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Chiral phase transition and thermal Hall effect in an anisotropic spin model on the kagome lattice

F. A. Gómez Albarracín,1,2,* H. D. Rosales,1,2,† and P. Pujol3,‡

1Instituto de Física de Líquidos y Sistemas Biológicos (IFLYSIB), UNLP-CONICET, La Plata, Argentina and Departamento de Física,
Facultad de Ciencias Exactas, Universidad Nacional de La Plata, c.c. 16, suc. 4, 1900 La Plata, Argentina

2Departamento de Ciencas Básicas, Facultad de Ingeniería, UNLP, 1900 La Plata, Argentina
3Laboratoire de Physique Theorique–IRSAMC, CNRS and Université de Toulouse, UPS, Toulouse, F-31062, France

(Received 14 September 2020; revised 23 December 2020; accepted 21 January 2021; published 2 February 2021)

We present a study of the thermal Hall effect in the extended Heisenberg model with XXZ anisotropy in the
kagome lattice. This model has the particularity that, in the classical case, and for a broad region in parameter
space, an external magnetic field induces a chiral symmetry breaking: the ground state is a doubly degenerate
q = 0 order with either positive or negative net chirality. Here, we focus on the effect of this chiral phase
transition in the thermal Hall conductivity using linear-spin-waves theory. We explore the topology and calculate
the Chern numbers of the magnonic bands, obtaining a variety of topological phase transitions. We also compute
the magnonic effect to the critical temperature associated with the chiral phase transition (T SW

c ). Our main result
is that, the thermal Hall conductivity, which is null for T > T SW

c , becomes nonzero as a consequence of the
spontaneous chiral symmetry breaking at low temperatures. Therefore, we present a simple model where it is
possible to “switch” on/off the thermal transport properties introducing a magnetic field and heating or cooling
the system.
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I. INTRODUCTION

One of the most significant current discussions in con-
densed matter physics concerns the connection between
nontrivial topological properties and transport phenomena in
insulating magnets [1]. It has been at the heart of numerous ex-
perimental and theoretical studies, mainly because these types
of materials are candidates for carriers of the spin information
without dissipation from Joule heating but with good transport
coherence. Recently, particular attention has been brought
upon the magnon thermal Hall effect (THE) [2–6], where the
transverse heat current induced by introducing a longitudinal
thermal gradient is carried by magnonic excitations.

The magnon THE was predicted theoretically and observed
experimentally in materials such as the insulating ferromagnet
Lu2V2O7 [3], which has a pyrochlore lattice and antisymmet-
ric Dzyaloshinskii-Moriya (DM) interactions perpendicular
to the vanadium bonds. Other ferromagnetic pyrochlore in-
sulators include Ho2V2O7 and In2Mn2O7 [7]. It has also
been measured in perovskites La2NiMnO6 and YTiO [7]
and kagome magnets Cu(1–3, bdc) [8], [CaCu3(OH)6Cl2 ·
0.6H2O] [9]. Magnon transport has also been theoretically
studied in different topological structures and models [10–16],
which include both chiral and coplanar [17,18] systems.
Furthermore, this transport phenomena has even led to the
proposition of devices to manipulate the spin-wave current in
what is called “topological magnonics” [19].
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In a previous work (Ref. [20]), we presented an extended
XXZ antiferromagnetic model in the kagome lattice with an
emergent “spontaneous” Chern insulator, where the net chi-
rality can be controlled by an external magnetic field. There
is a hidden phase transition in terms of the scalar chiral-
ity that separates the high-temperature phase from the chiral
low-temperature phase holding two q = 0 ground states with
opposite net scalar chirality. In this paper, we explore the
consequences of this chiral phase transition in the thermal
Hall conductivity. Using the linear-spin-waves (LSW) the-
ory approach, we first calculate the Chern numbers of the
magnonic bands, and show that there are several topologi-
cal phase transitions induced by the microscopic parameters.
Then, we calculate the scalar chirality obtained from LSW
and compute the the magnonic effect to the classical critical
temperature. Finally, we present the effects of the chiral phase
transition and the associated symmetry breaking in the ther-
mal conductivity: a null contribution for T > T SW

c . We close
with Discussion and Conclusions.

II. MODEL AND NONINTERACTING MAGNONS

We consider the extended antiferromagnetic Heisenberg
model in the kagome lattice up to third nearest-neighbor
interactions, taking only third nearest-neighbors interactions
across the hexagons (see Fig. 1).

