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Laser-induced torques in spin spirals
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We investigate laser-induced torques in magnetically noncollinear ferromagnets with a spin-spiral magnetic
structure using ab initio calculations. Since spin spirals may be used to approximate the magnetization gradients
locally in domain walls and skyrmions, our method may be used to obtain the laser-induced torques in such
objects from a multiscale approach. Employing the generalized Bloch theorem, we obtain the electronic structure
computationally efficiently. We employ our method to assess the laser-induced torques in bcc Fe, hcp Co,
and L10 FePt when a spin-spiral magnetic structure is imposed. We find that the laser-induced torques in
these magnetically noncollinear systems may be orders of magnitude larger than those in the corresponding
magnetically collinear systems and that they exist for both linearly and circularly polarized light. This result
suggests that laser-induced torques driven by noncollinear magnetic order or by magnetic fluctuations may
contribute significantly to processes in ultrafast magnetism.
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I. INTRODUCTION

Femtosecond laser pulses exert effective magnetic fields
on the magnetization in collinear ferromagnets, which may
be used to tilt the magnetization and to excite magnetization
dynamics [1–3]. These effective magnetic fields have been
ascribed to the inverse Faraday effect (IFE) and to the optical
spin transfer torque (OSTT) [4–7]. The IFE is a key ingredient
in several theoretical explanations of magnetization reversal in
ferromagnetic thin films [8,9].

In spintronics, the spin-orbit torque [10] requires spin-orbit
interaction (SOI), while the spin-transfer torque [11] does not.
The reason is that in collinear ferromagnets the angular mo-
mentum can be transferred only to the lattice, which requires
SOI, while in noncollinear magnets, spin valves, and mag-
netic tunnel junctions the angular momentum is transferred
between different magnetization directions and between dif-
ferent magnetic layers, which does not require SOI. IFE and
OSTT have been studied mostly in collinear magnets, and they
require SOI.

This comparison between spintronics and laser-induced
ultrafast magnetism therefore poses the question of whether
there are additional laser-induced torques in noncollinear
magnets or in spin valves that arise from different mecha-
nisms than the IFE and the OSTT. Indeed, laser pulses may
distort domain walls and excite magnetization dynamics in
them [12,13]. Additionally, laser pulses excite spin currents
in spin valves, which generate spin-transfer torques when
they flow between different magnetic layers [14,15]. These
laser-induced spin-transfer torques resemble the Slonczewski
spin-transfer torque in spintronics. However, in spintronics a
second type of torque is known, the so-called nonadiabatic
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torque [11,16–19]. Therefore, one may expect that not only
the Slonczewski torque but also the nonadiabatic torque
should have a laser-induced counterpart in ultrafast mag-
netism. We will confirm this expectation in this paper.

Strong femtosecond laser pulses not only generate effective
magnetic fields; they also trigger ultrafast demagnetization.
There are many indications that ultrafast demagnetization
in transition metal collinear ferromagnets is not dominated
by collapsed exchange but rather by collective excita-
tions [20–22]. Since the magnetization is noncollinear in the
presence of collective excitations, one may pose the question
of whether the laser-induced torques that arise from this non-
collinearity might contribute to the ultrafast demagnetization
itself. Moreover, in order to describe the processes involved in
ultrafast magnetism at room temperature properly, it is crucial
to take the initial thermal fluctuations of the magnetization
into account [23,24]. Within the limitations of the frozen
magnon approximation our results on spin spirals may also be
used to estimate the laser-induced torques on magnons, which
therefore provides a valuable asset to understand the torques
active in ultrafast magnetism.

Several recent works have added an ultrafast-magnetism
perspective to magnetically noncollinear objects such as
skyrmions [25–27] and domain walls [12,13]. In order to
apply our results for homogeneous spin spirals to such
inhomogeneous objects one may locally approximate the
magnetization gradients by spin spirals and use a multiscale
approach [28].

This paper is structured as follows. In Sec. II we present our
theory and computational formalism of laser-induced torques
in spin spirals. In Sec. II A we introduce basic notations. In
Sec. II B we discuss the symmetry properties of laser-induced
torques. In Sec. II C we explain the key differences between
laser-induced torques on spin spirals and the current-induced
torques known from spintronics. In Sec. II D we develop a
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simple model useful to understand laser-induced torques on
spin spirals. In Sec. II E we describe how key properties of the
laser-induced torques may be understood within the gauge-
field approach. In Sec. II F we describe our computational
method. In Sec. III we discuss our ab initio results for the
laser-induced torques in bcc Fe, hcp Co, and L10 FePt. This
paper ends with a summary in Sec. IV.

