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Metasurfaces are ultrathin planar arrays of carefully tailored subwavelength particles that enable agile and
flexible manipulation of the impinging waves. Originally introduced in optics, their application to acoustic waves
has recently opened exciting opportunities for exotic sound control. In conventional acoustic inclusions, the
interactions with the impinging pressure and velocity are decoupled, limiting the functionalities that arrays of
them can achieve. While the coupling between these two quantities in symmetry-breaking inclusions, known as
Willis coupling, has been discussed for several years, only recently has it been realized that these phenomena
can become nonperturbative in suitably tailored resonant scatterers. Here, we explore the opportunities that these
Willis meta-atoms open in the context of acoustic metasurfaces, offering additional knobs to manipulate and
tailor sound. The general response of Willis metasurface is analytically derived, yielding fundamental bounds
and optimal surface responses enabling full control of the impinging acoustic wave front.
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I. INTRODUCTION

Acoustic metamaterials and metasurfaces have provided
a rich playground for the design and engineering of acous-
tic waves, exhibiting unprecedented responses in the realm
of wave-matter interactions [1]. An abundance of interesting
ideas have sprouted to achieve extreme values of material
properties [2], including simultaneous negative mass density
and bulk modulus [3,4], near-zero mass density [5,6], and
compressibility [7]. In turn, these properties have enabled
different functionalities, such as acoustic cloaking [8], lens-
ing [9], nonreciprocity [10], and orbital angular momentum
[11,12]. In order to realize these concepts, significant research
efforts have been also spent on the suitable homogenization
[13,14], and modeling of these structures [15].

Recently, in analogy with magnetoelectric coupling in
electromagnetics [11], the idea of leveraging Willis coupling,
i.e., the coupling between pressure and velocity arising in
asymmetric scatterers, as an additional knob to control acous-
tic waves has been receiving significant attention [16–19].
Homogenization techniques have been developed to describe
one-dimensional (1D) Willis metamaterials [20], and experi-
mental measurements of Willis coupling in one-dimensional
meta-atoms have been reported [21]. For a long time Willis
coupling has been considered a perturbative phenomenon of
limited practical relevance, however recently Willis meta-
atoms with cross coupling as large as the direct response to
pressure and velocity have been proposed [22] and exper-
imentally validated [23], and retrieval methods to measure
these quantities have been developed in Refs. [24,25]. Active
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acoustic and mechanical components have also been lever-
aged to demonstrate asymmetric Willis polarizabilities and
nonreciprocal responses [26–28]. While metasurfaces based
on Willis meta-atoms have been recently considered [29,30],
rigorous and robust modeling of the interactions among
closely spaced Willis elements, which can capture their
coupling and rigorously model their collective response, is
missing. Thus, a mathematical tool to understand new oppor-
tunities arising in Willis metasurfaces and the ultimate bounds
in tailoring sound with such structures is required.

In this paper, we establish the foundations and study the
general properties of 2D arrays of Willis acoustic particles—a
Willis metasurface. We rigorously model and explore the ef-
fects of interparticle coupling in these arrays by defining an ef-
fective polarizability, which describes the array response, and
evaluate the interaction coefficients within the array [31,32].
Finally, using effective polarizability we rigorously homoge-
nize Willis metasurfaces and model their sound interactions in
an efficient way. Next, we consider the scattering of sound by
a general Willis metasurface and derive transmission, reflec-
tion, and absorption in terms of its effective parameters, and
using these relations we derive the bounds on wave manip-
ulation. Finally, we apply our formulation to model practical
Willis metasurfaces, validating our results with full-wave sim-
ulations performed using commercial software [33].