H =
3∑

n=1

∑
〈i, j〉n

Jn
(
Sx

i Sx
j + Sy

i Sy
j + �Sz

i Sz
j

) − h
∑

i

Sz
i , (1)

where n indicates the nth nearest neighbor, � < 1 is the XXZ
anisotropy parameter, and h is the external magnetic field

2469-9950/2021/103(5)/054405(7) 054405-1 ©2021 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.103.054405&domain=pdf&date_stamp=2021-02-02
https://doi.org/10.1103/PhysRevB.103.054405


GÓMEZ ALBARRACÍN, ROSALES, AND PUJOL PHYSICAL REVIEW B 103, 054405 (2021)

FIG. 1. (a) The kagome lattice with Bravais vectors �a = (1, 0)
and �b = ( 1

2 ,
√

3
2 ). First, second, and third nearest-neighbor exchange

couplings, J1, J2, and J3, respectively, are indicated. We only consider
J3 as indicated in the figure. (b),(c) Two possible plaquette arrange-
ments of the canted 120◦ ground state.

along the z direction. In the SO(3) invariant � = 1 case, the
classical T = 0 phase diagram of this model is well known:
it presents the so-called “cuboc” phases (with spontaneous
and alternate scalar chirality), and a q = 0 phase [21,22] for
J3 < J2 < J1. At the special line J2 = J3 < J1, the ground
state has a semiextensive degeneracy [21] where lines of spins
from the q = 0 order can be “swapped.” For practical reasons,
we will take J1 = 1 for the rest of the paper.

The combination of the XXZ anisotropy and an external
magnetic field induces a q = 0 “umbrella” order with sponta-
neous nonzero net chirality. The emergence of scalar chirality
in this simple model is quite remarkable, with a rich potential
for unconventional phenomena. The xy projections of these
two possible plaquette orders with opposite scalar chirality are
shown in Figs. 1(b) and 1(c), where the three spins have the
same projection along the field.

In these two possible ground states, the classical or-
der is a canted 120◦ plaquette. The state shown in
Fig. 1(b) can be described (minus a global rotation
around the z axis) as �S1 = S(−

√
3

2 sin θ,− 1
2 sin θ, cos θ ),

�S2 = S(
√

3
2 sin θ,− 1

2 sin θ, cos θ ), and �S3 = S(0, sin θ, cos θ )
where S is the spin length and θ is the angle measured from
the z axis. As is well known, the scalar chirality in a plaque-
tte is defined as the triple product of the three spins χ0� =
�S1 · (�S2 × �S3), which is a measure of the solid angle formed
by them (χ0� = S3 3/2

√
3 cos θ sin2 θ for this configuration).

In a recent work [20], we focused on the special case
J1 = 1, J2 = 1/2, J3 = 0, � = 0.9 and showed that at low
temperature the system undergoes a phase transition where
the lattice-only reflection symmetry (x, y) → (x,−y) is spon-
taneously broken. As discussed in Ref. [21], this symmetry
transforms χ�

,
� → −χ�

,
�. Therefore, the relevant order

parameter is in fact the total scalar chirality (per plaquette)
χtot = 1

N�

∑
� χ0� where the sum involves all the triangu-

lar plaquettes N�. This will allow us to study the effect of

magnons in the critical temperature, defining the chirality
operator, as we will show later.

In order to introduce quantum spin fluctuations and char-
acterize the transport properties of the magnon excitations
of this model, we resort to a LSW analysis [23]. Following

the standard approach, we employ a three sublattice Holstein-
Primakoff (HP) mapping with the bosonic operators (see the
Appendix for details).

Even though classically, there are only two types of solu-
tions with opposite chirality, there is a rich phenomenology in
the magnon spectrum. To characterize the bands of the spec-
trum, we calculate the Chern number Cn for each nth band,
defined as Cn = 1

2π

∫
BZ �z

n(k)dk2, where �z
n(k) is the Berry

curvature, �z
n(k) = i〈 ∂un

∂k | × | ∂un
∂k 〉, and |un(k)〉 are the Bloch

waves in the nth band. To calculate this quantity numerically,
we resorted to the efficient method detailed in Ref. [24], tak-
ing up to 10 000 × 10 000 points in the discretized Brillouin
zone (BZ). As we describe in the next section, depending on
the microscopic parameters, even for small modifications of
the classical solution, the associated magnonic bands present
different Cn, which leads to several interesting phenomena.

