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Total helicity of electromagnetic fields and matter
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The electromagnetic helicity of the free electromagnetic field and the static magnetic helicity are shown to
be two different embodiments of the same physical quantity, the total helicity. The total helicity is the sum of
two terms: a term that measures the difference between the number of left-handed and right-handed photons of
the free field, and another term that measures the screwiness of the static magnetization density in matter. Each
term is the manifestation of the total helicity in different frequency regimes: ω > 0 and ω = 0, respectively. This
unification establishes the theoretical basis for studying the conversion between the two embodiments of total
helicity upon light-matter interaction.
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I. INTRODUCTION AND SUMMARY

The electromagnetic helicity [1–8] is a property of the
free electromagnetic field that extends the concept of cir-
cular polarization handedness from individual plane waves
to general Maxwell fields. Its integrated value is a pseu-
doscalar proportional to the difference between the number
of left- and right-handed photons contained in the field. A
recently renewed interest in electromagnetic helicity [9–25]
is revealing and exploiting its effectiveness for understanding
and engineering light-matter interactions, in particular at the
challenging micro- and nanoscales. Such effectiveness is, to
some extent, due to the connection between electromagnetic
helicity and the electromagnetic duality symmetry of free
fields [1,2], which greatly facilitates the use of symmetries and
conservation laws in the analysis of light-matter interactions.
Electromagnetic helicity is, in many ways, at the same level of
generality as electromagnetic energy, momentum, and angular
momentum: It is a measurable property of the field which
is connected to a fundamental symmetry transformation. But
there is an important difference: While energy, momentum,
and angular momentum are also defined for material systems,
and the possibility and effects of the exchange of such proper-
ties between fields and matter are theoretically understood and
practically exploited, the same is not true for electromagnetic
helicity. It is so far unclear whether a material system can have
electromagnetic helicity, which means that we lack the theo-
retical basis for considering an exchange of electromagnetic
helicity between fields and matter. This is an unsatisfactory
state of affairs, in particular because the integrated electro-
magnetic helicity of the field is typically different before and
after a light-matter interaction.

In this article, we obtain the definition of the total helicity
of fields and matter by a natural extension of the definition of
the integrated electromagnetic helicity of the free field. The
complete definition contains an additive contribution from
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static material sources. Such a contribution turns out to be the
magnetic helicity [26–28]. The resulting total helicity is equal
to the sum of the screwiness of the static magnetization den-
sity in matter plus the difference between the number of left-
and right-handed photons in the free electromagnetic field.
The unification provides the theoretical basis for studying the
conversion between the two embodiments of total helicity
upon light-matter interaction. In particular, our result implies
that material systems able to sustain static magnetization con-
figurations with some degree of screwiness have the potential
of storing electromagnetic helicity coming from the dynamic
electromagnetic free field, and of returning the stored helicity
to the free field by means of electromagnetic radiation.

We highlight that, in this article, we do not study the pos-
sibility of a conservation law for the electromagnetic helicity
including both fields and sources. The questions that we are
rather addressing aim at establishing whether the exchange of
electromagnetic helicity between fields and sources is at all
meaningful. A positive answer is apparently a pre-requisite
for considering a joint light-matter conservation law for elec-
tromagnetic helicity.

The rest of the article is organized as follows. In Sec. II, we
consider the question, “Can the electromagnetic free field and
a material system exchange electromagnetic helicity?”, which
is motivated by the fact that the integrated electromagnetic
helicity of the field is typically different before and after the
light-matter interaction. The question forces upon us the need
for identifying, for a material system, the counterpart of the
electromagnetic helicity for the free field. In Sec. III, we fol-
low the example of electrostatic energy and consider the static
electromagnetic sources or, alternatively and equivalently, the
static fields that they generate as the potential reservoirs of
electromagnetic helicity. More precisely, we consider sources
in static equilibrium where the time derivatives of macro-
scopic quantities vanish. Under such conditions, we show that
the most commonly assumed Maxwell sources cannot act as
a reservoir of helicity. This roadblock is then removed by
assuming electric charge and magnetic spin as the primordial
sources, instead of electric charge and magnetic charge, or
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FIG. 1. Sequential phases of the light-matter interaction. The
material system is represented by the green objects. The incoming
bullet-shaped field in (a), and the outgoing cloud-plus-bullet-shaped
field in (b) do not interact with the material system. The interaction
occurs during the grayed-out region. The integrated electromagnetic
helicity of the field, 〈�field〉, is typically different before and after
the interaction. We address the question of whether a part of that
difference can be stored in the material system.

electric charge only. Then, we argue in Sec. IV that the def-
inition of the integrated electromagnetic helicity of the free
field is incomplete, in the sense that it does not include the
whole domain of definition of electromagnetic fields. Its natu-
ral completion includes a static contribution coming from the
transverse (divergence-free) part of the static spin magnetiza-
tion density, and results in the definition of the total helicity.
The static contribution turns out to be the magnetic helicity, al-
beit in different units. The electromagnetic helicity of the free
field, and the static magnetic helicity, are hence manifestations
of the total helicity in different frequency regimes: ω > 0 and
ω = 0, respectively. Section V contains concluding remarks
and a brief indication of the potential impact of the findings.