II. RESPONSE OF A SINGLE WILLIS PARTICLE

Consider an individual subwavelength inclusion placed in
a fluid characterized by mass density ρ0 and sound speed
c0, shown in the inset of Fig. 1(a). Given its small size, we
can generally describe its acoustic scattering response as the
superposition of an acoustic monopole and three orthogonal
dipole moments induced in the particle. If the meta-atom
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FIG. 1. (a) An acoustic Willis metasurface composed of an infinite array of Willis particles (one shown in the inset) in a square lattice.
In response to an incident plane wave, the array scatters reflected and transmitted plane waves driven by the induced monopole and dipole
moments, with patterns depicted by yellow and green shapes in the inset. (b) Geometry of a Helmholtz resonator. (c) Acoustic polarizability of
the lossless Helmholtz resonator retrieved numerically and compared to our analytical model. In this example rneck = 5 mm, a = 20 mm, � =
5.6 mm.

exhibits Willis coupling, these multipole moments can be
excited by both the local pressure and particle velocity, hence
the general scattering process is captured by the polarizability
tensor α through [20,22](

M
D

)
= α

¯
·
(

ploc

uloc

)
=

(
αM p αMu

αDp α
¯

Du

)
·
(
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where M = ∫
V ρdV is the acoustic monopole, D = ∫

V ρrdV
is the acoustic dipole vector, ρ is the density distribution in
the particle, V is the volume of the particle, ploc is the local
pressure (defined as the total pressure at the center of the
particle in its absence), and uloc is the local velocity field. The
elements of the polarizability tensor depend on the geometry,
structure, and material composition of the particle. In particu-
lar, αM p is a scalar that describes the monopole generated by
the local pressure. Similarly, the Willis cross-coupling terms
are αMu (1 × 3 row vector), which determines the monopole
excited by the local velocity, and αDp (3 × 1 column vector),
which links the local pressure to the induced dipole moment.
Finally, α

¯
Du (3 × 3 tensor) relates the induced dipole moment

to the velocity field.
As an example, Fig. 1(b) shows the geometry of an

asymmetric Helmholtz resonator and Fig. 1(c) shows the
corresponding lossless polarizability tensor elements as a
function of frequency around the resonance, derived using a
numerical retrieval procedure described in the Supplemental
Material [34] (based on calculating the scattered field multi-
pole components), and an analytical model developed in detail

in Appendix A. It is observed that polarizability components
derived using both methods match with high accuracy and
the relevant polarizability elements go through a resonance
assuming their peak values around 730 Hz.

In Ref. [22], bounds on the various elements of α
¯

for
passive inclusions have been derived based on energy conser-
vation,
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� Diag[6π i(α
¯
′∗T − α
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and on reciprocity,

α
¯
′ = α

¯
′T −

, (3)

where α
¯
′ is the normalized polarizability, as defined in Ap-

pendix B, to ensure that all terms in the matrix have the
same physical units of (m s2), and T − indicates the transpose
operation with sign reversal of the off-diagonal elements. The
equality in Eq. (2) is satisfied for lossless particles. In the
following, we will consider also particles with nonreciprocal
responses, not obeying (3). While expressions (2) and (3)
present two fundamental constraints on the particle response
(passivity and reciprocity), these relations can also be used as
a sanity check, to verify the analytically derived or numeri-
cally calculated individual polarizability of known inclusions.
For example, a hard sphere or a Helmholtz resonator like the
one analyzed in Fig. 1 are both passive and reciprocal parti-
cles, thus the individual polarizabilities derived in Ref. [34]
and in Appendix A and plotted in Fig. 1 obey both (2)
and (3).

Based on the symmetries of the polarizability matrix, bian-
isotropic particles in electromagnetics have been classified
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into four categories: omega, chiral, moving, and Tellegen [41].
Due to the longitudinal nature of acoustic waves, however,
some of the functionalities and wave-matter interactions avail-
able in electromagnetics do not find a direct acoustic analog.
We can look at the energy balance from an impinging wave
[42] to introduce a basic classification of acoustic Willis in-
clusions. If we assume an excitation wave propagating along ẑ
and with only a ẑ component of velocity, the extinction power
from the particle can be written in closed form as

�ext = ω|pi|2
2ρ0

Im

[
−1

3
α′M p + (ρ0c0)2 α′Du

zz

|η|2
]

