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Intrinsic spin-dynamical properties of two-dimensional half-metallic FeX2 (X = Cl, Br, I)
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Ultrathin two-dimensional (2D) ferromagnets with intrinsic half-metallicity are highly prospective in design-
ing nanoscale spintronics devices. In this work, we systematically investigate the spin transport and dynamical
properties of one such group of promising 2D ferromagnets—monolayer iron dihalides (FeX2, X = Cl, Br, I)—
using density functional theory (DFT). First, we explore the spin transport properties of these FeX2 monolayers
by combining the nonequilibrium Green’s function (NEGF) technique with DFT. This study shows an inherent
half-metallicity with a large spin gap that offers 100% spin-polarization over a wide Fermi window (>1 eV). We
then focus on understanding their magnetocrystalline anisotropy, Gilbert damping, and exchange interactions,
in-depth, which are the key aspects in controlling the spin dynamics. We use force theorem to determine
the magnetocrystalline anisotropy and Kambersky’s torque-torque correlation model for Gilbert damping. Our
calculations reveal a sizable perpendicular anisotropy (0.04 to 0.25 mJ/m2) along with a relatively low Gilbert
damping (7.9×10−5 to 3.7 × 10−4) in these materials. Using spin-polarized Green’s function formalism, we
finally explore the effective exchange interactions in these materials and determine their spin-wave stiffness,
exchange stiffness constants, and Curie temperatures. All these calculations, collectively, provide significance of
these 2D FeX2 ferromagnets for next-generation spintronics applications.
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I. INTRODUCTION

Half-metallic ferromagnets (HMFs), having complete spin-
polarization at the Fermi level (ε f ), are one of the most
efficient spin source materials for magnetic tunnel junctions
(MTJs) or spin-valve devices [1,2]. Particularly, the abil-
ity to generate pure spin current, large magnetoresistance,
higher spin injection efficiency, and lowering the power
consumption make them very promising in developing high-
performance magnetic memory and logic devices [1–6]. Due
to these facts, several HMFs have been identified, to date,
although most of them are in their three-dimensional (3D)
bulk form. For instance, different Heusler alloys, transition
metal oxides/chalcogenides, and double perovskites have
been found as promising 3D HMF-materials and are explored
successfully in various spintronics devices [6–9]. However,
maintaining a long-range magnetic ordering is quite difficult
while lowering the dimensions of these systems for nanoscale
device fabrication [10]. In that sense, magnetic 2D van der
Waals (vdW) materials are of good choice due to their in-
herent broken spin rotational symmetry that allows them to
maintain a magnetic ground state even in the single-layer limit
[11]. Recently, various experimental studies also confirm the
existence of sufficient ferromagnetism in monolayers of dif-
ferent magnetic vdW materials, (e.g., CrI3, VSe2, MnSe2, etc.)
[11–14], and this indeed opens a new era of designing spin-
tronics devices at the nanoscale regime [15]. However, if we
see this class of materials, most of them do not possess intrin-
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sic half-metallicity. Thus, several alternative approaches are
adopted, like surface adsorption, doping, edge modification,
interface engineering, or even defect engineering to intro-
duce half-metallicity in them [16,17]. Unfortunately, all these
methods add more complexity in synthesizing these vdW ma-
terials. To overcome this, currently, 2D vdWs with intrinsic
half-metallicity have gained significant attention in designing
ultrathin spintronics devices. In this aspect, the family of FeX2

monolayers has recently emerged as promising candidates due
to their robust intrinsic half-metallic properties. This system
basically came to light when Torun et al. [18] theoretically
predicted a high magnetic moment (4 μB/unit cell) and excep-
tionally large spin gap (∼4.5 eV) for FeCl2 monolayer. In fact,
this wide spin gap is highly suited in reducing spin-flipping or
spin-leakage in nanoscale devices [3,19]. Since then, many
theoretical investigations on FeX2 monolayers were carried
out which were mainly devoted to their structural properties
and half-metallicity [19–21]. Recently, Ashton et al. [19],
along with these basic investigations, have further extended
their theoretical analysis to magnetocrystalline anisotropy
energy to determine the ferromagnetic ordering of these ma-
terials.

However, half-metallicity, solely, is not a deterministic fac-
tor for practical applications of any material for spin-based
device fabrication. To assess the potential of the material
for realistic applications, it is also necessary to understand
its spin-dynamical properties, which are governed by the
Landau-Lifshitz-Gilbert (LLG) equation [22],

∂m
∂t

= −γ (m × Heff ) + α

(
m × ∂m

∂t

)
, (1)
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where, m(=M/Ms) is the normalized magnetic spin moment
(with Ms as the saturation magnetization), γ is the gyromag-
netic ratio, and α is the Gilbert damping parameter. Within
the effective magnetic field Heff (=−∂E [M]/∂M) in Eq. (1),
the free-energy functional E [M] has three main contributions;
magnetocrystalline anisotropy (MCA), exchange interaction
(EXC), and external field energy [23]. This MCA, originating
from the spin-orbit interactions (SOC) of a material, is a
key parameter that decides the energetically favorable mag-
netization direction of a crystal (called as easy axis) and
plays a crucial role in determining the thermal stability of
spin-transfer-torque based magnetic random access memories
(STT-MRAMs) [24,25]. Similarly, EXC is also a material
property that controls the alignment of neighboring moments
and describes different dynamical phenomena, like magnetic
vortices, skyrmions, etc., in ferromagnets [26]. Moreover, this
EXC along with the MCA determines the magnetic domain
wall-width and exchange-length in STT-MRAMs [27]. Be-
sides, the Gilbert damping, which regulates the magnetization
precession in Eq. (1), also helps in realizing the spin pumping
phenomena (that generates pure spin current by magnetization
dynamics) as well as the response speed of STT-MRAMs
[24,25,28]. Therefore, understanding and quantification of
these intrinsic magnetic properties are highly necessary to
determine the performances of spintronics devices based on
these materials. However, to the best of our knowledge, there
is no systematic study yet to determine all these intrinsic
spin-dynamical properties of FeX2 monolayers, which is the
scope of this work.