II. MOTIVATION AND PROBLEM SETTING

For a given free electromagnetic field, the integrated value
of the electromagnetic helicity is a pseudoscalar, proportional
to the difference between the number of left- and right-handed
polarized photons contained in the field. For the free field,
this pseudoscalar is a constant of the time evolution because
of the electromagnetic duality symmetry, that is, because the
equations

∇ · B(t, r) = 0, c2
0∇ × [ε0E(t, r)] + ∂t B(t, r)

μ0
= 0,

∇ · E(t, r) = 0, ∇ × B(t, r) − ∂t E(t, r)

c2
0

= 0,

(1)

are invariant under the duality transformation1

Eθ (t, r) = E(t, r) cos θ − c0B(t, r) sin θ,

c0Bθ (t, r) = E(t, r) sin θ + c0B(t, r) cos θ,
(2)

where θ is a real angle. SI units will be used throughout the
article. The invariance under duality transformations is typ-
ically lost once electromagnetic sources are involved. Then,
the integrated electromagnetic helicity of the field is typically
different before and after the light-matter interaction. Let us

1The name “electromagnetic duality” is also often used to refer to a
discrete version, recovered from Eq. (5) when π = π/2: Eπ/2(r, t ) =
−c0B(t, r), c0Bπ/2(r, t ) = E(t, r).

consider the light-matter interaction time sequence depicted in
Fig. 1. Before the interaction, in Fig. 1(a), an incoming field
(gray bullet) approaches the material system (green object).
The field and the material system interact during the gray pe-
riod. After the interaction, in Fig. 1(b), the resulting outgoing
beam propagates away from the material system. During the
interaction, the field and the matter can exchange different
measurable properties, having different consequences for the
material system. For example, when the field transfers energy
to the material system, the system may undergo a transition
to an excited state. When the field transfers linear (angular)
momentum to the material system, the system will experi-
ence a force (torque). Electromagnetic energy, momentum,
and angular momentum are defined for both fields and mat-
ter, and the exchanges of these quantities during light-matter
interaction can be seen as a conversion between two different
embodiments of the same fundamental property. The situation
regarding electromagnetic helicity is much less clear. While
there is no question that the integrated electromagnetic he-
licity of the free field can be different before and after the
light-matter interaction (〈�field〉after �= 〈�field〉before), the exis-
tence of such a thing as the electromagnetic helicity of a
material system, where part of that difference can end up,
is unclear. Then, the well-posedness of questions like “Can
the electromagnetic free field and a material system exchange
electromagnetic helicity?” or “What happens to the material
system when the field transfers electromagnetic helicity to it?”
is also unclear. Before progress can be made regarding such
questions, we must elucidate whether there exists a way to
store helicity in matter as just a different form of the same
physical quantity as the electromagnetic helicity of the free
field. Such is the case, for example, for energy, which can be
contained in the free field, and also stored in a static electric
charge density distribution in the form of electrostatic energy
(see Eqs. (1.17), (4.83), and (4.89) of Ref. [29]):

We = ε0

2

∫
R3

dr E(r) · E(r)

= 1

8πε0

∫
R3

dr
∫
R3

d r̄
ρe(r)ρe(r̄)

|r − r̄| . (3)

We can interpret that the energy is either stored in the source
ρe(r), or in the E(r) field produced by it. The two inter-
pretations are equivalent due to the one-to-one relationship
between fields and sources in the static case. This leads us
to consider the static electromagnetic sources or, alternatively
and equivalently, the fields produced by them as the potential
reservoirs of electromagnetic helicity in matter. Consequently,
in the next section we will consider the static version of
Maxwell equations with sources.

We highlight that the setting illustrated in Fig. 1 provides
a clear distinction between the dynamic free fields and the
static fields that are inherent to matter. This distinction avoids
possible ambiguities that arise when effective macroscopic
dynamic fields inside the material are considered, which,
in this setting, would only exist during the gray period of
Fig. 1. Such effective fields have a mixed field-matter char-
acter which complicates the aforementioned distinction. The
century-old Abraham-Minkowski controversy regarding the
split of the linear momentum in dielectric media between
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fields and matter is a prominent example of such complica-
tion.