+ ωc0|pi|2
2
√

3
Im

(
α

′Dp
z

η∗ + α′Mu
z

η

)
, (4)

as derived in Appendix C, with η = p/u being the wave
impedance [43], which for far-field excitation is η = η0 =
ρ0c0. The contribution of the Willis coupling term to the
extracted power comes from the second expression in Eq. (4).
Without loss of generality, we can write α

′Dp
z = α′

nR +
α′

R, α′Mu
z = α′

nR − α′
R, where α′

R describes the reciprocal con-
tribution to Willis coupling, stemming from geometrical
asymmetries as a time-reversal-symmetric phenomenon [sat-
isfying relation (3)], whereas α′

nR captures possible nonrecip-
rocal responses arising from a bias that breaks time-reversal
symmetry, yielding an odd-symmetric response [20]. Thus, an
acoustic Willis particle with α′

nR = 0 is even-symmetric and
α′

R = 0 is an odd-symmetric particle. The Willis contribution
to the extinction power can then be generally written as

�ext,Willis = ωc0|pi|2
2
√

3
Im(2α′

nRRe[η−1] − 2 jα′
RIm[η−1]).

(5)

We can see that reciprocal particles interact with the in-
coming wave through their (even) Willis coefficient only
with reactive (imaginary) impedances, as in a standing wave,
which is analogous to omega particles in electromagnetics
[42]. Conversely, energy extraction from traveling waves with
real impedance happens through Willis coupling only when
nonreciprocal (odd) interactions arise. In the case of purely
odd Willis coupling, i.e., when the particle is geometrically
symmetric and α′

R = 0, the Willis particle becomes analogous
to a moving electromagnetic particle [42].

III. WILLIS METASURFACES—EFFECTIVE
HOMOGENIZED SURFACE PARAMETERS

A. Effective polarizabilities

Having defined the general properties of a Willis particle,
we can now extend our analysis to a Willis metasurface,
consisting of a 2D square lattice of Willis inclusions with
lattice constant d , shown in Fig. 1(a). The response of each
particle is described by Eq. (1), where the local fields contain
the incident field and the contribution from the other particles
in the array(
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)
=

(
pi

ui

)
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(6)

The units of β
¯

and its blocks are the same as α
¯
. For normal

incidence, all the excited monopoles and dipoles are equal,
and symmetry considerations force β

¯
to be a diagonal matrix,

as shown in Ref. [34]. Following (6), we hence define the
effective polarizability tensor α̂ of the array as(
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Its expression includes the interaction coefficients and the
particle polarizabilities through
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¯
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¯

D · [

¯

−1 · αDP]) (9)

where a ⊗ b is the dyadic product. Several approaches can
be used to efficiently evaluate the interaction coefficients, as
comprehensively discussed and evaluated in Ref. [34] and
summarized in Appendix G.

B. Conservation of energy constraints

Following the procedure used to derive Eq. (2) for a sin-
gle particle, we can also derive general energy conservation
constraints on α̂ for passive metasurfaces, which conse-
quently results in constraints on β

¯
. We start by examining

radiated (�rad) and extinction power (�ext) for a single
monopole/dipole scatterer, evaluated in Appendixes D and C,
respectively. Assuming that the scatterer is lossless, we can
plug their expressions in �rad = �ext, yielding

Im{(αM p)
−1} = k3c2/4π (10)

for a monopole scatterer and

Re
{(

αDu
εε

)−1} = k3ω/12πρ0 (11)

for a dipole scatterer, where ε = {x, y, z}. To determine the
energy constraint in an array of particles, we assume a square
array of tightly packed polarizable scatterers in the xy plane,
for which only the zeroth order diffraction order contributes
to power considerations. In this case, we use (7)–(9) to deter-
mine M and D, along with the corresponding fields generated
by an array of such elements as calculated explicitly in
Appendix E, and plug these into �rad = �ext [34]. This results
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in the compact relations

Im{βM} = k3c2

4π
− kc2

2A
, (12)

Re
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12πρ0
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Re
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} = k3ω

12πρ0
− ω2

2Aη0
. (13)

Analogous to Eq. (2) for individual particles, conservation
of energy dictates a relation on the interaction coefficients,
which implies an overall bound on the effective polarizability
of the metasurface. The existence of additional diffraction
orders, in the case where the lattice constant d is comparable
to the incidence wavelength, contributes additional terms to
Eq. (12). These would correspond to the relative power scat-
tered into these additional harmonics, and the balance of the
total scattered power with the incident power.