With this aim, we present here the spin transport and dy-
namical properties of these FeX2 monolayers by means of
DFT. At first, we provide a general overview of the crys-
tallographic nature and stability of these crystals prior to
investigating the spin-dependent transport properties using
spin-polarized DFT and NEGF. The detailed analysis reveals
not only a robust half-metallicity of these materials as re-
ported in the literature [18–21] but also a high conductance
over a wide Fermi window. We then evaluate the MCA en-
ergy at the atomic level using the “force theorem” and adopt
Kambersky’s torque-torque correlation model to determine
the Gilbert damping tensors. Finally, we estimate the effec-
tive exchange-coupling constants, employing spin-polarized
Green’s function formalism, and analyze the spin-wave stiff-
ness, exchange stiffness constants and Curie temperatures of
this group of materials. This spin-dynamical analysis for the
2D vdW materials, especially at the atomic level, is rarely
found in the literature and, thus, will be pioneering for 2D-
spintronics applications.

II. COMPUTATIONAL DETAILS

The calculations of different electronic and magnetic prop-
erties of monolayer FeX2 were performed using DFT, as
implemented in QuantumATK [29]. Within the generalized
gradient approximation (GGA), a Perdew-Burke-Ernzerhof
(PBE) functional with SG15 type of norm-conserving Van-
derbilt pseudopotentials (PPs) and high basis set were used to
describe the exchange-correlation effects [30]. In addition, a
well converged �-centered k-point sampling of (21×21 × 1)
and cutoff energy of 160 Ryd were used for these calculations,

FIG. 1. (a) Side view of monolayer 1T FeX2 crystals and their
corresponding first Brillouin zone. (b) FeCl2 phonon band structure,
a representative phonon dispersion of monolayer 1T FeX2.

unless specified. Besides, for controlling the iterations, Pulay
mixer algorithm was used along with a tolerance of 10−5

between two consecutive steps. The primitive unit cell of
monolayer FeX2 contains one functional unit (f.u.), i.e., one
Fe and two X (X= Cl, Br, I) atoms. Moreover, to make a
monolayer, a thick vacuum of 20 Å along the c axis (while
retaining the lattice parameters “a” and “b” as periodic) was
used to minimize the interactions between the periodic images
of the layers. The optimized crystallographic structures were
obtained by Broyden-Fletcher-Goldfarb-Shannon (LBFGS)
scheme until the residual forces acting on atoms were miti-
gated to less than 0.005 eV/Å and the stress was less than
0.0001 eV/Å3, to reach the minimum-energy configurations.
Alongside this, a frozen phonon method with a 9 × 9 × 1
supercell was employed to obtain phonon dispersions to il-
lustrate the structural stability of all these FeX2 crystals. To
note, the calculated results of different structural, electronic
and magnetic properties using SG15 PPs are also consistent
with the results obtained by plane-wave PPs in QuantumATK.
Besides, the main technicalities and necessary theories of
different calculations are included in individual sections.

III. RESULTS AND DISCUSSION

A. Crystal structure and stability

Iron dihalides are inherently layered structures and, in
their bulk form, can adopt two different polymorphs, namely
trigonal (space group: P3̄m1) or rhombohedral (space group:
R3̄m), depending on the geometrical orientation of stacked
layers [31]. As often seen, the individual layer has octa-
hedrally coordinated [FeX6]4− units, forming a triangular
arrangement of X-Fe-X atoms in each of the FeX2 layers [see
Fig. 1(a)]. Whereas, each layer stacks along the c axis in two
different ways by weak vdW force to produce trigonal and
rhombohedral bulk form. Therefore, we can say that the FeX2

monolayers, extracted from different bulk polymorphs are of
similar structure (usually called as a 1T phase) and belong to
a C3v point group symmetry [18–20]. Our calculations show
that this 1T configuration of FeX2 monolayers is the most
stable configuration, and has much lower formation energy
(defined as, Eform = EFeX2 − EFe − 2EX) than the other possi-
ble form, hexagonal 1H, which is frequently found as a stable
state in transition metal dichalcogenides [32]. For instance,
the energy of 1T form of FeCl2 monolayer is lower by ∼0.26
eV/unit cell than its 1H form (see Supplemental Material
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TABLE I. Lattice parameter (a), average Fe-X-Fe angle (ϑ), formation energy (Eform per primitive unit cell), spin (μS) and orbital moments
(μL) in both individual and total number of atoms per primitive unit cell, spin gap (E↑

g ), and carrier densities (N ) at the Fermi level of FeX2

monolayers within spin-polarized GGA calculations. Available experimental data from Ref. [35] on bulk FeX2 lattice parameters are shown
for comparison.

a (Å) ϑ Eform μFe
S μX

S μtot
S μFe

L μX
L μtot

L E↑
g N |ε f

300K

DFT Expt. (◦) (eV) (μB) (μB) (μB) (μB) (μB) (μB) (eV) (cm−2)

FeCl2 3.546 3.570 91.009 −3.872 3.689 0.155 3.999 0.101 0.001 0.103 5.139 3.842×1013

FeBr2 3.745 3.740 90.076 −3.504 3.642 0.178 3.998 0.121 0.006 0.133 3.918 4.439×1013

FeI2 4.007 4.040 89.920 −3.341 3.535 0.232 3.998 0.159 0.016 0.191 3.106 3.137×1014

