notice that the
graph in the second column, which reflects D = +1, has lower
overall energy than its no-anisotropy counterpart, which is
indicative of an unstable system. This is in agreement with
the classical energy, which indicates that this state is only
metastable. A similar effect in the AfM configuration is re-
alized in the next analysis. While calculable, the analytical
representation of the isosceles spin waves is too large to be
presented here and cannot be used to provide insight.

Figure 8 shows the scalene spin waves with all permuta-
tions of a 1-2-3 proportionality between α, β, and J , given

a static FM spin configuration. It is observed that, as in
the isosceles case, both the in-plane and out-of-plane FM
configurations produce identical spin waves throughout the
variation of exchange interaction, so long as anisotropy is not
considered. However, their changes with respect to anisotropy
differ. For simplicity, anisotropy is excluded from the sca-
lene discussion. These visualizations illustrate the dispersion
that occurs along the direction of the most robust exchange
interaction.

2. Antiferrimagnetic phase

In this configuration, sites B and C in Fig. 2(a) are aligned
and site A points in the opposite direction. It is thus ex-
pected that this configuration will be stabilized by a positive
exchange interaction J and negative interactions J ′ and J ′′.
However, with frustration in this system, the boundaries of
stability are of interest, as with the FM phase.

The out-of-plane, equilateral AfM energies are unstable
without anisotropy. The anisotropies D present in Figs. 6(e)
and 6(f) are valued at +1 and +2, respectively. As discussed
previously, it is expected that the AfM configuration contains
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FIG. 7. Variously distorted isosceles spin waves for the out-of-plane configurations where, in all cases, J = 1. The first row shows the
spin-wave energy values through the path in k space that passes through symmetry points �, M, K, and back to �. These 2D representations
exclude half of the α values shown in the 3D graphs due to a large amount of overlap rendering the paths unreadable. The α value for each row
of graphs is given by its central-column triangle diagram. The coloring of atoms indicates the AfM configuration. While the FM state would
be more accurately determined by one uniform color, the dichromatic coloring of the AfM phase was chosen to represent either state here.
Unstable spin waves were included to illustrate the results of the exchange interaction manipulations that oppose the intuited signs. For both
configurations, the evolution of these graphs with anisotropy was included in its second column. All 3D FM graphs (first two columns) are
color grouped together and all 3D AfM graphs are similarly grouped.
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FIG. 8. The FM spin waves with scalene exchange interaction proportions. The α and β values for each are separated by a comma as α, β

in the corresponding triangle diagrams. All graphs are grouped together in a single color group. All graphs have D = 0.

one positive exchange interaction (between the two same-spin
atoms) and two negative interactions. However, as all ex-
change interactions are strictly equal in the equilateral case, all
exchange interactions were assigned a negative value to reflect
the net negativity of the three interactions together. Therefore,
this state has J = α = β = −1. The analytical representation
of these energies is too large for inclusion.

TABLE I. The spin angles calculated for α values by the rela-
tionship in Eq. (12).

Isosceles spins

J α β φA(◦) φB(◦) φC (◦)

−1 −2 −2 90 270.0 270.0
−1 −3/2 −3/2 90 228.6 311.4
−1 −1 −1 90 210.0 330.0
−1 −3/4 −3/4 90 202.0 338.0
−1 −1/2 −1/2 90 194.5 345.5
1 −2 −2 90 90.00 90.00
1 −3/2 −3/2 90 131.4 48.60
1 −1 −1 90 150.0 30.00
1 −3/4 −3/4 90 158.0 22.00
1 −1/2 −1/2 90 165.5 14.50

Figure 7 includes the isosceles (α = β) out-of-plane AfM
spin waves. The expected stabilizing state is α = −1, while
J is positive, as the exchange interactions α and β are equal
and belong to the opposite-spin atom pairs. The spin waves at
this α value reflect this expectation in their visually apparent
stability. Interestingly, it is shown that various α values stabi-
lize this otherwise unstable configuration. Similar to the FM
phase, the AfM system has an unexpected metastable state
where all three exchange interactions are positive with an α

value of +2. Again, we see an overall lowering of energy
when anisotropy is included, revealing the volatile nature of
this arrangement.

TABLE II. The spin angles calculated for various combinations
of α and β determined by the relationships in Eq. (11).