C. Willis metasurface impedance tensors

In electromagnetics it is common to homogenize a dense
metasurface that does not support higher diffraction orders
using its average surface impedance tensor [31,44,45]. In
analogy, we can define an acoustic surface impedance that av-
erages the induced monopole and dipole currents in the array.
Following the definition of equivalent currents in Appendix F,
we start by defining the induced surface currents,

ρ(u2z − u1z ) = −iωM

A
= JM, (14)

(p2 − p1) = −ω2D

A
= −iωJD, (15)

where A is the area of one unit cell in the array. To relate the
currents to the acoustic fields, we start from Eq. (7) and define
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)
=

(
pi

ui

)
, α̂−1 =
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i
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i âuD

i

)
. (16)

Using Eqs. (14)–(16) together with the results in
Appendix E, and limiting ourselves for simplicity of notation
to uniaxial acoustic resonators, which respond only to the ẑ
component of velocity, we obtain

pavg =
(

−AâpM

iω
+ c0

2

)
JM +

(
−AâpD

i,z

iω

)
JD,

uz,avg =
(

−AâuM
i,z

iω

)
JM +

(
−AâuD

i,zz

iω
− ω

2iη0

)
JD, (17)

where it was also assumed that the monopole-velocity cou-
pling vector âuM

i and the dipole-pressure coupling vector âpD
i

have only ẑ components, because the particles are uniaxial.
This relation fully describes and captures the acoustic Willis
properties of the metasurface, and extends to the acoustic
domain the boundary conditions obtained in electromagnetic
bianisotropic metasurfaces [31,46]. The general expression to
describe metasurfaces with arbitrary Willis inclusions using
boundary impedances is outlined in Ref. [34], relating the
relevant impedance expressions to the inclusion and surface

properties through the polarizabilities and interaction coeffi-
cients. In addition, the metasurface is described using standard
T- and �-circuit models, connecting the impedances to the
reflection and transmission coefficients.

IV. REFLECTION AND TRANSMISSION COEFFICIENTS

Using the effective polarizabilities derived in Sec. III A,
we are now ready to evaluate the reflection and transmission
properties for plane wave excitation of general Willis metasur-
faces. We limit our analysis to normal incidence for simplicity
of notation, but similar principles can be applied to arbitrary
incidence angles [47]. Consider a plane wave incident on the
array, with fields

pi = p0e±ik0ze−iωt ,

ui = ±ẑ
p0

η0
e±ik0ze−iωt , (18)

with ± representing propagation in the ±ẑ direction. Using
Appendix E, the amplitudes of reflected and transmitted fields
can be written in terms of the induced monopole and dipole
moments as

p±
ref = −i

ω2±M

2Ak0
− ω2±Dz

2A

p±
tr = pi − i

ω2±M

2Ak0
+ ω2±Dz

2A
, (19)

where we have again assumed that the array is dense, hence
only normally outgoing waves are scattered. Next, we use the
definitions of effective polarizability as in Eq. (7) to omit M
and Dz and obtain the reflection and transmission coefficients
as

R± = iω2

2Ak0

(
α̂′MP

3
∓ α̂

′Dp
z − α̂′Mu

z√
3

− α̂′Du
zz

)
,
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α̂′M p

3
± α̂

′Dp
z + α̂′Mu

z√
3

+ α̂′Du
zz

)
, (20)

where α̂′ is the normalized effective polarizability of the ar-
ray. In the reciprocal case, α̂

′Dp
z = −α̂′Mu

z , the transmission
is independent of Willis coupling, and therefore reciprocal
Willis coefficients, which are inherently even, introduce only
an asymmetry in the reflection properties, and do not control
transmission. Dually, purely odd Willis coupling coefficients,
associated with nonreciprocal phenomena, do not affect the
reflection properties but introduce transmission asymmetries.