II. THEORY

A. Laser-induced torques on spin spirals

The magnetization direction M̂ of spin spirals may be
written as

M̂(r) = R(α, β )

⎛
⎝sin(θ ) cos(q · r + φ)

sin(θ ) sin(q · r + φ)
cos(θ )

⎞
⎠, (1)

where q is the spin-spiral wave vector, θ is the cone angle of
the spin spiral, and R(α, β ) is a proper orthogonal rotation
matrix parameterized by the two Euler angles, α and β. When
α = β = 0, we have R(0, 0) = 1, and Eq. (1) describes a
helical spin spiral when θ = 90◦ and when q points in the z
direction. When q lies in the xy plane, it describes a cycloidal
spiral. Nonzero Euler angles are needed in Eq. (1) to describe,
e.g., a helical spin spiral propagating in the x direction or a
cycloidal spin spiral propagating in the z direction.

Since torques on the magnetization are perpendicular to
it, any torque on the magnetization of a spin spiral may be
expressed as

T (r) = R(α, β )[êθ (r)Tθ + êφ (r)Tφ], (2)

where the unit vectors êθ (r) and êφ (r) are given by

êθ (r) =
⎛
⎝cos(θ ) cos(q · r + φ)

cos(θ ) sin(q · r + φ)
− sin(θ )

⎞
⎠ (3)

and

êφ (r) =
⎛
⎝− sin(q · r + φ)

cos(q · r + φ)
0

⎞
⎠, (4)

respectively.
In spintronics, current-induced contributions to the torque

Tφ are referred to as the adiabatic torque, while current-
induced contributions to Tθ are referred to as the nonadiabatic
torque [11]. It is nowadays agreed that the terms adiabatic
and nonadiabatic are not optimal to describe the mechanisms
involved in these current-induced torques. However, these two
terms are well established to distinguish the two possible
directions of the current-induced torque. When a torque is
generated by the application of laser light, this torque may be
decomposed as well into the two components Tφ and Tθ , which
we denote therefore laser-induced adiabatic torque and laser-
induced nonadiabatic torque, respectively. However, while
borrowing these terms from spintronics, we do not suggest
that the microscopic origin of laser-induced torques is in
any way similar to the microscopic origin of current-induced
torques. The analogies between the two, which suggest us-
ing the terms adiabatic and nonadiabatic for both effects,
are only in the geometry, i.e., in the directions of these two

FIG. 1. Two consecutive 180◦ rotations around the x and z axes
affect a flat spin spiral (yellow arrows) in the same way as a net
translation of the spin spiral along the x direction does. However,
these two consecutive rotations flip the signs of Tθ and Tφ (compare
the torques, e.g., in the two square boxes). Consequently, symmetry
requires the laser-induced torques to vanish in flat spin spirals.

components, and in the effect of the torques on the magneti-
zation dynamics. The difference in mechanisms is explored in
Secs. II C and II D.

B. Symmetry of laser-induced torques

Consider a flat spin spiral in the xy plane, i.e., θ = 90◦,
R = 1, and q along the x direction in Eq. (1). Two subse-
quent rotations of the spin spiral, first by 180◦ around the
x axis and then by 180◦ around the z axis, lead to a simple
translation of the entire spin spiral (see Fig. 1). However, the
application of these rotations to the torque reverses the sign
of the torque. Therefore, the laser-induced torques vanish in
this case. Generally, for flat spin spirals, i.e., when θ = 90◦,
the laser-induced torques vanish. Note that in this symmetry
argument we do not consider SOI because in this work we
consider only laser-induced torques that arise from the non-
collinear magnetic order. In the presence of SOI the above
symmetry argument does not hold because the two rotations
are not allowed by symmetry.