III. ELECTRIC CHARGE AND MAGNETIC SPIN AS
PRIMORDIAL MAXWELL SOURCES

The study of electromagnetic helicity in the presence of
fundamental sources has previously been based in the follow-
ing microscopic Maxwell equations, either including [2] or
excluding [15,30] the magnetic sources:

∇ · B(t, r) = μ0ρm(t, r), −c2
0∇ × [ε0E(t, r)]

= ∂t B(t, r)

μ0
+ Jm(t, r),

∇ · E(t, r) = ρe(t, r)

ε0
, ∇ × B(t, r)

= μ0[Je(t, r) + ε0∂t E(t, r)], (4)

where ρe/m(r, t ) and Je/m(r, t ) are the electric or mag-
netic charge and current density distributions, respectively. In
particular, Zwanziger [2] used Eq. (4) to show that electro-
dynamics is invariant when, besides applying Eq. (2) to the
fields, the duality transformation is also applied to the sources:

ρθ
e (t, r) = ρe(t, r) cos θ − c0ρm(t, r) sin θ,

c0ρ
θ
m(t, r) = ρe(t, r) sin θ + c0ρm(t, r) cos θ,

Jθ
e (t, r) = Je(t, r) cos θ − c0Jm(t, r) sin θ,

c0Jθ
m(t, r) = Je(t, r) sin θ + c0Jm(t, r) cos θ. (5)

Let us examine the static version of Eqs. (4). To such end, it
is important to examine the assumptions underlying Eqs. (4)
and (5), namely, that there exist primordial electric and mag-
netic elementary charges which result in electric and magnetic
charge densities inside material systems, and that the elec-
tric and magnetic current densities are due to the movement
of the electric and magnetic charge densities, respectively.
The charge and current densities transform together as four-
vectors under the Poincaré group of special relativity:

je(t, r) =
[
ρe(t, r)
Je(t, r)

]
, jm(t, r) =

[
ρm(t, r)
Jm(t, r)

]
. (6)

The static sources are hence

je(r) =
[
ρe(r)

0

]
, jm(r) =

[
ρm(r)

0

]
, (7)

where the vanishing of the three-vector currents Je/m(r) = 0
is due to the vanishing of net macroscopic movement of the
static charge densities ρe(r) and ρm(r) inside the material
system. While there will generally be some microscopical
dynamics, e.g., due to thermal fluctuations, we will assume
that the material system before the light-matter interaction in
Fig. 1(a), and after it in Fig. 1(b), is in a state of static equi-
librium where the time derivatives of macroscopic quantities
vanish. This includes the vanishing of the macroscopic time
derivative of the position of the electric and magnetic charge
densities, and hence the vanishing of Je/m(r). The static equi-
librium version of Eq. (4) is hence obtained by eliminating all
the terms containing time derivatives, and using the sources

TABLE I. Correspondences between operators in (t, r) and op-
erators in (ω, k).

(t, r) : X(t, r) ∂t X(t, r) ∇ · X(t, r) ∇ × X(t, r)
� � � �

(ω, k) : X(ω, k) −iωX(ω, k) ik · X(ω, k) ik × X(ω, k)

from Eq. (7):

∇ · E(r) = ρe(r)

ε0
, ∇ · B(r) = μ0ρm(r),

c2
0∇ × [ε0E(r)] = 0, ∇ × B(r) = 0. (8)

According to our previous discussion, the electromagnetic
helicity of the material system before and after the light-
matter interaction is contained in the configuration of the static
sources in Figs. 1(a) and 1(b), respectively, or, equivalently,
in the static fields produced by such static sources. We now
show that the static electromagnetic fields in Eqs. (8) cannot
store helicity because both E(r) and B(r) have vanishing
curl (are longitudinal). To such end, we consider the Fourier-
transformed version of Eqs. (8), which is obtained using the
correspondences between the time-space (t, r) domain and
the frequency-wavevector (ω, k) domain contained in Table I
for X(ω, k) functions, particularized for the time-independent
ω = 0 case:

ik · E(0, k) = ρe(0, k)

ε0
, ik · B(0, k) = μ0ρm(0, k),

−c2
0ik × [ε0E(0, k)] = 0, ik × B(0, k) = 0. (9)

The two ik× equations in Eqs. (9) imply that both E(0, k) and
B(0, k) are purely longitudinal; that is, E(0, k) and B(0, k)
are parallel to the wavevector k, having zero components
that are transverse (perpendicular) to k. Purely longitudinal
(transverse) fields in the k domain correspond to fields with
zero curl (divergence) in the r domain. Let us now consider
the k-domain representation of the helicity operator, which
follows2 from the general definition of helicity as the pro-
jection of the angular momentum operator (J) onto the linear
momentum (P) direction:

� = J · P
|P| ≡ ik×

|k| = ik̂ × . (10)

The reduced Planck constant h̄ is implicitly set to 1 in Eq. (10),
and for the rest of the paper. Without this assumption, the
helicity operator reads h̄ik̂×, and its three eigenvalues are ±h̄
and zero.