Using Eq. (19), the acoustic Willis metasurfaces can be
modeled using a lumped circuit analogy, which provides a
straightforward tool to analyze and design these structures.
The derivation of the lumped circuit components in T- and
�-topologies has been explained in Ref. [34], showing that in
reciprocal (T + = T −) and symmetric structures (R+ = R−)
the lumped circuit components follow

Z1 = Z2 = Z0
−ω2De

z[
2A + ω2De

z

] ,

Z3 = Z0
2Ak − iω2Me + ω2kDe

z

i ω2Me

A

[
ω2De

z + 2A
] , (21)
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FIG. 2. Absolute value of the left-hand side in Eq. (22). The zeros (corresponding to dark curves) imply a full reflective Willis metasurface.
The surface consists of a square lattice of Helmholtz resonators with base dimensions a = 2 cm, � = 5.6 mm, rneck = 5 mm and lattice constant
d = 5 cm. For each plot, three of the parameters are fixed and Eq. (22) is swept over (a) length of the neck �, (b) radius of the neck rneck, and
(c) radius of the resonator a. (d) A cross section of the reflection and transmission coefficient for two different neck lengths. (e),(f) Same as
(d), but for the neck radius and resonator radius, respectively.

for T topology. It is observed that for an array of reciprocal
and symmetric particles, the series components are purely
dipolar; however, the parallel component has the contribution
of both dipole and monopole. These relations can be used
to design and synthesize a Willis metasurface or retrieve the
effective monopole and dipole moments of particles, when the
lumped element topology of the metasurface is known.

A. Total reflection

Total reflection occurs in the lossless scenario when T = 0,
which arises at the metasurface resonance. Using Eq. (20) and
assuming reciprocity, the required condition to achieve fully
reflective Willis metasurfaces is

α̂
′M p

3
+ α̂

′Du
zz − 2iAk0

ω2
= 0, (22)

which corresponds to the metasurface resonance. In particular,
for Eq. (22) to be satisfied we notice that the polarizability
terms must be purely imaginary, or have real parts that cancel
each other. Using a 2D square array of Helmholtz resonators
shown in Fig. 1(b), whose polarizability is explicitly calcu-
lated in Appendix A, the required particle dimensions and
array configuration can be defined to support total reflection.
Figures 2(a)–2(c) show the absolute value of the left-hand side
of Eq. (22) as we sweep one of the geometrical parameters
of the resonator while the others are fixed at a = 2 cm, � =
5.6 mm, rneck = 5 mm, and d = 5 cm. The condition for total
reflection is satisfied when the magnitude goes to zero, corre-
sponding to the dark regions in these figures. Figures 2(d)–2(f)
show the amplitude of the reflection and transmission coeffi-

cients for specific values of parameters, with values shown in
each panel. The resonator dimensions can be used to control
the frequency and bandwidth of the reflection response.

While Eq. (20) reveals that reciprocal Willis coupling coef-
ficients do not play a role in the acoustic transmission through
a Willis metasurface, it also discloses that the coupling terms
can be used to tailor the reflection coefficient and achieve
asymmetric reflection. Figure 3(a) shows the amplitude of
the reflection and transmission coefficients for a 2D array
of Helmholtz resonators for normal incident excitation. The
good agreement between numerical and analytical results con-
firms the validity and robustness of the proposed analytical
procedure to calculate the response of the Willis metasurfaces.
Furthermore, the presented analytical framework can be used
to gain insight into the physics of Willis particles arranged in
2D arrays. Since we are considering lossless particles, energy
conservation requires that the asymmetry in reflection when
excited from opposite sides is found only in terms of the
phase. As an example, the phase of the reflection and trans-
mission coefficients is shown in Fig. 3(b), showcasing largely
different reflection phases for propagation along +z and −z.