Scalene spins

J α β φA(◦) φB(◦) φC (◦)

−1 −5/4 −3/2 90 217.1 311.6
−1 −3/4 −5/4 90 175.1 306.7
−1 −1/2 −3/4 90 152.7 306.3
−1 −3/4 −1/2 90 233.7 27.27
−1 −5/4 −3/4 90 233.3 4.940
−1 −3/2 −5/4 90 228.4 322.9
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FIG. 9. Variously distorted isosceles spin waves for the in-plane FM and AfM configurations, each of which has J = 1. The first row
shows the spin-wave energy values through the path in k space that passes through symmetry points �, M, K, then back to �. These each
exclude half of the α values shown in the 3D graphs, as a large amount of overlap with the other values made them too difficult to read. The
α value for each row of graphs is given by the diagram in the central column. For both configurations, the evolution of the spin waves with
anisotropy was included in the second column for each. FM graphs are color grouped together and all AfM graphs are similarly grouped.
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FIG. 10. The spin waves for the AfM configuration with scalene exchange interaction proportions. The α and β values for each case are
separated by a comma as α, β in the corresponding triangle diagrams. A single color group encompasses all 3D graphs shown. All graphs have
D = 0.

The scalene spin waves with all permutations of a 1-2-3
proportionality between α, β, and J , for an AfM spin con-
figuration, are shown in Fig. 10. As in the isosceles case, the
in-plane and out-of-plane configurations, with no anisotropy,
produce identical spin waves throughout the exchange interac-
tion variation. For the sake of simplicity, anisotropy-inclusive
spin waves are excluded from the narrative. As with the
isosceles case, dispersion in the spin waves occurs along the
direction of the strongest exchange interaction.

B. In-plane configurations

1. Ferromagnetic phase

Figures 6(h) and 6(i) show the evolution of the equilateral
in-plane FM spin waves with the presence of anisotropy. Easy-
plane anisotropy added to the in-plane configuration stretches
the spin waves as interactions strain the easy orientation. For
this configuration, the spin-wave energies can be represented
analytically and shown to be
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(17)

Various isosceles FM spin waves are illustrated in Fig. 9.
It is shown that, as in the equilateral case, the spin waves are
identical to the out-of-plane configuration where anisotropy is
not considered. Otherwise, the inclusion of anisotropy energy

has the same stretching effect as that in the equilateral spin
waves. Like the out-of-plane FM configuration, the analytical
representations of the energies that describe an isosceles in-
plane FM state are too large to include here.
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FIG. 11. Isosceles distortions of spin waves for the 120◦ configuration. The first row shows the spin-wave energy values through the path
in k-space that passes through symmetry points �, M, K, then back to �. The α value for each row of 3D graphs is given by the diagram in the
left-hand column. Note that there are no stable spin waves for this configuration without anisotropy, aside from the equilateral (α = −1) mode.
This being the case, multiple magnitudes of anisotropy were included to better illustrate the stable possibilities for the 120◦ phase. Because
no positive-α state could be stabilized with anisotropy lesser in magnitude than 3|J|, only negative values were included here. A single color
group encompasses all 3D graphs in this figure.

As no anisotropy was considered for the scalene cases,
Fig. 8 represents both in- and out-of-plane configurations and
is not discussed redundantly.

2. Antiferrimagnetic phase

Even with the presence of anisotropy five times the magni-
tude of the exchange interaction, the equilateral spin waves for
the in-plane AfM configuration were unstable and therefore
excluded from Fig. 6.

Figure 9 illustrates isosceles in-plane AfM spin waves. As
in the out-of-plane case, there are various α values which
stabilize this unstable configuration. Without anisotropy, these
spin waves are identical to the out-of-plane spin waves. Yet,
when present, a stretching of energy is observed as a result of
anisotropy.

Scalene spin waves for the in-plane AfM configuration
with D = 0 are shown in Fig. 10 and are identical to those
of their out-of-pane counterparts.