Consider a Néel-like spiral with the q vector in the x direc-
tion, cone angle θ , and R = 1 in Eq. (1) (see Fig. 2). When
we rotate the spiral around the z axis by 180◦, the q vector
changes sign, but the torque is not modified. Consequently,
laser-induced torques are even in q. However, when we rotate
next around the x axis by 180◦, the torque changes sign.
Therefore, T (θ ) = −T (180◦ − θ ). This suggests that the de-
pendence of the torques on θ may be described by ∝ sin(2θ )
at the leading order. As a special case it follows that the torque
vanishes when θ = 90◦, consistent with the result above.

C. Current-induced vs laser-induced torques on spin spirals:
Different mechanisms

While we borrowed the terms adiabatic and nonadiabatic
from spintronics in order to distinguish the two components
of the laser-induced torques, the mechanisms responsible for
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FIG. 2. A first rotation around the z axis by 180◦ flips the sign
of the q vector of the spin spiral but does not affect the torques.
Consequently, laser-induced torques are even in q. A second rotation
around the x axis by 180◦ flips the sign of the torques (compare,
e.g., the torques in the two square boxes). Consequently, the torques
satisfy T (θ ) = −T (180◦ − θ ).

current-induced torques on spin spirals are quite different
from those generating the laser-induced torques. In this sec-
tion we explore some of these differences.

When an electric current propagates along a spin spiral, the
spin current is given by

Qi(r) = h̄

2e
PJiM̂(r). (5)

Here, the vector Qi(r) describes the spin current density flow-
ing along the ith Cartesian direction. This vector is parallel to
the orientation of the spin polarization of this spin current. Ji

is the electric current density along the ith Cartesian direction,
and

P = σ↑ − σ↓
σ↑ + σ↓

(6)

is its polarization. σ↑ and σ↓ are the respective contributions
of the minority and majority electrons to the electrical con-
ductivity. The resulting torque is given by

T adia (r) =
∑

i

∂Qi

∂ri
. (7)

In Eq. (5) we assumed that the electron spin follows the local
magnetization direction adiabatically. Therefore, the torque in
Eq. (7) is called the adiabatic torque.

When a laser pulse is applied to a homogeneous spin spiral
in a centrosymmetric crystal, inversion symmetry does not
allow any spin current to be generated by the laser pulse at the
second order of the electric field of the laser light. Of course,
if the laser spot has a finite size, spin current will flow out
of the illuminated region, but we consider here the situation
where the entire spiral is homogeneously illuminated by the
pulse. The absence of spin currents in homogeneously illu-
minated spin spirals shows that the microscopic mechanisms
of laser-induced torques have to be different from those of
current-induced torques in spin spirals. Certainly, there are
several experiments where laser pulses excite superdiffusive

spin currents, which exert torques on magnets [14]. However,
in these experiments two magnets are separated by a nonmag-
netic spacer, which is a geometry different from the one of a
homogeneous spin spiral that we consider in this work.

Since the spin current cannot explain the laser-induced
torque in homogeneous spin spirals, we develop a simple
model in the following section.

D. Gradient expansion

The Kohn-Sham Hamiltonian of a magnetic system may be
written as

H (r) = H0(r) − m · M̂(r)�xc(r), (8)

where the first term, H0(r), contains kinetic energy and scalar
potential, while the exchange interaction is described by
the second term. Here, �xc(r) is the exchange field, i.e.,
the difference between the potentials of majority and mi-
nority electrons �xc(r) = 1

2μB
[V eff

minority(r) − V eff
majority(r)]; m =

−μBσ ; μB is the Bohr magneton; and σ = (σx, σy, σz )T is the
vector of Pauli spin matrices.

In general the magnetization of a spin spiral, Eq. (1),
breaks the translational invariance of the crystal lattice. In
order to obtain at a position r0 a local Hamiltonian that is
consistent with the crystal lattice translational symmetries one
may expand the exchange interaction in H (r) around r0. The
expansion of the Hamiltonian around the position r0 is given
by

H (r) = H0(r) − m · M̂(r0)�xc(r)

−�xc(r)
∂{m · M̂(r0)}

∂r0
· [r − r0]

− 1

2
�xc(r)

∑
i j

∂2{m · M̂(r0)}
∂r0,i∂r0, j

× [ri − r0,i][r j − r0, j] + · · · . (9)

Consequently, the local Hamiltonian at r0 is

〈H (r)〉 � H0(r) − m · M̂(r0)�xc(r)

− 1

2
�xc(r)

∑
i j

∂2{m · M̂(r0)}
∂r0,i∂r0, j

〈[ri − r0,i][r j − r0, j]〉

(10)

because 〈[r − r0]〉 = 0 in systems with inversion symmetry.
Here, 〈· · · 〉 denotes a suitable averaging.