Indeed, the phase of the reflection coefficient changes
when the incident wave impinges from opposite sides, and
this asymmetry can be engineered directly via the even Willis
coupling coefficients. Looking closer at Eq. (19), and replac-
ing ±R = eiϕ±

, T = 0 elucidates the relation of the reflection
phase to the balance of excited monopoles and dipoles [34],

±De
z = − A

ω2
(1 + eiϕ±

), ±Me = −i
Ak

ω2
(1 − eiϕ±

). (23)
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FIG. 3. Analytically vs numerically calculated reflection and transmission coefficients of a 2D array of lossless spherical Helmholtz res-
onators excited by a normally incident wave. (a) Amplitude, (b) phase. The geometrical parameters are a = 2 cm, � = 5.6 mm, rneck = 5 mm,

and lattice constant d = 5 cm.

Relations derived based on effective polarizabilities, such
as Eqs. (20) and (22), provide a concise, accurate, and design
friendly model of the Willis metasurface. However, expres-
sions that explicitly incorporate the monopole and dipole
moments, such as Eqs. (19) and (23), provide more physical
insight on which fundamental particles contribute to a specific
peculiar behavior of the metasurface.

B. Asymmetric absorption

Investigating the relation between reflection and transmis-
sion coefficients in Eq. (20) outlines the connection between
the effective polarizability of the Willis particles and the
metasurface scattering features. Reciprocity dictates that the
transmission properties are equal from either direction, but
by properly engineering the Willis response, we can con-
trol the reflection phase asymmetry in the lossless case, as
discussed in the previous section, and more generally tailor
the balance between reflection and absorption in the case in
which the particles can absorb. This allows us to achieve
asymmetric absorption properties with respect to the inci-
dence direction of the acoustic waves. Figure 4 shows the
reflection and transmission properties of a Willis metasurface
with asymmetric reflection phase and amplitude, composed of
Helmholtz resonators with similar geometrical dimensions as
in the lossless case and filled with porous absorbing materials.
The polarizability of the individual particles was numerically
extracted from numerical simulations and then substituted into
our analytical formulas to evaluate the reflection and trans-
mission, comparing it with full-wave numerical simulations
of the entire 2D array. While in the lossless case presented
in Fig. 3 the geometrical asymmetry responsible for Willis
coupling introduces just an asymmetry in the reflection phase,
in the lossy scenario it affects both amplitude and phase of
the reflected fields. Good agreement between numerical and
analytical results validates our model, and it captures the
physics of lossy Willis metasurfaces and their potential to
realize asymmetric absorption. While Eq. (20) offers the free-

dom to design a Willis metasurface with desired asymmetrical
reflection and absorption, the geometrical parameters of the
unit cell set limits on the feasibility of the targeted amount of
reflection, absorption, and transmission. For example, it can
be proved that the maximum amount of achievable absorption
for a purely monopolar array of resonators is 50% [34,48],
and due to the highly monopolar response of the proposed
Helmholtz configuration the maximum amount of absorption
turns out to be ∼60%. In order to achieve total asymmetric ab-
sorption/reflection properties (R+ = 0, R− = e−iϕ, T ± = 0),
a metasurface with a specifically defined effective monopolar
and dipolar behavior should be designed, which follows [34]

+De
z = − A

ω2
, +Me = −i

Ak

ω2
,

−De
z = A

ω2
(1 + eiϕ ), −Me = −i

Ak

ω2
(1 − eiϕ ). (24)

Additional conditions and relations for Willis metasurfaces
with other peculiar behaviors, such as to yield full transmis-
sion, which results in a transparent array, or total absorption,
are discussed in Ref. [34]. It should be noted that the exotic
responses considered here can be achieved leveraging the
additional degree of freedom arising from pressure-velocity
coupling, described by the Willis coefficients. This claim
can become more evident when comparing the reflection
and transmission coefficient of a 2D array of acoustic hard
spheres, shown in Fig. 12 in Ref. [34] and Willis particles
in Figs. 3 and 4, which highlight more extreme variations,
and the existence of reflection asymmetries. In general, the
physical limitations stemming from reciprocity and power
conservation, described in Eqs. (2) and (3), combined with
the lack of additional design knobs (zero Willis coefficients),
in conventional metasurfaces formed by inclusions with zero
or weak Willis coupling, cannot support several of the exotic
features explored in this work.
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FIG. 4. Analytical vs numerical reflection and transmission coefficients of a 2D array of lossy spherical Helmholtz resonator subject to
normal incident wave. (a) Amplitude, (b) phase. Helmholtz resonator and array dimensions are the same as Fig. 3, while the inner part of the
resonator has been filled with a porous material of thickness tl = 3 mm and flow resistivity Rf = 1573.4 kg/m3 s.