A. Topological magnonic bands and topological
phase transitions

In order to discuss the magnon band structure, we choose
as the classical ground state one of the two q = 0 states,
shown in Fig. 1(b). The magnon spectrum obtained from the
LSW expansion is the same for both states, but the bands
have opposite Cn. From a general analysis, setting, for ex-
ample, h/S ∼ 0.6 (θ ∼ 1.5), we find that there are regions in
the parameter space (J2, J3,�) with topologically nontrivial
band structure with different Cn. These regions are divided
by topogical transitions that occur when the magnon bands
touch, and the “local” gap between them closes. For a repre-
sentative case of this situation we fix J2 = 0.8 and J3 = 0.2
with � ∈ [0, 0.9]. The band structure for � = 0.7 is depicted
in Fig. 2(a), where there are local gaps between all the bands;
εk,α indicates the energy of the α = 1, 2, 3 band.

In Fig. 2(b) we plot the Chern number of each band as
a function of �. Since in the � → 1 limit the classical
ground state is degenerate, we plot up to � = 0.9, to ensure
an optimal numerical calculation of Cn. The Cn appear as
steps in the constructed curve, and there are at least four
topological transitions at different values of the anisotropy
parameter. The sets of Cn [from the lowest (εk,1) to the top
(εk,3) band] go as (−3, 3, 0) → (3,−3, 0) → (5,−5, 0) →
(5,−7, 2) → (−1,−1, 2). As � increases, the topology of
the bands changes. For stronger XXZ anisotropy, the lower
bands have opposite Cn and the top band has a trivial topology
(Cn = 0). For higher � � 0.65 the top band gets a nontrivial
Cn. In Fig. 2(c) we show the gap between successive bands
as a function of � for specific points in the BZ. The Q∗
point of the BZ mentioned in Fig. 2(c) is an incommensurate
point between the K and 
 points, illustrated qualitatively in
the inset of Fig. 2(a). This value depends on the parameters,
such as the external field and the anisotropy parameter. As
expected, there is a perfect correspondence between the values
of � where there is a topological transition and the values
of the anisotropy paramenter where two of the bands touch.
There is also a correspondence between the magnitude of the
jumps and the number of points in the BZ where the gap closes
and reopens: in this particular example, there is a ±6 jump in
the Cn when the bands touch at the six Q∗, and a ±2 jump
when they do at the K (K ′) points.
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FIG. 2. Fixing J2 = 0.8, J3 = 0.2 (a) magnon spectrum for h/S = 0.6, � = 0.7. The bands do not touch at any point in the BZ. (b) Cn for
each magnon band as a function of �, for θ = 1.5 (in radians). (c) Distance between magnon bands at different points in the BZ as a function
of �. When the distance is zero, we identify a closing of the local gap between bands.

Another interesting issue is the role that the magnetic
field plays on the topological transitions, even though clas-
sically the magnetic field just changes the canting angle
of the spins. Varying the field triggers a series of topo-
logical transitions, which are reflected in the change of
the Cn. We show this for � = 0.7 in Fig. 3(a), where the
Cn is (5,−7, 2) → (−5, 5, 0) → (−1, 1, 0) → (−7, 7, 0) →
(−1, 1, 0) → (5,−5, 0). Since the classical saturation value
is h/S = 8.52 (as calculated according to Eq. (A3) from the
Appendix), we here plot up to h/S = 8.5. The (−5, 5, 0) inter-

FIG. 3. Fixing J2 = 0.8, J3 = 0.2, � = 0.7 (a) Cn as a function
of the external magnetic field h/S. (b) Details of the highlighted area
from panel (a).

mediate region in the (5,−7, 2) → (−5, 5, 0) → (−1, 1, 0)
transition at low fields, highlighted in Fig. 3(a), is particularly
narrow, and we zoom in this area in Fig. 3(b). As above, the
surprisingly large values of the obtained Cn are also remark-
able. A similar feature was discussed in Ref. [17], where this
was attributed to an in-plane DM interaction. In our work,
there are no antisymmetric interactions; the distinctive feature
is the XXZ anisotropy and the antiferromagnetic nature of the
couplings.