3. 120◦ phase

The ground state of the kagome lattice behaves peculiarly
in contrast to the behaviors of the FM and AfM configu-
rations. The no-anisotropy spin waves in Fig. 6(k) show a
degeneracy of energy levels for the 120◦ phase. This degen-
eracy is lost, however, as anisotropy increases. As anisotropy
energy increases to outweigh the exchange interactions, Dirac
nodes form in the system. While lower values of anisotropy
maintained stable spin waves, the relatively large amount
of D = −3 is included for the purpose of illustrating this
phenomenon. Lesser anisotropies are included in the 2D
spin wave plots in Fig. 6(j) to convey its interesting path to
this point.
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FIG. 12. Isosceles distortions of in-plane spin waves according to the relationship defined in Eq. 12. Aside from the two graphs whose α

value approaches −2, all spin waves pictured have anisotropy D = −1. Only negative α values are depicted because when both the α and J
signs are reversed for any given combination, they produce the same spin waves, with the exception of the addition of anisotropy. Additionally,
the spin rotating angles are provided in Table I, and two groups are defined for clarity in color scaling, where those without anisotropy are
grouped together and those with are grouped separately.

Here, the analytical spin-wave energies can be shown as
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The distortion of exchange energies did not provide any ad-
ditional stability to the 120◦ configuration (shown in Fig. 11).
In fact, any distortion destabilized the system and required
anisotropy on the order of the exchange interaction for sta-
bility. Even anisotropy, however, could not stabilize any state
whose α value had a sign opposite to that of J . This instability
is predicted by the state being a particular case of energy
minimization related to the α and β values.

Because isosceles distorting exchange interactions for the
120◦ phase offered no stability, scalene spin wave analyses for
this configuration were omitted entirely.

C. Spin angle distortions

The 120◦ phase showed to be quite a unique configuration.
While it is the ground state when all exchange interactions
are equal, any distortion of the exchange parameters desta-

bilize the phase, unlike the other configurations which could
maintain stability through some distortion. In light of this,
we looked for stability in new states whose spin angles and
exchange interactions together minimize the classical energy.

Before considering all distorting parameters, we investi-
gate the isosceles (α = β) states under the assumption of
the simplest case, where rotation angles g and h are also
equivalent, as described in Eq. (12). It can be inferred from
this minimizing relationship, illustrated in Fig. 5, that there
are two angle g solutions for any given α. However, these
two values produce equivalent spin waves as the two g values
produce the same two values for spin angles for atoms B and
C, but the angles assigned to each site are reversed. Spin waves
for some interesting α values are illustrated in Fig. 12. As
nearly every result was unstable, an anisotropy of D = −1
was applied to all states except those two which have an α

value approaches −2. These do not include anisotropy.
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FIG. 13. Scalene distortions of in-plane spin waves according to the relationships in Eq. (11). All spin waves shown have anisotropy
D = −1. The α and β values for each graph are presented within the triangle diagrams, respectively. Additionally, the spin rotating angles are
provided in Table II. A single color group encompasses all graphs.

Examining further distortion, Fig. 13 shows scalene spin
waves with various values of α and β, given a negative
J , and with spin angles defined by the classical energy
minimizing relationships in Eq. (11). As the scalene spin
waves were also unstable without anisotropy, the solutions
pictured reflect a value D = −1. These visualizations il-
lustrate the dispersion that occurs along the direction of
the strongest exchange interaction. The fact that these
polar spin angle solutions which minimize the classical en-
ergy rely on anisotropy for stability may indicate that the
ground-state configurations for these distorted exchange in-
teraction states are canted out of the lattice plane to some
degree.

Overall, these results indicate that purely in-plane mag-
netic configurations which deviate from the FM, AfM, and
120◦ states require anisotropy to stabilize within the kagome
lattice. We expect that there will be a reduction in the required
anisotropy as the spin angles are allowed to cant in any out-
of-plane direction (not necessarily along the z axis) and form
distinct noncollinear phases. Further study into the realm of
these out-of-plane canted phases needs to be done. However,
the results here are important for understanding the evolution
of the magnetic kagome lattice’s spin waves with variable
exchange interactions.

V. DISCUSSION

The quest for an understanding of quantum spin states,
especially the quantum spin liquid, has led to a wealth of
experimental realizations and studies on the structural, mag-
netic, and thermodynamics of kagome systems [42–47] as
well as distorted kagome systems [48–51]. While many stud-
ies focus on the interpretation of either one material or even
one magnetic configuration, the ability to discern the various
magnetic interactions with and without distortions has been
a challenge that leads most to using numerical approaches
in modeling experimental data. However, examining these
systems within an analytical limit for the symmetric systems
and evolving out into the distorted systems allows for one to
gain a deeper understanding of the effects of the interactions
and how they distort the magnetic systems.