Table SI for other materials [33]). Moreover, the phonon dis-
persions also indicate real eigenfrequencies of all the branches
throughout the Brillouin zone of this 1T phase [Fig. 1(b)], and
there is no tendency of dynamical phase switching to stabilize
their ground state configurations. This means, 1T FeX2 mono-
layers are dynamically stable, and, thus, possible to synthesize
them by simple enough experimental techniques, like exfo-
liation or chemical vapor deposition (CVD) or sophisticated
molecular-beam epitaxy (MBE). In fact, Zhou et al. [34] have
recently grown FeCl2 using MBE and confirmed that FeCl2

remains in 1T phase even in the single-layer limit. However,
their study is concerned till the evaluation of material structure
and stability. We also summarize the optimized lattice proper-
ties of these monolayers (Table I) and these are in-line with
the previous theoretical as well as experimental reports on
monolayer or bulk forms of FeX2 [19,34,35]. For all the cases,
one can see the Fe-X-Fe bond angles are ∼90◦, whereas, the
lattice constant increases with an increasing atomic radius of
the halogens (Cl → Br → I).

We further evaluate the existence of ground-state magnetic
ordering by comparing the energies of nonmagnetic (NM),
ferromagnetic (FM), antiferromagnetic (AFM) (in a 2 × 2
supercell), and longer range antiferromagnetic (LRAFM)
configurations (e.g., up-up, down-down ordering in a 4 ×
4 supercell). The results indicate that the NM, AFM, and
LRAFM configurations are higher in energy than the FM one
(for instance, ∼1.68, ∼0.08, and ∼0.07 eV/unit cell higher,
respectively, for FeCl2; see Supplemental Material Table SI
for other materials [33]). This means, the ferromagnetic or-
dering in all these FeX2 monolayers is energetically favorable,
which is also consistent with the prior studies [18,19]. We also
compute the magnetic moments (μS) of these monolayers,
including the contribution of Fe and X atoms, from their
spin-polarized Mulliken populations. The result shows that
μS develops mainly at the Fe sites though there is a slight
development on halogens due to the coordination of halides
with Fe in FeX2 crystal (see Table I). This happens due to the
coordination (bonding mechanism) of halides with Fe atoms
that basically forms a ferromagnetic super-exchange coupling
between the 3d Fe atoms via nonmagnetic 2p X atoms (for a
detailed description of the spin moments, see Fig. S1 of the
Supplemental Material [33]). The overall μS in FeX2 is very
close to the expected value for a Fe2+ ion with four unpaired
electrons (4μB/unit cell). Besides, we also expect a significant
development of orbital moments (μL) due to the SOC that
arises from partially filled d orbitals of Fe2+ ions in FeX2.
Therefore, we estimate the μL of FeX2 monolayers including
SOC in our calculations, where the Cartesian component of

μL on site “i” is defined as [36]
〈
μi

L

〉 = Re
∑
n,k

ωk fn,k

∑
abc

	n†
a (k)[Li]abSbc(k)	n

c (k), (2)

in which n is the band index, k is the wave-vector with cor-
responding weight ωk, and fn,k is the occupation factor. The
second sum runs over atomic orbitals centered on each site
i, wherein 	n

c is the eigenvector component for an orbital a,
and L and S denote the orbital momentum operator and or-
bital overlap integrals, respectively. With this formulation, the
obtained μL are shown in Table I. The total orbital moments
of these materials are in the range of 0.1 to 0.2μB/unit cell
in which the primary contributions come from the Fe atoms.
Although these μL are much smaller than the isolated Fe2+

ion (2μB according to Hund’s second rule), they are quite
reasonable. In fact, these residual orbital moments indicate
that a partial quenching of orbital moments occurs due to
the strong SOC of these materials, similar to 2D Fe3GeTe2

ferromagnets [37]. Interestingly, the orbital moment on Fe ion
increases with the atomic radius of the halide atoms and it
happens due to the superexchange coupling in FeX2 crystals
(explained in Supplemental Material Fig. S1(d) [33] and later
in Sec. III E). It is evident from Table I that when we move
to heavier halide atoms (Cl → Br → I), the SOC on halide
atoms becomes stronger as μX

L increases [38]. Owing to the
superexchange interaction, this rise in μX

L also increases the
μFe

L and consequently, the overall orbital moment of FeX2

(see Table I). This section, overall, ascertains that we indeed
use the FeX2 monolayer in its stable configuration for further
calculations of their spin transport and spin-dynamical prop-
erties.

B. Half-metallicity

We now proceed to investigate the electronic and magnetic
properties of these single-layer FeX2 and discuss the impor-
tance of their application in spintronics devices. Figure 2(a)
shows the spin-resolved electronic band structure of FeCl2,
obtained within GGA. Notably, a spin gap (∼5 eV) already
opens up in the spin-up bands, while the spin-down bands
show metallic nature in the vicinity of the Fermi energy (ε f ).
Moreover, we observe that this metallic nature actually orig-
inates from the partially occupied Fe 3d orbitals [Fig. 2(b)].
Particularly, a hybridization of in-plane d orbitals (dxz, dyz,
dxy, and dx2−y2 ) occurs due to the super-exchange interaction
between neighboring Fe atoms and contributes carriers to
those metallic bands, whereas, the out-of-plane dz2 orbital
forms a nearly flat band very close to the Fermi level. These
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FIG. 2. (a) Spin-polarized electronic band structure and (b) cor-
responding fat bands of monolayer FeCl2. (c) 2D Fermi surface of
FeCl2, comprising spin-down carriers, where the holelike pockets
around K points (in yellow) belong to the lower energy band, while
the electron-holelike pockets around the � (in green) point belong to
upper energy band at ε f . (d) Spin-resolved conductance of FeCl2 at
the ballistic limit.

also reflect on the projected density of states (pdos) as seen
in Supplemental Material Fig. S2 [33]. A similar electronic
nature holds true for FeBr2 and FeI2 as well (see Figs. S3 and
S4 [33], and Table I for spin gaps). It is to note that the in-
clusion of noncollinear SOC leads to a slight reduction of the
spin gap, whereas, the spin-down states around ε f change only
marginally, and the materials remain essentially half-metallic
in nature (see Supplemental Material Fig. S5 [33]). Therefore,
the half-metallicity of this group of materials is completely
intrinsic, which means these materials can generate fully spin-
polarized carrier transport in spintronic devices.