B. Chirality and phase transition

A key question in this work is the effect of magnons in the
classical phase transition and the consequences on the ther-
mal transport properties. The relevant order parameter in this
case, since both ground states have the same canting angle,
is not the magnetization but the scalar chirality, which allows
the detection of the spontaneous symmetry breaking at low
temperature. To this end, we compute the quantum version of
the scalar chirality χtot using HP transformation and retaining
terms up to quadratic order, obtaining

〈χtot 〉 =
(

1 + 3

2 S

)
χ0� + S2

Nk

3∑
k,α=1

{
Q̃αα

k g(εk,α )

+ Q̃α+3,α+3
k [1 + g(εk,α )]

}
, (2)

where Nk is the number of points in the Brillouin zone, χ0� =
S3 3

√
3

2 cos θ sin2 θ is the classical scalar chirality for one tri-
angular plaquette, g(εk,α ) is the Bose-Einstein distribution,
and Q̃k is the chirality operator matrix in the diagonal basis
(explicit expressions in the Appendix).

Let us first explore the dependence of critical temperature
T SW

c in terms of the spin length S taking J2 = 0.8, J3 = 0.2,
� = 0.7h/J1 = 0.6. From Fig. 4(a), where we plot 〈χtot 〉/S3

as a function of T/S2 for different values of spin S, we observe
that the chiral phase is stable up to the point 〈χtot 〉/S3 = 0
which defines the critical temperature T SW

c for each S. Look-
ing at the 〈χtot 〉/S3 vs T/S2 curves for different values of S,
it is clear that for a larger S there is a smaller T SW

c /S2. More-
over, for the largest values of S, the curves tend to collapse
around T SW

c /S2 ∼ 0.34. We show 〈χtot 〉/S3 for S = 1 as a
function of temperature for different values of � [fixing θ =
1.5; Fig. 4(b)] and external magnetic field [fixing � = 0.7;
Fig. 4(c)], where we can see that the behavior is robust. The
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FIG. 4. Absolute value of the chirality parameter as a function
of temperature from LSW for J2 = 0.8, J3 = 0.2 and (a) � = 0.7,
h/S = 0.6 and different values of S; (b) S = 1, θ = 1.5 and five
values of �; the inset zooms in to show that for higher �, T SW

c

is lower; (c) S = 1, � = 0.7 and three values of h. (d) |χ�| vs
temperature from MC simulations, J2 = 0.8, � = 0.7, h/S = 0.6,
and J3 = 0.1, 0.4, 0.7. Vertical black arrows indicate the critical tem-
perature T SW,∞

c obtained in the classical limit S → ∞. Calculations
where done for a discretization of 10 000 × 10 000 points in the BZ.

inset in Fig 4(b) shows that the critical temperature is lowered
as the anisotropy parameter increases.

By Eq. (2), we can compute in the classical limit T SW,∞
c =

limS→∞ T SW
c /S2, defined by the condition 〈χtot 〉 = 0. After a

simple analysis (see Appendix for details) we obtain

T SW,∞
c = −2χ0

�

S3

[
1

Nk

∑
k

∑
α=1,2,3

Q̃αα
k + Q̃α+3,α+3

k

ωk,α

]−1

, (3)

where 2Sωk,α = εk,α . Equation (3) allows us to compare
T SW,∞

c with Monte Carlo (MC) simulations in Fig. 4(c), as
the system approaches the J2 = J3 line, where the classical
model has a semiextensive degeneracy. For the MC simula-
tions, we resort to the Metropolis algorithm combined with
overrelaxation (microcanonical) updates in system size of 3L2

sites (L = 30). The estimated T SW,∞
c , even within the LSW

approximation, seems to be of the same order of magnitude as
the one obtained form MC, a situation which contrasts with
three-dimensional systems with long-range magnetic order,
and for which in general LSW gives a huge overestimation
of the critical temperature [25]. The reason for the good esti-
mation of the critical temperature with LSW is likely to rely
on the low value (compared to the microscopic parameters) of
it, implying a low contribution of the terms proportional to S2

in Eq. (2), The most important feature of our results is that
lowering the temperature from the paramagnetic phase, the
quantum version of the model in Eq. (1) undergoes a phase
transition in which the reflection symmetry is spontaneously
broken. This has relevant consequences in the transport

properties and the thermal Hall conductivity, which we will
discuss below.