2� = J·P
|P| = S·P

|P| ≡ ik̂×, where for electromagnetism, S is the vec-
tor of spin-1 matrices. The second equality in the previous equation
can be seen to follow, for example, from considering the coordinate
representation of the angular momentum and linear momentum oper-
ator vectors (see Eqs. (5.24) and (5.25) of Ref. [5]): J ≡ −ir × ∇ +
S, P ≡ −i∇. Their inner product then reads J · P ≡ −(r × ∇ ) · ∇ −
iS · ∇. The first term vanishes since it is the divergence of a curl.
Finally, the equivalence S·P

|P| ≡ ik̂× follows from applying (see Eq.

(2.2) of Ref. [5]) in wavevector space where P → k ⇒ P/|P| → k̂.
We have assumed h̄ = 1.
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Applying the helicity operator to the static electric (mag-
netic) fields from Eqs. (9) results in the zero field:

ik̂ × E(0, k) = ik̂ × B(0, k)
Eq. (9)= 0, (11)

showing that the static electromagnetic fields in Eqs. (9) can-
not store any electromagnetic helicity. The conclusion is the
same if the magnetic sources in Eqs. (4) are removed [30], and
the vanishing of Je(r) is maintained. In such case, E(0, k) is
longitudinal and B(0, k) = 0.

We have reached the conclusion that the model underlying
Eqs. (4) implies that material systems in static equilibrium
cannot store electromagnetic helicity. This issue must be
added to the lack of experimental evidence for isolated mag-
netic charges (magnetic monopoles).

It turns out that the two issues can be overcome by adopt-
ing a different set of primordial electromagnetic sources for
Maxwell equations. Supported by the fact that the existence of
magnetic spin is beyond doubt, we will now consider electric
charges and magnetic spins as the primordial sources, instead
of electric and magnetic charges, or electric charges only. The
static equilibrium sources that we assume from now on are

je(r) =
[
ρe(r)

0

]
,

	(r) =

⎡
⎢⎣

0 0 0 0
0 0 −M3(r) M2(r)
0 M3(r) 0 −M1(r)
0 −M2(r) M1(r) 0

⎤
⎥⎦, (12)

where je(r) transforms as a four-vector, and 	(r) is an anti-
symmetric tensor which transforms like the electromagnetic
tensor3 F . The three distinct components of 	(r) constitute
the static spin magnetization density M(r). The spatial inte-
gral of M(r) over the volume of the material system defines
the intrinsic magnetic moment of the system in static equi-
librium. With these assumptions, and for our purposes, the
question of whether to model magnetic effects by microscopic
electric current loops or microscopic magnetic dipoles (see
Chap. 2, Sec. 1, of Ref. [31]) is decided in favor of the latter.

The movement of charge and spin results in the dynamic
sources

je(t, r) =
[
ρe(t, r)
Je(t, r)

]
,

	(t, r) =

⎡
⎢⎣

0 −c0P1(t, r) −c0P2(t, r) −c0P3(t, r)
c0P1(t, r) 0 −M3(t, r) M2(t, r)
c0P2(t, r) M3(t, r) 0 −M1(t, r)
c0P3(t, r) −M2(t, r) M1(t, r) 0

⎤
⎥⎦,

(13)

where, as before, Je(t, r) appears due to the movement of
ρe(t, r). Additionally, the movement of 	(r) produces a dy-
namic 	(t, r) which contains both magnetic spin density
M(t, r), and electric spin density P(t, r). Note that P(t, r) is a

3c0F ≡

⎡
⎢⎢⎣

0 −E1(t, r) −E2(t, r) −E3(t, r)
E1(t, r) 0 −c0B3(t, r) c0B2(t, r)
E2(t, r) c0B3(t, r) 0 −c0B1(t, r)
E3(t, r) −c0B2(t, r) c0B1(t, r) 0

⎤
⎥⎥⎦.

source of electric kind originating from the magnetic spin, as
opposed to the components of je(t, r), which originate from
electric charge. Accordingly, the two kinds of electric sources
have different transformation properties under the Poincaré
group. In particular, P(t, r) should not be confused with the
dipolar density that can result from the action of an external
field on the electric charge density.

In here, we use Eqs. (12) and (13) for an extended material
system. Their point-particle versions have a long history in
the study of relativistic electrodynamics (see Chap. II, Sec. 4,
of Ref. [32]), including the effect of the electron spin on the
atomic nucleus [33], and the relativistic spin precession [34].
In that context, the spatial integral of 	(t, r) is often called the
dipole moment tensor, moment tensor, or polarization tensor.

The sources in Eqs. (13) result in a version of Maxwell’s
equations (see Sec. 5 of Ref. [35]) that is quite different from
Eqs. (4):

∇ · B(t, r) = 0, ∇ × E(t, r) + ∂t B(r) = 0, (14)

and

∇ · E(t, r) = ρe(t, r) − ∇ · P(t, r)

ε0
,

c2
0∇ × B(t, r) − ∂t E(t, r)

= 1

ε0
[Je(t, r) + ∂t P(t, r) + ∇ × M(t, r)], (15)

where the magnetic sources are of a different kind, and appear
in a different position with respect to Eqs. (4). In particular,
the homogeneous equations in Eqs. (14) contain the statement
that there are no magnetic monopoles, and the divergence of
B(t, r) is always zero, making it a purely transverse field in
all cases. This difference is crucial for enabling static sources
to store electromagnetic helicity.