Along with intrinsic half-metallicity, Fermi surface (FS)
also plays an important role in the spin-injection or filtering
efficiency in spintronic devices. Particularly, when the shape
of FS of a current injection source matches with the target
electrode material, the spin scattering reduces significantly
and the propagating states see a very low potential barrier
at the interface [39,40]. Therefore, we also analyze the FS
and show it in Fig. 2(c) for FeCl2, for instance. In the band
structure plot, we notice that there are two spin-down bands
that cross the Fermi level [see Fig. 2(a)]. These two bands
basically form the FS of these materials. The lower energy
band (at ε f ) forms a holelike pocket around the high symmetry
“K” point (in yellow). Whereas, the higher energy band (at ε f )
occupies the BZ except around the � and creates an electron-
hole like pocket around the center of the BZ (in green), as seen
in Fig. 2(c). For other iron halides too, we notice a similar type
of FS (see Supplemental Material Figs. S3(c) and S4(c) [33]).
Therefore, if we choose an injection source having FS very
close to that of FeX2 and similar structural parameters to min-

imize lattice strain, then we can easily mitigate the effect of
spin scattering and can generate a large spin-polarized current
in these FeX2-based devices. We further calculate the Fermi
velocity (v f ) across the FS in these materials following the re-
lation, h̄v f = dε(k)/dk, and find that there is a distribution in
Fermi velocity (in the range of 6.5 × 104 to 1.3 × 105 m/s for
FeCl2, 2.3 × 104 to 1.1 × 105 m/s for FeBr2, and 2.0 × 104

to 1.0 × 105 m/s for FeI2) as a consequence of the anisotropic
nature of FS in these materials. Despite this distribution, the
overall values are significantly high and, thus, high mobility
fully spin-polarized carriers might also be possible in these
materials.

Furthermore, we calculate the spin-resolved electronic
transport properties using NEGF-based carrier transport for-
malism in conjunction with DFT [41]. Within this framework,
the spin-dependent transmission occurs across the electrodes
through a finite-size scattering region and, accordingly, the
conductivity of different spin channels (σ↑ and σ↓) at an
energy “ε” in the ballistic limit is defined by the Landauer
formula,

σ↑,↓(ε) = e2

Aπ h̄

∫
BZ

dkT↑,↓(k, ε), (3)

with spin-dependent transmission probability,

T↑,↓(k, ε)

= Tr
[
�L

↑,↓(k, ε)G†
↑,↓(k, ε)�R

↑,↓(k, ε)G↑,↓(k, ε)
]
, (4)

where e is electron charge, h̄ is the reduced Planck constant,
and A is area. Moreover, the integral over k extends over the
Brillouin zone (BZ) to comprise all the transmission modes.
In Eq. (4), �

L(R)
↑,↓ (k, ε) is the so-called broadening matrix

associated with the self energy matrix (�L(R)
↑,↓ (k, ε)) of the

left (right) electrode and G↑,↓(k, ε) is the retarded Green’s
function (= [εS (k) − H↑,↓(k) − �L

↑,↓(k, ε) − �R
↑,↓(k, ε)]−1)

related to the Hamiltonian (H) and the overlap (S) matrices.
This procedure produces an energy-dependent conductivity
of FeX2. For instance, we show here the spin-resolved con-
ductivity of FeCl2 in Fig. 2(d). One can notice that the
conductivity around ε f is exclusively determined by the spin-
down channel with a remarkably large value (∼1011 S/cm2),
resulting from high carrier density (N ) around ε f (see N in
Table I). Hence, we can say that a strong metallic character
at the Fermi surface is induced entirely by these spin-down
carriers. Moreover, a 100% spin polarization (σSP = (σ↑ −
σ↓)/(σ↑ + σ↓)) exists over a sufficiently wide Fermi window
(∼1.1 eV). Similar to FeCl2, the other two iron halides also
have the same transport properties (see Supplemental Ma-
terial Figs. S3(d) and S4(d) [33]). This implies, a perfect
spin filtering can be achieved and can maintain a high tunnel
magnetoresistance over a broad range of applied bias while
employing these materials in MTJs. In this context, we want
to mention that DFT-GGA usually underestimates the spin
gap by nearly 25%–30% as compared to a hybrid functional
(such as, HSE06) [19] or the experimental value. However, the
band dispersions and other spin transport properties of these
materials are qualitatively reasonable, particularly around the
Fermi level, and the underestimate does not reform the overall
trends of these results.
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C. Magnetocrystalline anisotropy

Magnetocrystalline anisotropy, originated from SOC, is a
fundamental property of magnetic materials and plays a sig-
nificant role in magnetic memory devices. Fundamentally, it
is a prerequisite to enhance the thermal stability of long-range
ferromagnetic ordering in reduced dimensions (according to
the Mermin-Wagner theorem) [10,11]. At the same time, it
technologically helps to determine the energy (Env) which
is required for nonvolatility of the written information as
well as to regulate the critical current (Ic) of magnetization
switching in STT-MRAMs. This Env is basically proportional
to the magnetocrystalline anisotropy energy (EMCA) which is
nothing but the energy difference between two magnetization
directions of the free layer in STT-MRAMs [24,25]. Thus, a
higher uniaxial EMCA can improve the stability of the written
information in these devices. Meanwhile, Ic is also propor-
tional to EMCA according to the following relation [25],

Ic = 2α
γ e

μBν
EMCA, (5)

where, α and γ are the Gilbert damping parameter and gy-
romagnetic ratio (mentioned in Eq. (1) also), μB is the Bohr
magneton, and ν is a geometrical function depending on the
spin polarization of the free layer. To reduce Ic, therefore, a
low EMCA is preferred which, on the other hand, is detrimental
for Env . It implies, a reasonable EMCA is desirable to balance
both Ic and Env .