C. Spontaneous thermal Hall conductivity

The presence of a nontrivial Berry curvature in the magnon
bands implies the existence of a thermal Hall signature pro-
vided that the Berry curvature is not odd in momentum. The
thermal Hall conductivity κxy may be calculated as [26,27]

κxy = − k2
BT

(2π )2h̄

∑
n

∫
BZ

{
c2[g(εk,α )] − π2

3

}
�z

n(�k)d2k, (4)

where kB is the Boltzmann constant, g(εk,α ) is the Bose-
Einstein distribution, and c2 is defined as

c2(x) = (1 + x)

[
ln

(
1 + x

x

)]2

− (ln x)2 − 2Li2(−x), (5)

where Li2(x) is the dilogarithm.
In Fig. 5(a) we show κxy as a function of the external field

for two temperatures T < T SW
c . In Fig. 5(b) we show κxy [in

units of k2
B/(2π h̄)] for S = 1 as a function of the temperature

for different �, corresponding to different regions marked by
the topological transitions in Fig. 2(b).

The most important feature of this study is shown in
Fig. 5(c). This figure shows that the sign of κxy depends on the
sign of the scalar chirality from the classical ground state. This
suggests that κxy will have a spontaneous sign for T < T SW

c .
However, because 〈χtot 〉 = 0 for T > T SW

c , κxy must vanish
for T > T SW

c , implying a “switchable” THE. Unfortunately,
this suppression of the κxy is not completely captured by LSW.
We expect magnon interactions [25,28], not included at this
stage, to establish the cancellation of κxy for T > T SW

c . This
requires a higher order spin-wave calculation (in powers of
1/S) which is beyond the scope of this paper. Nonetheless,
given the previous discussion, we propose a cutoff in κxy as
represented in Fig. 5(c) with a dashed black line.

III. DISCUSSION AND CONCLUSIONS

The purpose of the present work was to study a chiral phase
transition in an anisotropic Heisenberg model in the kagome
lattice, in which the reflection symmetry is spontaneously
broken, and where the low temperature phase shows a thermal
Hall effect.

To this end, using the linear-spin-waves theory approach,
we have studied numerically the topology of the magnonic
bands and their Chern numbers. We have shown that there
are several topological transitions driven by the magnetic field
and the microscopic parameters. We have also studied the
effect of magnons in the chiral phase transition in terms of
these parameters. We have paid particular attention to the
dependence of the critical temperature with the magnitude
of the spins and obtained an interesting result comparing the
value obtained taking the classical limit (S → ∞) with Monte
Carlo simulations.

Finally, we calculate the thermal Hall conductivity as a
function of temperature showing that effectively its sign is
“spontaneous.” Therefore, we show with this simple model
that it is possible to “switch” on the thermal transport proper-
ties by manipulation of the external parameters.
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FIG. 5. For S = 1, J2 = 0.8, J3 = 0.2 (a) κxy as a function of h
taking � = 0.7 for two different temperatures T = 0.6 and T = 1;
(b) thermal conductivity κxy as a function of temperature for different
values of �, for θ = 1.5; (c) κxy as a function of temperature obtained
from the magnon spectrum of the two possible classical ground states
with opposite scalar chirality for � = 0.7, h/S = 0.6.

A unique feature of this work resides in the chiral phase
transition. Previous works have established that a nonzero
scalar chirality in the ground state could lead to THE. Here,
the chirality serves as an order parameter associated with a
spontaneous broken symmetry, and thus allows us to con-
jecture the behavior of the thermal Hall conductivity with
temperature and define a critical temperature above which
the thermal Hall conductivity is suppressed. In addition, we
have shown that this conductivity can be tuned by the external
magnetic field and the XXZ anisotropy. We would like to
point out the fact that, although the structure of the kagome
lattice allows for Dzyaloshinskii-Moriya interactions, there
is still room for systems in which a spontaneously broken
symmetry chiral phase as the one observed here is present (see

FIG. 6. Classical configuration for one plaquette: with (a) posi-
tive and (b) negative scalar chirality. The numbers 1, 2, and 3 indicate
spins from the three different triangular sublattices from the kagome
lattice.

Ref. [21] for a more complicated example). In this sense the
example studied here has to be thought of as the simplest of a
family of systems presenting a low temperature phase with a
spontaneous THE.