The second derivative of the magnetization direction is
given by

∂2M̂(r0)

∂r0,i∂r0, j
= −qiq j sin θ [sin θM̂(r0)

+ cos θR(α, β )êθ (r0)], (11)

which leads to an effective magnetic field perpendicular to the
local magnetization:

Bq(r) = −bq�
xc(r) sin(2θ )R(α, β )êθ (r), (12)
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where

bq = 1

4

∑
i j

qiq j〈[ri − r0,i][r j − r0, j]〉. (13)

Consequently, the local Hamiltonian may be written as

〈H (r)〉 � H0(r) − m · [M̂(r0)�xc(r) + Bq(r)]. (14)

We assume that the application of a laser pulse generates two
torques, one in the direction of M̂ × Bq ∝ êφ and a second
one in the direction of M̂ × [M̂ × Bq] ∝ êθ . According to
Eq. (12), these torques are proportional to sin(2θ ), which is
consistent with the symmetry analysis in Sec. II B. According
to Eq. (13), these torques are even in q, which is consistent
with the symmetry analysis in Sec. II B and also with our ab
initio results in Sec. III. Thus, the assumption that the interac-
tion of laser-excited electrons with the effective magnetic field
Bq(r) leads to the laser-induced torques predicts a dependence
on q and θ that agrees with the ab initio results. Clearly,
Bq(r) exists even without any applied laser pulse. However,
the expectation value 〈[ri − r0,i][r j − r0, j]〉 in Eq. (13) is state
dependent, and therefore, bq changes when a laser pulse is
applied.

When the q vector is equal to a primitive vector b of
the reciprocal lattice, one picks up the phase 2π over the
length of a primitive lattice vector. Consequently, q = b de-
scribes the same magnetic structure as q = 0. Similarly, q =
b/2 describes an antiferromagnet, where neighboring mag-
netic atoms exhibit antiparallel magnetic moments. In such
a collinear antiferromagnetic configuration the laser-induced
torques are zero. Therefore, we expect the torques to increase
first with increasing q, to attain a maximum around b/4,
and to decrease afterwards until they are zero at b/2. Thus,
the model developed in this section, which predicts that the
torques increase with increasing q, is expected to be valid only
for q < π/(2a), where a is the lattice constant.

E. Gauge-field approach to spin spirals

The effects of magnetic texture on conduction electrons
often resemble those of SOI. In fact, mathematical exact
transformations of magnetization gradients into an effective
SOI have been derived and exploited in important model
systems (see Ref. [29] for a recent review). These relations
have been used not only for the discussion of effects linear in
the magnetization gradients but also for effects, e.g., quadratic
in the magnetization gradients [30]. One may argue that this
equivalence between magnetic noncollinearity and effective
SOI explains why laser-induced torques exist in spin spirals
even without real SOI, while collinear ferromagnets exhibit
nonzero laser-induced torques only in the presence of SOI:
Instead of the real SOI it is the effective SOI due to the
magnetic noncollinearity that generates these torques in spin
spirals even without any real atomic SOI. This argument has
been used to predict an IFE in topological magnetic structures
even without SOI [31].

In this work we consider Fe, Co, and FePt. In these mate-
rials the SOI strength on the magnetic atom is of the order of
60 meV. Using the gauge-field approach from Ref. [32], we
estimate that noncollinearity produces an effective SOI of the

order of magnitude of

h̄2qk

2m
≈ 1.5 eV, (15)

where we set q = k = 2π/(10 Å). This is larger than the real
SOI by a factor of 25. Consequently, we expect the laser-
induced torques from noncollinearity to be larger than those
from real SOI in these materials.