Let us now consider the static equilibrium limit of Eqs. (14)
and (15). Noting that both Je(t, r) and P(t, r) vanish, we
obtain

∇ · E(r) = ρe(r)

ε0
, ∇ × E(r) = 0,

∇ · B(r) = 0, ∇ × B(r) = μ0∇ × M(r). (16)

The first line in Eqs. (16) are the common equations that
define the electrostatic field E(r) (see Chap. 4 of Ref. [29]).
The second line in Eqs. (16) coincides with the common equa-
tions that define the magnetostatic field B(r), if, according to
our previous discussion, the electric current density Je(r) that
appears in those common equations (see, e.g., Eq. (2.40) of
Ref. [31], or Eqs. (5.80) and (5.82) of Ref. [29]) vanishes.

IV. THE TOTAL HELICITY OF FIELDS AND MATTER

We now proceed to show that, when the fundamental static
sources from Eqs. (12) are assumed, the typical definition of
integrated dynamic electromagnetic helicity can be naturally
completed to include a static contribution. This contribution
turns out to be the magnetic helicity [26–28], albeit in differ-
ent units.

It is now convenient to change from the (t, r) domain to
the (ω, k) domain by means of the four-dimensional Fourier
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TABLE II. Various identities involving the decomposition of a vectorial X(ω, k) function in terms of its longitudinal (‖) and transverse
parts (⊥) (Helmholtz decomposition), and also in terms of the eigenvectors of the helicity operator � corresponding to its three eigenvalues
[−1, 0, +1] (h̄ = 1 is assumed). The symbol † denotes complex transposition, xλ(ω, k) are complex scalar functions, k̂ = k/|k|, and êλ(k̂)
are the k̂-dependent unit vectors which can be obtained by rotating those corresponding to k̂ = ẑ (see, e.g., Eq. (8.7–11) of Ref. [36]):
êλ(k̂) = Rz(φ)Ry(β )êλ(ẑ), where φ = arctan(py/px ), β = arccos(pz/|k|), and ê0(ẑ) = ẑ,

√
2ê±(ẑ) = ∓x̂ − iŷ.

X(ω, k) = X‖(ω, k) + X⊥(ω, k)
X‖(ω, k) = k̂[k̂ · X(ω, k)]

X‖(ω, k)†X⊥(ω, k) = 0
ik̂ × Xλ(ω, k) = λXλ(ω, k) for λ ∈ [−1, 0, +1] (h̄ = 1 is assumed)

Xλ(ω, k) = xλ(ω, k)êλ(k̂)
X(ω, k) = X−(ω, k) + X0(ω, k) + X+(ω, k)

X0(ω, k) = X‖(ω, k), X⊥(ω, k) = X+(ω, k) + X−(ω, k)
X0(ω, k)†X+(ω, k) = X0(ω, k)†X−(ω, k) = X+(ω, k)†X−(ω, k) = 0

(ik̂×)
2
X(ω, k) = ik̂ × ik̂ × X(ω, k) = X⊥(ω, k) = X(ω, k) − X‖(ω, k)

decomposition

X(t, r) =
∫ ∞

ω�0

dω√
2π

∫
R3

dk√
(2π )3

X(ω, k)

× exp (−iωt + ik · r), (17)

where only frequencies ω � 0 are included: ω = 0 corre-
sponds to the static fields and ω > 0 to the dynamic fields.
Excluding ω < 0 amounts to considering complex dynamic
fields with only positive energy. This is possible in electro-
magnetism because both sides of the spectrum contain the
same information (see Sec. 3.1 of Ref. [5], and Ref. [4]), and
only one sign of the frequency (energy) is needed.

In the following, we will often use properties of the decom-
position of an X(ω, k) function in terms of its longitudinal (‖)
and transverse (⊥) parts, and in terms of the eigenvectors of
the helicity operator �, which are collected in Table II, and
the correspondences between operators in (t, r) and operators
in (ω, k) collected in Table I.