Following the previous discussion, it would be interesting
to consider magnon interactions going beyond LSW theory in-
cluding three and four bosonic terms to obtain a more accurate
estimation of the conductivity near the chiral phase transition.
We defer this for future investigations.
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APPENDIX: SPIN-WAVE THEORY

1. Quadratic bosonic Hamiltonian and magnonic spectrum

We consider a kagome-lattice antiferromagnet with
anisotropic XXZ exchange interactions up to third nearest
neighbors, taking only third nearest-neighbors interactions
across the hexagons. First we write the Hamiltonian as

H =
3∑

n=1

∑
〈i,α; j,β〉n

Jn
(
Sx

i,αSx
j,β + Sy

i,αSy
i,β + �Sz

i,αSz
j,β

)

− h
∑
i,α

Sz
i,α, (A1)

where i and j are indices for the positions ri, r j in the periodic
Bravais lattice, α and β are sublattice indices (1, 2, or 3
as indicated in Fig. 6), n indicates the nth nearest neighbor,
� < 1 is the XXZ anisotropy parameter, and h is the external
magnetic field along the z direction. For J3 < J2 < J1 and h >

0, the classical ground state corresponds to spins forming an
umbrella q = 0 order with spontaneous nonzero net chirality
and two possible xy projections, shown in Fig. 6. The classical
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energy per plaquette is given by

E0

N�

= S2

2
[6(2J1 + 2J2 + J3)� cos2 θ

− 6(J1 + J2 − J3) sin2 θ ] − 3hS cos θ, (A2)

where N� is the total number of plaquettes, and θ is the
canting angle between the spins and the magnetic field. Mini-
mization of the classical energy fixes θ to

h = S[(2 + 4 �)(J1 + J2) + 2J3(� − 1)] cos θ. (A3)

In order to include quantum spin fluctuations about the
classical magnetic order [Fig. 6(a) or 6(b)], we construct the
Hamiltonian of free spin waves using the Holstein-Primakoff
(HP) transformation [23]. We follow the conventional strat-
egy of the large-S approach, we consider three sublattices,
indicated in Fig. 6(a), and define a local coordinate system
along the direction of the classical ground state as spin quan-
tization axis {x′

n, y′
n, z′

n}. The HP transformation in the local
frame reads

S̃z
i,α = S − a†

i,αai,α, (A4)

S̃+
i,α =

√
2S − a†

i,αai,αai,α ≈ ai,α

√
2S, (A5)

S̃−
i,α = a†

i,α

√
2S − a†

i,αai,α ≈ a†
i,α

√
2S (A6)

with a†
i,α (ai,α) being a bosonic creation (annihilation) operator

of the sublattice α at the cell i. Using this mapping in the
Hamiltonian given by Eq. (A1) and after a Fourier transfor-
mation ai,α = (1/

√
N )

∑
k eik·(ri+rα )ak,α , where N is the total

number of unit cells, r denotes the position of the unit cell and
rα are the internal positions of the sublattices. The bilinear
bosonic Hamiltonian reads

H2 = S
∑

k

�
†
k · Mk · �k, (A7)

where �
†
k = {a†

k,1, a†
k,2, a†

k,3, a−k,1, a−k,2, a−k,3} and the ma-
trix Mk is

Mk =
[

Dk Ck

C†
k DT

−k

]
, (A8)

where the submatrix Dk,Ck has elements

D11
k = 1

2

{
h/S cθ − 2 cθ2�(2J1 + 2J2 + J3) + 2(J1 + J2 − J3)sθ2 + J3(1 + cθ2 + � sθ2) cos [2(q1 − q2)]

}
,

D21
k = − 1

8 (3 + c2θ + 4i
√

3 cθ − 2� + 2 c2θ �)[J1 cos(q1) + J2 cos(q1 − 2q2)],

D31
k = 1

4 (−1 + 2i
√

3 cθ − cθ2 + 2 � sθ2)[J2 cos(2q1 − q2) + J1 cos(q2)],

D12
k = − 1

8 (3 + c2θ − 4i
√

3cθ − 2 � + 2 c2θ �)[J1 cos(q1) + J2 cos(q1 − 2q2)],

D22
k = 1

2

[
h/S cθ − 2cθ2 �(2J1 + 2J2 + J3) + 2(J1 + J2 − J3)sθ2 + J3(1 + cθ2 + � sθ2) cos(2q2)