In Secs. II B and II D we showed that the laser-induced
torques in spin spirals are expected to be even in the q vector
and to exhibit the angular dependence ∝ sin(2θ ). In the fol-
lowing we show how these dependences may be understood
within the gauge-field approach. Using a gauge transforma-
tion, the Hamiltonian in Eq. (8) may be rewritten as follows
[we set R = 1 and φ = 0 in Eq. (1)] [19,32,33]:

H (r) = H0(r) − m · M̂
eff

�xc(r) + eAeff · v, (16)

where v is the velocity operator,

Aeff = − ih̄

e
U †(r)

∂U (r)

∂r
(17)

is an effective vector potential, and

U (r) =
(

i cos q·r
2 + sin q·r

2 0
0 sin q·r

2 − i cos q·r
2

)
(18)

transforms the noncollinear magnetization of the spin spiral
into the collinear magnetization

M̂
eff = (− sin θ, 0, cos θ )T. (19)

Explicitly, the effective vector potential is given by

Aeff = h̄

e

(− q
2 0

0 q
2

)
. (20)

We denote the two eigenstates of the matrix

−m · M̂
eff = μB

(
cos θ − sin θ

− sin θ − cos θ

)
(21)

by | ↑〉 and | ↓〉. Since M̂
eff

lies in the xz plane, we have 〈↑
|σy| ↑〉 = 0. A nonzero expectation value 〈σy〉 corresponds to
a torque. Such a nonzero expectation value may arise from the
perturbation by the effective vector potential:

〈↑ |σy| ↓〉〈↓ |eAeff · v| ↑〉
E↑ − E↓

= − sin θ

2

〈↓ |h̄q · v| ↑〉
E↑ − E↓

. (22)

In centrosymmetric systems response coefficients that in-
volve one torque operator combined with an odd number of
velocity operators vanish because the torque operator is parity
even, while the velocity operator is parity odd. Since Eq. (22)
contains only a single velocity operator, the final expression
has to include one more matrix element of eAeff · v. This
matrix element is given by

〈↑ |eAeff · v| ↑〉 = h̄
cos θ

2
〈↑ |q · v| ↑〉. (23)

Multiplication of Eqs. (22) and (23) shows that the depen-
dence on q and θ is given by

∝ q2 sin(θ ) cos(θ ) ∝ q2 sin(2θ ), (24)

in agreement with the findings in Secs. II B and II D.
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F. Computational formalism

While the laser-induced adiabatic torque does not require
SOI, the laser-induced nonadiabatic torque is zero in the full
calculation when SOI is not included. By full calculation we
mean one that considers both intrinsic and extrinsic contri-
butions. This follows from angular momentum conservation,
which is satisfied by the full calculation, provided a conserv-
ing approximation [34] is used.

In this work, we compute only the intrinsic contribution,
which is nonzero even without SOI. In order to justify this
approximation, we briefly recall the theory of the current-
induced nonadiabatic torque, which makes use of similar
approximations: The current-induced nonadiabatic torque
vanishes in the absence of SOI when a conserving approxi-
mation is used. Extrinsic contributions from scattering need
to be added to the intrinsic contribution in order to obtain
a conserving approximation [16,17]. Therefore, the intrinsic
contribution alone does not vanish in calculations without
SOI. However, it has been argued that while SOI is crucial for
a nonzero nonadiabatic torque, it does not strongly affect the
magnitude of the nonadiabatic torque. Therefore, calculating
the intrinsic nonadiabatic torque without including SOI may
be useful provided there is a mechanism for angular momen-
tum transfer to the lattice in the real system that one wishes to
describe [19].

Since vertex corrections are computationally expensive and
numerically tractable expressions for the vertex corrections
to the laser-induced torques have not been derived yet, we
consider in this work only the intrinsic laser-induced torques
without SOI. Not including SOI in the calculation allows us to
obtain the electronic structure of spin spirals computationally
efficiently based on the generalized Bloch theorem [35]. In or-
der to compute the laser-induced torques we employ the same
equations as those used previously for collinear ferromagnets
with SOI [6].

When torques are induced by femtosecond laser pulses,
the torques appear retarded relative to the pulses. Retardation
times between 330 fs and 3 ps have been reported [1,2]. The
expressions that we derived in Ref. [6] and that we use in this
work were derived under the assumption of a continuous laser
beam rather than a pulse. However, a comparison between the
experimental assessment of the torques induced by femtosec-
ond laser pulses in Ref. [1] and our theory [6] showed good
agreement in the magnitude of the torques. Therefore, we
leave the investigation of retardation effects for future work
and assess the laser-induced torques assuming a continuous
laser beam in this paper.