The integrated electromagnetic helicity of the dynamic
fields 〈�ω>0〉 (called 〈�field〉 before, and in Fig. 1) can be
computed in the (ω, k) domain as [37]

〈�field〉 = 〈�ω>0〉
=

∫
R3

dk
c0|k| F+(c0|k|, k)†ik̂ × F+(c0|k|, k)

+ F−(c0|k|, k)†ik̂ × F−(c0|k|, k), (18)

where the symbol † denotes complex transposition. The
F±(c0|k|, k) are the plane-wave components of a version of
the Riemann-Silberstein vectors [5,38]

D(t, r)√
2ε0

± i
B(t, r)√

2μ0
=

√
ε0

2
[E(t, r) ± ic0B(t, r)]

= F±(t, r)

=
∫
R3

dk√
(2π )3

F±(c0|k|, k)

× exp(ik · r − ic0|k|t ), (19)

where ω is restricted to be equal to c0|k| because, for ω >

0, the dynamic electromagnetic fields [E(ω, k), B(ω, k)] are
constrained to the domain ω = c0|k|. This is the well-known

constraint to the positive energy light cone, which may be seen
as a consequence of the massless photonic dispersion relations
in vacuum ω2 = c2

0k · k, together with the ω > 0 choice.
We note that, should we not have set h̄ = 1, the factor dk

c0|k|
in Eq. (18) would instead read dk

c0|k|h̄ . Recalling that the helicity

operator would then be h̄ik̂×, we see that the expression in-
side the integral in Eq. (18) is independent of h̄. Dimensional
analysis shows that 〈�field〉 has units of angular momentum,
which are the units of helicity.

The time-dependent electromagnetic fields F±(t, r) from
before and after the light-matter interaction in Fig. 1 can
be exactly recovered from their (ω = c0|k| > 0, k)-domain
counterparts F±(c0|k|, k) by means of Eq. (19). For the “be-
fore” electromagnetic field in Fig. 1(a), the result of the
integral in Eq. (19) will be valid for all times prior to the start
of the interaction. Similarly, for the “after” electromagnetic
field in Fig. 1(b), the result of the integral in Eq. (19) will
be valid for all times after the end of the interaction. Then,
in the same way that the integrated energy or momentum of
a free noninteracting field is constant in time,4 the integrated
electromagnetic helicities of the “before” and “after” fields
will be constant, albeit typically different from each other, in
each of the time periods when the fields are defined.

Reference [37] contains the proof of the equivalence
between Eq. (18) and the most common expression for inte-
grated electromagnetic helicity [1–3,6–8,11–13,15,16,18,22–
25], which reads

〈�ω>0〉 = 1

2

∫
R3

dr B(t, r) · A(t, r) − E (t, r) · C(t, r),

(20)
where E (t, r) [C(t, r)] and B(t, r) [A(t, r)] are the real-valued
electric and magnetic fields (potentials), respectively.

4For free, noninteracting fields, the spatiotemporal evolution of
F±(t, r) is only due to the exponential in Eq. (19), while the
F±(c0|k|, k) components do not change with time. Then, the fact
that the integrated values of measurable properties can be written as
k-space integrals involving the F±(c0|k|, k) (see, e.g., Eqs. (4.13)–
(4.16) of Ref. [5], and Eq. (10) of Ref. [39]) shows that the value of
such integrals does not change with time.
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We now want to understand whether there exists a more
general quantity that comprises the electromagnetic helicity
of the free field, and a contribution from matter. Should such
more general quantity exist, we also want to write down
its definition. We proceed by considering the fact that the
complete (ω, k) domain of electric and magnetic fields is
(ω = c0|k| > 0, k), which corresponds to dynamic fields, and
(ω = 0, k), which corresponds to static fields. Crucially, the
action of the helicity operator ik̂× is well defined in both
dynamic and static cases. These facts suggest that Eq. (18)
is incomplete in the sense that it does not cover the whole
domain of definition of electromagnetic fields, and leads us
to complete it as follows. For each value of k, we include
not one but two different branches for the fields: One branch
corresponds to the dynamic fields with ω = c0|k| in Eq. (18),
and the other corresponds to static fields with ω = 0. When
we complete Eq. (18) in this way, we obtain the definition of
the total integrated helicity:

〈�〉 = 〈�ω>0〉 + 〈�ω=0〉

=
∫
R3

dk
c0|k| F+(c0|k|, k)†ik̂ × F+(c0|k|, k)

+ F−(c0|k|, k)†ik̂ × F−(c0|k|, k)

+
∫
R3

dk
c0|k| F+(0, k)†ik̂ × F+(0, k)

+ F−(0, k)†ik̂ × F−(0, k).

(21)

For 〈�ω>0〉, we can use the well-known fact that, since
ik̂ × E(c0|k|, k) = ic0B(c0|k|, k), and ik̂ × c0B(c0|k|, k) =
−iE(c0|k|, k), the F±(c0|k|, k) are eigenstates of the helicity
operator with eigenvalue ±1,

ik̂ × F±(c0|k|, k) = ±F±(c0|k|, k), (22)

to rewrite 〈�ω>0〉 in Eq. (21),

〈�〉 = 〈�ω>0〉 + 〈�ω=0〉
=

∫
R3

dk
c0|k| |F+(c0|k|, k)|2 − |F−(c0|k|, k)|2

+
∫
R3

dk
c0|k| F+(0, k)†ik̂ × F+(0, k)