By analyzing the spin waves with static spin angles and
varying exchange interactions, we gain insights on the effect
this distortion alone has on the magnetic identity of this sub-
lattice. A dispersive effect on the spin waves in accordance
with exchange interaction proportionality is illustrated in the
isosceles and scalene cases for all five of the most straightfor-
ward configurations, and some unexpectedly metastable states
fell out of unlikely exchange interaction states for the FM and
AfM cases.
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FIG. 14. Spin-wave comparison for the equilateral, isosceles, and scalene magnetic configurations. Here, all figures have J = D = −1.
(a) has equilateral exchange interactions and is minimized by the 120◦ spin angles. (b) and (c) have isosceles exchange interactions where α is
−1/2 and −3/2, respectively. (d)–(f) have scalene exchange interactions. (d) is J dominant with α = −1/2 and β = −3/4. (e) is α dominant
with α = −5/4 and β = −3/4. (f) is β dominant with α = −5/4 and β = −3/2.

Although it is the ground state classically, the special-
case nature of the 120◦ phase is underlined by its inability
to retain stability as its exchange interactions are distorted.
This led to our employing the energy-minimizing relation-
ships for spin angles in seeking stable spin waves for these
changing α values, which pointed to even further spin dis-
tortions for stability. The next natural step in this vein would
be to numerically minimize the classical energy with full
freedom of spin angles, allowing for continuity in both the
polar and azimuthal angles. Limiting to purely in-plane or out-
of-plane angles offered analytical insights that are invaluable
in characterizing magnetic relationships. However, to more
deeply describe the most natural behaviors of atoms in this
lattice, the allowance of canted configurations is a necessary
consideration.

While we give an overview of the effect for spin exchange
distortions, most experimental groups are looking for simple
and straightforward manners to evaluate the systems that they
are examining. To help in evaluation and characterization
of kagome spin systems, we have plotted our spin waves
normalized to the leading magnetic exchange energy J and
the general spin S, which allows experimentalists to gain a
general comparison without having to fit their data. Although,
in some cases we do provide the analytical solution, where the
deviation from the simple solution can also provide helpful
information in the identification of the system.

Figure 14 shows the spin waves for various parameters
as distortions are introduced. From this figure, some trends
can be easily illustrated. For example, Fig. 14(a) shows the
ground state system with J = −1. This results in an equilat-
eral 120◦ phase in which a clear flat band occurs and distinct
zero-energy modes are found at the � point. However, the
introduction of an isosceles distortion [Figs. 14(b) and 14(c)]
bends the flat band and produces three distinct excitation
bands. The separation of these bands is a clear indicator of
the strength of the isosceles distortion. If the distortion energy

is smaller than |J |, then the system is shifted to lower energy.
However, a larger distortion energy will produce a greater
separation of the top bands.

The addition of a scalene distortion [Figs. 14(d)–14(f)]
is a bit harder to tell. However, this typically leads to a
general flattening of the lowest energy band away from the
� point, which should be detectable using techniques such
as inelastic neutron scattering that probe these characteristic
modes.

VI. CONCLUSION

Using an isotropic spin-spin exchange Hamiltonian with
z-axis anisotropy, we determine the phase diagrams for
various in- and out-of-plane spin configurations as well as the
corresponding spin-wave dynamics on the kagome lattice. We
also examine how the spin waves are affected by exchange in-
teraction distortions through the effects of variable first-order
magnetic interactions. Using an exact diagonalization method,
we provide the analytical solutions for the 120◦ phases, as
well as multiple illustrations of the spin dynamics for variable
exchange parameters to detail the boundaries of the phases.

Overall, this paper aims to provide insight into the spin
dynamics of the kagome lattice to help in the characteriza-
tion of its noncollinear phases. Therefore, we show how the
distortion of the exchange parameters and spin angles affect
the overall spin dynamics, which provides useful information
for the characterization of material systems, especially when
investigating these phases using inelastic neutron scattering.
While future studies using Monte Carlo simulations may be
able to provide more guidance on the identification of the
overall magnetic configurations within the phase space, this
paper aims to provide a general understanding of the trends
and variations as the first-order interaction is distorted, which
can help experimentalists in the analysis and characterization
of magnetic kagome systems.
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