III. RESULTS

A. Computational details

We obtain the electronic structure of bcc Fe, hcp Co, and
L10 FePt self-consistently using the density functional theory
program FLEUR [36]. The lattice parameters are a = 5.4235a0

(Fe); a = 4.739a0, c = 7.693a0 (Co); and a = 5.1445a0, c =
7.1489a0 (FePt), where a0 is Bohr’s radius. We apply the
generalized Bloch theorem to treat the spin-spiral states [35].
In order to evaluate the laser-induced torques we take the
expressions given in Ref. [6], and we make use of Wannier

FIG. 3. Laser-induced torques in Fe vs cone angle θ when
q = (0,−0.023, 0.023)T/a0. (a) Adiabatic torque. (b) Nonadiabatic
torque.

interpolation [37] for computational speedup. For this purpose
we disentangle 18 maximally localized Wannier functions per
transition metal atom, where we employ our interface [38] be-
tween FLEUR and the WANNIER90 program [39]. The Green’s
function formalism that we developed in Ref. [6] allows us to
control disorder through a quasiparticle broadening parameter

, which we set to 
 = 25 meV in this paper. We set the
intensity of the laser beam to I = 10 GW/cm2 and the photon
energy to 1.55 eV.

B. bcc Fe

In Fig. 3 we show the laser-induced torques in Fe as
a function of cone angle θ for q vector q = 0.02b3 =
(0,−0.023, 0.023)T/a0 and the three linear polarizations εx =
(1, 0, 0), εy = (0, 1, 0), and εz = (0, 0, 1). Here, b3 is the re-
ciprocal lattice vector

b3 = 2π
a1 × a2

(a1 × a2) · a3
, (25)

where ai are the primitive lattice vectors. The polarizations εy

and εz yield the same torques, while εx yields different torques
because the chosen q vector q = (0,−0.023, 0.023)T/a0 lies
in the yz plane. For small cone angle θ both the adiabatic and
nonadiabatic torques increase in magnitude with increasing θ .
However, the slope decreases with increasing θ , and in the
case of the nonadiabatic torque, the magnitude decreases after
reaching a maximum close to 20◦. This shows that the de-
pendence on θ is not perfectly described by a simple sin(2θ ),
which describes only the leading order in the expansion with
respect to θ (see Sec. II B), and higher-order terms in the
angular expansion are important.

In Fig. 4 we show again the laser-induced torques in Fe
as a function of cone angle θ but now for a larger q vec-
tor of q = 0.1b3 = (0,−0.115, 0.115)T/a0. In this case the

FIG. 4. Laser-induced torques in Fe vs cone angle θ when
q = (0,−0.115, 0.115)T/a0. (a) Adiabatic torque. (b) Nonadiabatic
torque.
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FIG. 5. Laser-induced torques in Fe vs q vector
q = (0, −1.1585Q, 1.1585Q)T/a0 when θ = 5.7◦. (a) Adiabatic
torque. (b) Nonadiabatic torque.

nonadiabatic torque reaches a maximum already close to 5◦
for the polarizations εy and εz. Compared to Fig. 3 both the
adiabatic and nonadiabatic torques are larger due to the larger
q. In Ref. [6] we computed the IFE and OSTT in bcc Fe
and obtained 15 and 33 mT, respectively, at the same laser
intensity and quasiparticle broadening as in this paper. In com-
parison, the adiabatic torques in Fig. 4(a) are larger by almost
three orders of magnitude. We attribute these large torques
to the strong SOI-like interaction from the noncollinearity
discussed in Sec. II E.

In order to investigate the q dependence in more detail we
show in Fig. 5 the laser-induced torques in Fe as a function of
q vector q = Qb3 = (0,−1.1585Q, 1.1585Q)T/a0 when θ =
5.7◦. The torques increase monotonously with Q, and they
are even in Q. For small Q the nonadiabatic torque behaves
like ∝ |Q|, while the adiabatic torque behaves like ∝ Q2. This
behavior is consistent with the symmetry analysis in Sec. II B
predicting the torques to be even in spin-spiral wave vector q.