+ F−(0, k)†ik̂ × F−(0, k). (23)

We now set out to work on 〈�ω=0〉 by elucidating the action
of ik̂× on F±(0, k). To such end, we will use the wavevector-
space version of Eqs. (16):

ik · E(0, k) = ρ(0, k)

ε0
, ik × E(0, k) = 0,

ik · B(0, k) = 0, ik × B(0, k) = μ0ik × M(0, k). (24)

The longitudinal character of the E and the transverse char-
acter of B are manifest in Eqs. (16) and (24): ∇ × E(r) = 0,
ik × E(0, k) = 0, ∇ · B(r) = 0, ik · B(0, k) = 0. Therefore,
when applying the helicity operator ik̂× to F±(0, k), the

electric field E(0, k) vanishes (see Table II):

ik̂ × F±(0, k) = ik̂ ×
√

ε0

2
[E(0, k) ± ic0B(0, k)]

= ±i

√
1

2μ0
ik̂ × B(0, k),

(25)

and we see that the static F±(0, k) are not helicity eigenstates,
in contrast to the dynamic case. Now, the purely transverse
B(0, k) in Eq. (25) can be decomposed into two pieces of
well-defined and opposite helicity λ = ±1, with an obvious
action of ik̂× on each of them (Table II):

B(0, k) = B+(0, k) + B−(0, k) ⇒
ik̂ × B(0, k) = B+(0, k) − B−(0, k),

(26)

with which Eq. (25) changes into

ik̂ × F±(0, k) = ±i

√
1

2μ0
[B+(0, k) − B−(0, k)]. (27)

Using Eq. (25), Eq. (27), and Table II we can readily see
that5

F±(0, k)†ik̂ × F±(0, k)

=
√

ε0

2
c0B(0, k)†

√
1

2μ0
ik̂ × B(0, k)

= 1

2μ0
[|B+(0, k)|2 − |B−(0, k)|2],

(28)

which we can substitute in Eq. (23):

〈�〉 = 〈�ω>0〉 + 〈�ω=0〉

=
∫
R3

dk
c0|k| |F+(c0|k|, k)|2 − |F−(c0|k|, k)|2

+
∫
R3

dk
c0|k|

|B+(0, k)|2 − |B−(0, k)|2
2μ0

.

(29)

5

F±(0, k)†ik̂ × F±(0, k)

Eq. (25)=
√

ε0

2
[E(0, k) ± ic0B(0, k)]†(±i)

√
1

2μ0
ik̂ × B(0, k)

=
√

ε0

2
E(0, k)†(±i)

√
1

2μ0
ik̂ × B(0, k)

+
√

ε0

2
c0B(0, k)†

√
1

2μ0
ik̂ × B(0, k)

Tab. II=
√

ε0

2
c0B(0, k)†

√
1

2μ0
ik̂ × B(0, k)

Tab. II= 1

2μ0
[B+(0, k) + B−(0, k)]†[B+(0, k) − B−(0, k)]

Tab. II= 1

2μ0

[|B+(0, k)|2 − |B−(0, k)|2].
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The newly discovered contribution of the static B field is
added to the integrated value of the dynamic electromagnetic
helicity. We will now show that 〈�ω=0〉 is nothing but the
magnetic helicity in different units. Let us use the second and
third lines in Eq. (28) to write

〈�ω=0〉 =
∫
R3

dk
c0|k|

|B+(0, k)|2 − |B−(0, k)|2
2μ0

=
∫
R3

dk
c0|k|

1

2μ0
B(0, k)† ik̂×

|k| B(0, k) ,

(30)

and work on the expression inside the box. We consider the
relationship between the magnetic field and the magnetic vec-
tor potential B(r) = ∇ × A(r) in the k domain, B(0, k) =
ik × A(0, k), and operate on both its sides with ik̂×

|k| from the
left:

ik̂×
|k| B(0, k) = ik̂×

|k| ik × A(0, k) = (ik̂×)2A(0, k)

Tab. II= A⊥(0, k) = A(0, k) − A‖(k) (31)

= A(0, k) − k̂[k̂ · A(0, k)].

We substitute the last expression in Eq. (31) into the box in
Eq. (30) to get

〈�ω=0〉 =
∫
R3

dk
2Z0

B(0, k)†{A(0, k) − k̂[k̂ · A(0, k)]}

=
∫
R3

dk
2Z0

B(0, k)†A(0, k), (32)

where the second equality follows because the
longitudinal A‖(k) is canceled by the projec-
tion with the transverse B(0, k) (Table II). After
using Parseval’s theorem (see, e.g., Eq. B3,
Sec. I.B.1, of Ref. [40]) we reach