]
,

D32
k = 1

4 (−1 − 2i
√

3cθ − cθ2 + 2 � sθ2)[J1 cos(q1 − q2) + J2 cos(q1 + q2)],

D13
k = 1

4 (−1 − 2i
√

3cθ − cθ2 + 2 � sθ2)[J2 cos(2q1 − q2) + J1 cos(q2)],

D23
k = 1

4 (−1 + 2i
√

3cθ − cθ2 + 2 � sθ2)[J1 cos(q1 − q2) + J2 cos(q1 + q2)],

D33
k = 1

2

[
h/S cθ − 2cθ2 �(2J1 + 2J2 + J3) + 2(J1 + J2 − J3)sθ2 + J3(1 + cθ2 + �sθ2) cos(2q1)

]
,

C11
k = 1

2 (−1 + �)J3sθ2 cos [2(q1 − q2)],

C21
k = 1

4 (1 + 2�)sθ2[J1 cos(q1) + J2 cos(q1 − 2q2)],

C31
k = 1

4 (1 + 2�)sθ2[J2 cos(2q1 − q2) + J1 cos(q2)],

C12
k = 1

4 (1 + 2�)sθ2[J1 cos(q1) + J2 cos(q1 − 2q2)],

C22
k = 1

2 (−1 + �)J3sθ2 cos(2q2),

C32
k = 1

4 (1 + 2�)sθ2[J1 cos(q1 − q2) + J2 cos(q1 + q2)],

C13
k = 1

4 (1 + 2�)sθ2[J2 cos(2q1 − q2) + J1 cos(q2)],

C23
k = 1

4 (1 + 2�)sθ2[J1 cos(q1 − q2) + J2 cos(q1 + q2)],

C33
k = 1

2 (−1 + �)J3sθ2 cos(2q1),

where we have defined q1 = kx, q2 = kx/2 + √
3/2ky, sθ =

sin θ , cθ = cos θ , s2θ = sin 2θ , and c2θ = cos 2θ .
To diagonalize the bosonic Hamiltonian we perform a

paraunitary Bogoliubov transformation [29] Md = U †
k · Mk ·
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Uk = diag{wk,1,wk,2,wk,3,w−k,1,w−k,2,w−k,3} with U †
k ·

σ3 · Uk = σ3, σ3 = diag{1, 1, 1,−1,−1,−1}. The bilinear
Hamiltonian becomes

He f f = E0 +
∑
k,α

εk,α

(
b†

k,α bk,α + 1

2

)
, (A9)

where the energy of the magnon bands is εk,α = 2Sωk,α

[28].

2. Chirality order parameter

Following the same strategy, we perform the HP transfor-
mation [Eq. (A4)] in the chirality operator χtot = 1

N�

∑
� χ�,

with χ� = Si · (S j × Sk ). Retaining up to quadratic bosonic
terms, we obtain

〈χtot 〉 =
(

S3 + 3

2
S2

)
3
√

3

2
cos θ sin2 θ

+ S2

Nk

3∑
kα=1

{
Q̃αα

k g(εk,α ) + Q̃α+3,α+3
k [1 + g(εk,α )]

}
,

(A10)

where Nk is the number of points in the Brillouin zone, g(εk,α )
is the Bose-Einstein distribution, and Q̃k = U †

k · Q · Uk with

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−B A A∗ 0 −B
2 −B

2

A∗ −B A −B
2 0 −B

2

A A∗ −B −B
2 −B

2 0

0 −B
2 −B

2 −B A∗ A

−B
2 0 −B

2 A −B A∗

−B
2 −B

2 0 A∗ A −B

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A11)

with A = 1
32 (8 i + 5

√
3 cos θ + 3

√
3 cos 3θ and B =

3
√

3
4 cos θ sin2 θ .

From Eq. (A10) we can obtain the value of the critical
temperature in the classical limit, T SW,∞

c = limS→∞ T SW
c /S2.

In order to do this, we take the S → ∞ limit in the Bose
distribution function (setting the Boltzmann constant kB = 1):

g(εk,α ) = g(2Sωk,α ) = 1

exp2Sωk,α/T −1

= 1

exp(2ωk,α/S)(1/T/S2 ) −1
�⇒ lim

S→∞
g(2Sωk,α )

∼ 1

1 + 2ωk,α

S
1

T/S2 + · · · − 1
= ST SW,∞

c

2ωk,α

. (A12)

Inserting the above expression for g(εk,α ) in Eq. (A10) and
taking 〈χtot 〉 = 0 we obtain the expression for T SW,∞

c shown
in Eq. (3) in the main text.
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