C. hcp Co

In Fig. 6 we show the laser-induced torques in Co as
a function of cone angle θ for q vector q = 0.02b3 =
(0, 0, 0.016)T/a0. The in-plane polarizations εx and εy yield
very similar torques because the q vector points in the z
direction and is therefore perpendicular to both polarizations.
The slight difference between torques for εx and εy can be
explained by considering that the x and y directions in the
hexagonal unit cell are not equivalent. Similar to the case
of bcc Fe shown in Fig. 3, the nonadiabatic torque attains a
maximum already close to 20◦ and therefore requires higher-
order terms in the angular expansion beyond the leading-order
term ∝ sin(2θ ) for its description.

In Fig. 7 we show the laser-induced torques in Co as
a function of cone angle θ for the q vector q = 0.02b1 =

FIG. 6. Laser-induced torques in Co vs cone angle θ when q =
(0, 0, 0.016)T/a0. (a) Adiabatic torque. (b) Nonadiabatic torque.

FIG. 7. Laser-induced torques in Co vs cone angle θ when
q = (0.015, −0.0265, 0)T/a0. (a) Adiabatic torque. (b) Nonadiabatic
torque.

(0.015,−0.0265, 0)T/a0, which lies in the xy plane. The
nonadiabatic torque is now different between the polarizations
εx and εy because the q vector forms different angles with the
x and y axes.

For the same laser intensity and quasiparticle broadening
as used in this paper we determined the IFE and OSTT in Co
in Ref. [6] and obtained 118 and 0.229 mT, respectively. In
comparison, the adiabatic torques shown in Figs. 6(a) and 7(a)
are orders of magnitude larger.

D. L10 FePt

In Fig. 8 we show the laser-induced torques in FePt
as a function of cone angle θ for q vector q = 0.02b3 =
(0, 0, 0.0176)T/a0. The torques for the polarizations εx and
εy agree because the crystal axes a and b are equivalent and
because the q vector is perpendicular to both of them. At large
angles θ the adiabatic torque for polarization εz is strongly
suppressed in Fig. 8(a) due to the large anisotropy in the L10
structure. Similar to the cases of bcc Fe and hcp Co shown in
Figs. 3 and 6, respectively, the nonadiabatic torque attains a
maximum already close to 20◦ and therefore requires higher-
order terms in the angular expansion beyond the leading-order
term ∝ sin(2θ ) for its description.

In Fig. 9 we show the laser-induced torques in FePt
as a function of cone angle θ for q vector q = 0.02b1 =
(0.0244, 0, 0)T/a0. In this case the torques are different for
the three polarizations εx, εy, and εz: The x and y directions
are inequivalent because q points in the x direction, and the z
direction is inequivalent to the y direction because the c axis
is longer than the b axis.

For the same laser intensity and quasiparticle broadening
as used in this paper we determined the IFE and OSTT in
FePt in Ref. [6] and obtained 185 and 22 mT, respectively. In

FIG. 8. Laser-induced torques in FePt vs cone angle θ when q =
(0, 0, 0.0176)T/a0. (a) Adiabatic torque. (b) Nonadiabatic torque.
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FIG. 9. Laser-induced torques in FePt vs cone angle θ when q =
(0.0244, 0, 0.0)T/a0. (a) Adiabatic torque. (b) Nonadiabatic torque.

comparison, the adiabatic torques shown in Figs. 8(a) and 9(a)
are more than one order of magnitude larger.

IV. CONCLUSION

We investigated laser-induced torques in homogeneous
spin spirals without spin-orbit interaction using symmetry ar-
guments and first-principles calculations. Symmetry analysis
showed that laser-induced torques vanish for flat spirals—at
the leading order of an angular expansion the dependence on
spiral cone angle is ∝ sin(2θ )—and that their dependence on
the spin-spiral wave vector q is even in q. Additionally,
it showed that laser-induced torques in homogeneous
spin spirals are not associated with spin currents. Our

first-principles calculations showed that the laser-induced
torques in bcc Fe, hcp Co, and L10 FePt with an imposed
spin-spiral magnetic structure may be orders of magnitude
larger than those in the corresponding magnetically collinear
systems with SOI. This suggests that these torques may play
an important role in ultrafast magnetism phenomena. Within
the frozen-magnon approximation our results may also be
used to estimate the laser-induced torques on magnons in
these materials.
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