〈�ω=0〉 =
∫
R3

dr
2Z0

B(r) · A(r), (33)

which is, essentially, the magnetic helicity of the static mag-
netic field [26–28]. The differences with the typical definition
are a factor of 1/2, and a factor of 1/Z0 that endows 〈�ω=0〉
with units of angular momentum, matching the units of
electromagnetic helicity. It is important to note that the cancel-
lation of the longitudinal part of A(0, k) due to the transverse
character of B(0, k) happens independently of the chosen
gauge. Therefore, the derivation leading to Eq. (33) is gauge
independent. It is also important to note that 〈�ω=0〉 is invari-
ant under duality transformations. The lack of this invariance
has been used in Ref. [41] as an argument for considering
the magnetic helicity to be essentially different from the
electromagnetic helicity of the free field. The key point for
establishing the invariance is the action of the helicity operator
on the static E(0, k) and B(0, k) fields,

ik̂ × E(0, k)
Eq. (24)= 0,

ik̂ × B(0, k)
Eq. (26)= B+(0, k) − B−(0, k),

(34)

which shows that, in the static case, the electromagnetic du-
ality transformation does not mix the electric and magnetic

fields as it does in the dynamic case [Eqs. (5)]. It rather has
the following effects, which are readily derived from Eqs. (34)
and the construction of the duality transformation as the expo-
nentiation of the helicity operator Dθ = exp (−iθ�):

DθE(0, k) = exp(−iθ ik̂×)E(0, k) = E(0, k),

DθB+(0, k) = exp(−iθ ik̂×)B+(0, k) = B+(0, k) exp(−iθ ),

DθB−(0, k) = exp(−iθ ik̂×)B−(0, k) = B−(0, k) exp(iθ ).
(35)

The duality invariance of 〈�ω=0〉 can be seen by substituting
the last two lines of Eqs. (35) into the first line of Eq. (30).
This, together with the well-known invariance of 〈�ω>0〉 un-
der duality, implies the invariance of the total helicity 〈�〉 in
Eq. (29).

Let us now express 〈�ω=0〉 as a function of the magnetiza-
tion density. It readily follows from Eqs. (24) that B(0, k) =
μ0M⊥(0, k), showing that helicity can be stored in the trans-
verse part of the magnetization. We can rewrite Eq. (29) as

〈�〉 =
∫
R3

dk
c0|k| |F+(c0|k|, k)|2 − |F−(c0|k|, k)|2

+
∫
R3

dk
c0|k|

|M+(0, k)|2 − |M−(0, k)|2
2/μ0

.

(36)

The definition of the total helicity in Eqs. (23), (29), and
(36) unifies the static magnetic helicity and the dynamic elec-
tromagnetic helicity into a single quantity. This total helicity
is the sum of two terms that measure the difference between
the number of left-handed and right-handed photons of the
free field, and the screwiness of the static magnetization,
respectively. While the magnetic and electromagnetic helici-
ties have previously been discussed together [6,7,28,30], they
have, as far as I know, not been unified into a single physical
property until now. According to this unification, the static and
dynamic helicities are two manifestations of the same funda-
mental quantity in different frequency regimes. As such, they
are susceptible to change into each other, giving a positive
answer to the question of whether helicity can be exchanged
between light and matter. Regarding the question of the effects
of such exchange, Eq. (36) indicates that systems able to
sustain static magnetization configurations with some degree
of screwiness have the potential for storing electromagnetic
helicity coming from the free dynamic field. Such storage
implies a modification of the transverse part of the initial static
magnetization. Conversely, such systems have the potential
for returning the stored helicity to the free field by means
of electromagnetic radiation, with a corresponding change in
their static magnetization state.

V. CONCLUSIONS AND DISCUSSION

In conclusion, this article shows that the electromagnetic
helicity of the free electromagnetic field and the magnetic
helicity of the static magnetization are two different parts of
the same physical quantity, the total helicity. The total helicity
is the sum of two terms. One term quantifies the screwiness
of the static magnetization in matter, and the other quantifies
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the difference between the number of left- and right-handed
photons in the free electromagnetic field. The unification
establishes the theoretical basis for studying the conversion
between these two embodiments of helicity upon light-matter
interaction.

Both manifestations of helicity are separately relevant
in quite diverse areas of physics. Electromagnetic helicity
is particularly relevant in chiral light-matter interactions,
and magnetic helicity is relevant in areas like cosmology
[42,43], solar physics [44], fusion physics [45,46], magne-
tohydrodynamics [47–50], and condensed matter [51–55].
Consequently, their unified understanding has the potential for
simultaneously impacting several different fields. For exam-
ple, the new link between optics and magnetism is apparently

relevant for the physics of all optical switching of magne-
tization with circularly polarized radiation [52], and for the
optical control of helical magnets and skyrmions [53,54,56].
I believe that other areas where the results of this paper could
be useful are fusion physics, where the injection of magnetic
helicity is considered for controlling the plasma [45,46], and
cosmology, where helical magnetic fields with galactic-scale
coherent lengths are studied [42,43].
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