Owing to these facts, we explore the EMCA of these FeX2

HMFs using “force theorem” [29,42]. Upon inclusion of
SOC, “force theorem” expresses EMCA as the difference of
band-energies between two spin orientations for a particular
projection “p” (an atom or orbital projection) as [29,43],

EMCA |p =
∑
n,k

fn,k(θ, ϕ)εn,k(θ, ϕ)ωp
n,k(θ, ϕ)

−
∑
n,k

fn,k(θ◦, ϕ◦)εn,k(θ◦, ϕ◦)ωp
n,k(θ◦, ϕ◦), (6)

in which, fn,k is the occupation factor for a band index n
and wave vector k, the spherical angle (θ, ϕ) describes the
spin orientation [(θ◦, ϕ◦), initial orientation], εn,k(θ, ϕ) is the
corresponding band energy, and ω

p
n,k is the projection weight,

which is

ω
p
n,k = 〈ψn,k|(SP + PS)/2|ψn,k〉, (7)

with ψn,k the eigenstate; S the overlap matrix; and P the
projection matrix. P is a diagonal, singular matrix with the
ones in the indices corresponding to the orbitals we wish to
project onto. Therefore, using this force theorem one can re-
fine the MCA decomposition onto different atoms and orbitals
and can obtain the orbital-resolved MCA energy, Ei

MCA =∑
p E i

MCA |p with p going over all the orbitals of the ith atom.
It is worth noting that the results obtained using this theorem
strongly depend on the energy dispersions near the Fermi sur-
face, therefore, we pay special attention to the convergence of
the Brillouin zone integral of the eigenvalues and perform all
the calculations with a dense k-point sampling (35×35 × 1)
of the full Brillouin zone.

Interestingly, for a given θ , we notice that the in-plane
energies are isotropic (i.e., invariant with azimuthal angle

FIG. 3. (a) The variation of magnetocrystalline anisotropy en-
ergy (EMCA) with polar angle θ in FeX2 monolayers. The symbols
and lines are corresponding to the simulations and the fittings of
Eq. (8), respectively. The inset shows the polar coordinates. (b) The
orbital projections of EMCA in FeCl2 monolayer, especially the ones
with maximum contribution to the total EMCA.

ϕ). However, EMCA has a strong dependency on the polar
angle θ as evident from Fig. 3(a). It shows, EMCA reaches its
maximum when θ = 90◦ (keeping θ◦ = 0◦), i.e., along the
in-plane directions of these 2D layers (xy plane). It also shows
that at θ = 0◦, EMCA attains its minimum. This denotes, all
these materials have an easy magnetization axis perpendicular
to their 2D plane. Thus, the angular dependency of EMCA is a
sole function of θ , and can be expressed as (for the hexagonal
symmetry) [44],

EMCA(θ ) = K1 sin2 θ + K2 sin4 θ, (8)

in which K1 and K2 are the MCA coefficients. When we fit
Eq. (8) to the calculated EMCA, we find both K1 and K2 are
positive for all these FeX2 (see Table II, the extracted K1

and K2 from the fittings are presented in terms of energy
density, i.e., normalized with the cross-sectional area of the
individual FeX2 monolayer). This ascertains the c axis further
as the only direction of easy magnetization. It also appears
that EMCA substantially increases while we move to heavier

TABLE II. Extracted MCA constants (K1 and K2) using Eq. (8),
the characteristic minimum of Gilbert damping constant (α), total
exchange interactions (J), spin-wave stiffness (D), exchange stiffness
(A) of FeX2 monolayers.

K1 K2 α J D A
(mJ/m2) (mJ/m2) (meV) (meV.Å2) (pJ/m)

FeCl2 0.045 0.002 7.9×10−5 11.145 72.716 3.790
FeBr2 0.161 0.033 1.6×10−4 8.631 71.646 3.125
FeI2 0.251 0.083 3.7×10−4 4.455 50.383 1.779
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halide atoms (Cl → Br → I) in FeX2 monolayers, similar to
the trend of orbital moments (discussed in Sec. III A and
Table I). Moreover, from the x, y, z components of total
orbital moments (i.e., μtot

Lx, μtot
Ly , and μtot

Lz ) in Supplemental
Material Table SII [33], it is clear that the anisotropy of
orbital moment between out-of-plane and in-plane directions,
i.e., (μtot

Lz − μtot
Lx ) increases when we move from Cl → Br → I

and consequently the EMCA also increases, as EMCA ∼ ξsoc ×
(μtot

Lz − μtot
Lx ) according to the Bruno model, where ξsoc is the

SOC strength [45]. Besides, the orbital projections in Fig. 3(b)
and in Supplemental Material Fig. S6 [33] strengthen the
fact that 3dxy and 3dx2−y2 orbitals of Fe primarily determine
the MCA of these FeX2 HMFs, which also dominate in the
density of states (dos) at the Fermi level (see Supplemental
Material Figs. S2−S5 [33]). Most importantly, the obtained
EMCA (corresponding to the difference between in-plane and
off-plane directions) are quite sizable even at the ultimate
body-thickness (∼3Å) of FeX2 monolayers. For instance,
if we compare the calculated EMCA of these FeX2 mono-
layers with the theoretical values of conventional materials
like, Fe, Co, Ni (1 to 3 μeV/atom) [46], then EMCA of
these monolayers are much higher. These are also comparable
to the theoretical reports of ultrathin oxides, such as CuO,
(0.05 meV/f.u.), FeO (0.23 to 0.32 meV/f.u.), Fe3O4 (0.23
meV/f.u.), CuFe2O4 (0.24 meV/f.u.), La0.7Sr0.3MnO3 (0.1
meV/f.u.), etc. [47,48], Fe-based bulk L10 Alloys, such as
FeCu (0.20 meV/f.u.), FePd (−0.02 meV/f.u.), etc. [49], or
body-centered B2 phase of FeCoNx (0 to 0.50 meV/f.u.) [50],
which are vastly used as electrode materials in STT-MRAMs.
Moreover, if we compare these EMCA with the theoretical
reports of different 2D ferromagnetic materials, like mono-
layer CrCl3, CrBr3, CrI3 (0.02 to 0.8 meV/Cr atom) [51],
VS2 (0.3 meV/f.u.) [52], CrSnTe3, CrGeTe3, CrSiTe3 (0.06 to
0.4 meV/f.u.) [53], CrP (0.21 meV/Cr atom), CrAs (−0.38
meV/Cr atom) [54], MnP (0.16 meV/Mn atom), MnAs
(0.16 meV/Mn atom) [55], WSe2/CrGeTe3 heterostructure
(0.05 meV/cell) [56], then our calculations also show a simi-
lar range of values for these FeX2 monolayers. The calculated
EMCA energies are also comparable or relatively higher than
the experimental values of CrCl3 (0.08 to 0.1 meV/Cr atom)
[57] and Fe monolayer/Rh(111) (0.08 meV/Fe atom), Co
monolayer/Pt (111) (0.1 meV/Co atom) systems [58]. Fur-
ther, in the case of STT-MRAM, Liu et al. [59] experimentally
shows that a 1.1 nm CoFeB thin-film (with diameter 50 nm)
on 2 nm Tungsten has an effective perpendicular magnetic
anisotropy of 0.29 mJ/m2 and that produces a thermal sta-
bility factor of 137 which is beyond the requirement (stability
factor > 67 [60]) of 10-year data retention of an STT-MRAM.
A similar anisotropy (0.27 mJ/m2) is also reported by Ikeda
et al. [25] for a CoFeB of 1.6 nm thickness and 40 nm diam-
eter based STT-MRAM. Our simulated MCA values of these
FeX2 monolayers are quite close to these values, particularly
for FeI2 monolayer (see K1 in Table II). This also suggests
the potential of FeX2 monolayers in ultrathin spin memory
devices.

D. Gilbert damping

Gilbert damping (α), like MCA, is also an important con-
sequence of SOC and another crucial factor to determine

the performance of different magnetic materials and devices.
As mentioned in Eq. (5), the critical current (Ic) of a STT-
MRAM is also proportional to α. This implies, an electrode
material with a small α can lower the power consumption
of these devices. Besides, in magnetic thin-film microwave
devices, a low α sharpens the ferromagnetic resonance (FMR)
(linewidth, �H ∝ α) [61], and also allows the spin-waves
to propagate over substantial distances in magnonic devices
[62]. Therefore, a detailed understanding of α would greatly
facilitate the design of these FeX2 ferromagnets for a variety
of applications.

Here, we calculate the Gilbert damping in the framework
of Kambersky’s torque-torque correlation model which was
further extended by Gilmore et al. [63] and Thonig et al.
[64,65]. Particularly, we focus on calculating the damping
tensor with elements,

αpq = g

μtot
S π

∑
k

ωk

∑
n,m

Wn,m(k)T q
n,m(k)

[
T p

n,m(k)
]†

, (9)

where g is the Landé g-factor, μtot
S is the total magnetic

moment, and p, q = x, y, z. The first sum is over k with corre-
sponding weight ωk in the Brillouin zone, whereas the second
one runs over the band indices, n, m. T p

n,m(k) = 〈n, k|T p|m, k〉
are the matrix elements of the torque operator T = [σ,HSO],
wherein σ and |n, k〉 are the Pauli spin matrices and Bloch
eigenstate of the spin-orbit Hamiltonian HSO, respectively.
Besides, the spectral overlap function, Wn,m(k), between two
bands εn,k and εm,k is defined as

Wn,m(k) =
∫

F (ε)An,k(ε,�)Am,k(ε,�)dε, (10)

where F (ε) is the negative derivative of the Fermi-Dirac dis-
tribution function, and An,k(ε,�) = (1/π )[�/{(εn,k − ε)2 +
�2}] defines a Lorentzian spectral function with life-time
broadening �. This � is basically a phenomenological ac-
count of electron-phonon scattering process. Note that there
can be other possible origins of this � as well, such as
impurity scattering, alloy scattering, or even spin-dependent
scattering process [66]; however, we can assume, electron-
phonon scattering mechanism is the dominant one in a pure
crystalline structure, at least for temperatures T > 0 K. There-
fore, we calculate here the damping matrices for a range of
lifetime broadening to depict the variation of αpq with scat-
tering rate. Although this electron-scattering mechanism has
a physical dependency on temperature, it is worth noting that
we treat here the average � as an independent parameter, and
consider the explicit temperature dependency of αpq solely
through F (ε) in Eq. (10) [64,67]. Besides, we again choose
a dense k-mesh (35×35 × 1) of the Brillouin zone to ensure
the convergence of αpq, just like MCA.

In Fig. 4(a), we present the tensor elements αpp of FeX2

versus the broadening parameter �. As FeX2 has hexagonal
symmetry, the damping tensor is a diagonal one as the off-
diagonal elements are almost negligible. Along with this, the
in-plane components (αxx = αyy) are found to be dominant
as compared to the out-of-plane component, αzz. Interestingly,
the in-plane components produce a unique minimum in damp-
ing constant (around � = 0.02 to 0.03 eV), as commonly seen
in bulk ferromagnets like Fe, Co, and Ni or their ultrathin
layers (obtained by ab initio calculations) [63–68]. Gener-
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FIG. 4. (a) Gilbert damping tensors of monolayer FeX2 HMFs as
a function of spectral broadening �. Here, αxx = αyy 
= αzz, as FeX2

monolayers have hexagonal symmetry. (b) Temperature variation
of αxx for two fixed spectral broadenings � = 0.01 and 0.1 eV,
respectively.

ally, this characteristic minimum appears due to the dominant
intra- and interband transitions that occur at the small and
large � regions, respectively. For a small �, the overlap of the
spectral functions is less and thus, a strong intraband transition
within a single energy band [i.e., n = m in Eq. (9)] leads to a
conductivity-like term in damping. In contrast, the broad spec-
tral overlap in high � region increases the interband transition
[i.e., n 
= m in Eq. (9)] that surpasses the intra-band tran-
sition and leads to a resistivity-like term in damping. These
fundamental transitions also suggest that Gilbert damping is a
Fermi surface effect and varies with the total density of states
at the Fermi level [n(ε f )]. Typically, it shows a dependency
like α ∝ ξ 2

socn(ε f ) [65,67,69]. This phenomenon is also found
in these FeX2 HMFs. When moving toward heavier halide
atoms, both n(ε f ) and ξsoc increase in accordance with the
increase in carrier densities (N ) and orbital moments (μtot

L ),
respectively (see Table I). As a consequence, αpp increases
with Cl → Br → I which is depicted in Fig. 4(a).

We further check the effect of electron temperature on αxx

and show it for a high and a low life-time broadenings, � =
0.1 and 0.01 eV, for instance [see Fig. 4(b)]. As stated earlier,
we examine this by incorporating the temperature via F (ε)
in Eq. (10). It shows, αxx is barely sensitive to temperature at
� = 0.1 eV. This is quite certain, since the spectral functions

(An,k) already dominate over F (ε) in Eq. (9). On the contrary,
when the broadening is considerably less (i.e., � = 0.01 eV),
the calculated αxx varies notably with temperature and forms
again a characteristic minimum. In the low temperature region
(left to the characteristic minimum), the intra-band transition
basically dominates and decreases αxx with increase in tem-
perature (discussed earlier). While, at high temperature region
(right to the characteristic minimum), the spectral overlap
increases due to the extended Fermi distributions which even-
tually increases αxx with temperature [64,70].

From this overall analysis, we can say that these insights
will help to understand the experimental Gilbert damping
constants of these materials as well as other 2D materials,
in future. We further emphasize that the calculated Gilbert
damping of these half-metallic FeX2 monolayers are smaller
(the characteristic minimum is in the range of 7.9 × 10−5 to
3.7 × 10−4; see Table II) due to their relatively low n(ε f ) than
the normal ferromagnetic metals where both spin-channels
are active. Moreover, we compare these calculated α of FeX2

monolayers with different other classes of materials (both
theoretical and experimental values) and present in Fig. S7 of
the Supplemental Material [33] (see, also, Refs. [7,63,71–84]
therein). From Fig. S7, it is evident that the Gilbert damping
values of FeX2 monolayers are much lower than the conven-
tional materials (like Fe, Co, Ni) or different permalloys (like
CoFeB, NiFe, etc.) which have α > 10−3. Moreover, these
values are also lower/comparable to the other half-metallic
oxides (such as CrO2, La0.7Sr0.3MnO3) or Heusler alloy (such
as Co2MnSi, Co2MnGe, Co2FeSi, etc.) thin films. It is no-
ticeable that these values are also closer to the experimental
reports of ferrimagnetic insulator, Y3Fe5O12, which is the
magnetic material with the lowest known Gilbert damping
constant [85]. Therefore, the achieved Gilbert damping con-
stants are relatively low for these materials, and, thereby, these
2D HMFs can diminish power consumption in STT-MRAM
devices.

E. Exchange interactions

Along with the properties we have discussed so far, ex-
change interaction is also a crucial parameter that governs the
exchange and correlation length of exchange bias, topological
spin textures, as well as the robustness of ordered mag-
netic states against thermal fluctuations. Most importantly,
the thermal stability and critical current (Ic) of magnetiza-
tion switching in STT-MRAM are also very sensitive to the
exchange stiffness constant (A) of the free layer [86] that is
related to the exchange interaction. Therefore, quantifying the
exchange interaction is also essential for these FeX2 mono-
layers.

To illustrate the effective exchange interaction, we adopt
the intersite spins according to the Heisenberg Hamiltonian,

HEXC = −
∑
i 
= j

Ji jSi · S j, (11)

where Ji j is the effective exchange-coupling constant be-
tween spins Si and S j located at site i and j, respectively.
Consequently, a positive (negative) sign of Ji j indicates a fer-
romagnetic (anti-ferromagnetic) coupling between two spins.
To estimate this Ji j , we consider the Green’s function-based
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FIG. 5. (a) Dependence of exchange interaction (J0 j) on the dis-
tance between Fe sites (R0 j) in FeX2 monolayers. (b) Spin-wave
stiffness constant D(η) as a function of the convergence parameter
η along with a fifth order polynomial fit used to extrapolate D at
η = 0.

LKAG (Liechtenstein, Katsnelson, Antropov, and Gubanov)
formalism, as prescribed by Liechtenstein et al. [87], which
is known to be more realistic for first-principle calculations of
Ji j . Within this formalism, we can define Ji j as [88]

Ji j = (1/2π )
∫ ε f

−∞
Tr[Ĝ↑

i jV̂jĜ
↓
jiV̂i]dε, (12)

where Ĝ↑↓
i j denotes the intersite Green’s function operator

between sites i and j, and V̂i is the on-site exchange splitting
at site i. We further state that, we calculate Ji j between pairs of
local magnetic moments of Fe ions as they contribute mainly
to the magnetic moments of FeX2 (explained in Sec. III A
with values shown in Table I). Moreover, we consider a cell
repetition of 9 × 9 × 1 to realize the long-range variation of
Ji j over an interatomic distance (Ri j) up to the fifth nearest-
neighbor, at least. Figure 5(a) shows the variation of J0 j

(averaged over the number of atoms on each shell of nearest
neighbors (nNN ) of atom i = 0) with R0 j (= |R0 − R j |). This
brings out that the exchange interaction is relatively short-
ranged. It decreases sharply after the first nearest neighbor
and thereafter follows a very weak oscillatory nature, similar
to the Ruderman-Kittel-Kasuya-Yoshida (RKKY) interaction
[89]. We also list the total J (= ∑

j n j
NN J0 j) in Table II, which

are all positive for these FeX2 monolayers and indicative of

the overall ferromagnetic ordering. This is indeed consistent
with the fact of ferromagnetic super-exchange coupling that
occurs between the 3d states of consecutive Fe atoms via the
nonmagnetic p states of X [see Fig. 5(a) inset], in accordance
with the Goodenough-Kanamori-Anderson (GKA) rule [90].

From this exchange interaction, we evaluate the spin-wave
stiffness, D. In the long-wavelength limit of spin-wave energy
of an uniform 2D ferromagnet, we can approximate it as
[87,91]

D = lim
η→0

D(η), (13)

D(η) =
∑

j

2μB

μS
J0 jR

2
0 j exp

(
−η

R0 j

R01

)
, (14)

where R01 is the first nearest-neighbor interatomic distance.
To ensure the convergence of the sum in Eq. (14), we use a
convergence parameter η and estimate D under the limit of
η → 0 [91,92]. We, therefore, extend the

∑
j over a suffi-

ciently large distance to calculate D(η) (in a range η ∈ [0.2,
1] which is conveniently used in the literature [91,92]), and
determine D by extrapolating D(η) at η = 0 [see Fig. 5(b)].
The values of D are listed in Table II along with the exchange
stiffness constant A, which is closely related to D via the re-
lation, A = (DMs/2gμB), where Ms is the magnetization per
unit cell [92]. From Table II, one can notice that A decreases
with increasing halide size in FeX2. Still, the overall A are
comparable to nickel, permalloy thin films [93,94], and also
to the experimental values of Yttrium Iron Garnet [95]. We
further estimate the Curie temperature (TC) of these mono-
layers. We use two different approaches to evaluate TC . The
first one is the commonly used Ising model (T IM

C ) for a crystal
having uniaxial anisotropy and the second one is based on
nonlinear spin-wave theory (T SWT

C ). Usually, the Ising model
overshoots the experimental TC whereas the spin-wave theory
underestimates it [96]. Therefore, we can estimate an upper
and lower bound of TC using these two approaches. For a 2D
triangular lattice, we can express T IM

C as [97]

T IM
C = 4

ln(3)

(
J

kB

)
(15)

and T SWT
C as [96]

T SWT
C = πJS2

kB
[
2 log

(EMCA+2πJS
EMCA

)] , (16)

where kB is the Boltzmann constant and spin S = 2.
From Eqs. (15) and (16), the derived T IM

C (T SWT
C ) values are

470(222), 364(220), and 188(143) K for FeCl2, FeBr2, and
FeI2 monolayers, respectively, which are much higher than the
prototypical 2D ferromagnets like CrI3, CrSiTe3, etc. [96,98].
As there is no experimental report yet, we can expect that the
experimental TC of these monolayers will be in between these
two values and can also possibly be improved by suitable ex-
ternal stimuli like strain, doping or electric field, as suggested
in Ref. [98].

IV. CONCLUSION

In summary, we systematically investigate the intrinsic
spin transport and spin-dynamical properties of FeX2 mono-
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layers for their potential applications as spin electrodes in
next-generation spin logic and memory devices. As the per-
formance of a spin-based device largely depends on the choice
of electrode materials, it is necessary that the material should
have the ability to generate pure spin current, high spin injec-
tion efficiency as well as low spin leakage over a sufficiently
wide bias window. Moreover, the material should have sizable
perpendicular MCA, low Gilbert damping, and reasonable
spin stiffness to optimize the thermal stability and critical
current of the nanoscale spintronics devices. From this per-
spective, our results collectively show that FeX2 monolayers
will be right choice for spin electrodes. Particularly, the in-
trinsic half metallicity with a large spin gap (>3 eV), high
Fermi velocity (∼ 105 m/s), high spin conductance (∼1011

S/cm2) over a wide Fermi window (>1 eV), as well as low
Gilbert damping (7.9×10−5 to 3.7 × 10−4), sizable uniaxial
MCA (0.04 to 0.25 mJ/m2), and spin stiffness constants (50

to 70 meV.Å2) of these materials are well suited in design-
ing ultrathin spintronics devices. Moreover, within this FeX2

family, if we further analyze the impact of halides, our calcula-
tions indicate that FeCl2 is a better choice in terms of the spin
gap, Gilbert damping, spin stiffness, and Curie temperature,
though it has a lower anisotropy in this series. However, the
anisotropy is still adequate for low power spintronics devices
at the monolayer limit.
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