V. CONCLUSIONS

In this paper, we introduced a general analytical model to
analyze and homogenize acoustic Willis metasurfaces, ideally
suited for design and optimization purposes, revealing phys-
ical insight into the effect of Willis coupling phenomena on
the scattering properties of these arrays. To this end, we first
rigorously calculated the interaction coefficients describing
the coupling in Willis metasurfaces. Then, we employed our
analytical findings to formulate an effective representation of
a 2D array of bianisotropic particles in terms of both effec-
tive polarizability and homogenized metasurface impedance
incorporating an effective boundary condition that utilizes
monopolar and dipolar equivalent currents. Using conserva-
tion of energy, we derived the bounds of these parameters,
and verified our analytical results in realistic implementations,
tailored to achieve perfect reflection, asymmetric reflection,
and absorption, showing excellent agreement between the pro-
posed analytical model and full-wave numerical simulations.
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APPENDIX A: POLARIZABILITY
OF A HELMHOLTZ RESONATOR

Based on the expressions given in Ref. [43], the polariz-
ability of a spherical Helmholtz resonator shown in Fig. 1(b)
has been calculated in Ref. [34] materials and it is expressed
as

αM p = 4π i

ω2k

[
− j′0(ka)

h(1)
0

′
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− ka

3h(1)′
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1
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]
ωρ0

k
,

(A1)

where a is the radius of the resonator, sin(θ0) = rneck/a, j′m,
h(1)′

m are the derivatives of the spherical Bessel and Han-
kel function of the first kind of order m, and the resonator
impedance parameters are expressed as

Rs = ρ0c0

4π
k2, Cs = 4πa3

3ρ0c2
0

(
1 + 1

15
k2a2

)
,

Ls = ρ0

4πa
(π − θ0) cot(θ0/2) + Lneck. (A2)

The inductance correction due to the neck is Lneck =
ρ0�/πr2

neck, where � is the length and rneck is the radius of
the neck [43]. These provide the aperture impedance

Z = R − iX = ka
4πa2

3ρ0c0
(Rs − iωLs + i/ωCs). (A3)

APPENDIX B: NORMALIZED POLARIZABILITY

The normalized polarizability is defined following [22]
using the relation

(−√
3M

ik0D

)
= α

¯
′
(
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√

3
ρ0c0uloc

)
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(
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. (B1)
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APPENDIX C: EXTINCTION POWER

Following the expressions derived in Ref. [34], the extinc-
tion power of a single particle can be written as

�ext = ω

2ρ0
Im(ρ0c0u∗

i · ik0D − p∗
i M ), (C1)

where ui, pi are the incident velocity and pressure fields. Us-
ing the normalized polarizability

�ext = ω

2ρ0
Im

[
−1

3
|pi|2α′M p + (ρ0c0)2ui∗ · α

¯
′Du · ui

+ ρ0c0√
3

(pui∗ · α′Dp − p∗ui · α′Mu)

]
(C2)

If we limit ourselves to the case of uniaxial resonators,
with response in the ẑ direction, and to incident fields that
propagate in the ẑ direction, we obtain

�ext = ω

2ρ0
Im

[
−1

3
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zz

∣∣ui
z
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z α′Dp
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zα
′Mu
z

)]
. (C3)

Since the incident wave propagates in the ẑ direction, we
can write uz = p/η where η is the acoustic impedance of the
incident fields. Substituting this into (C3) yields

�ext = ω|pi|2
2ρ0

Im

[
−1

3
α′M p + (ρ0c0)2 α′Du

zz

|η|2

+ ρ0c0√
3

(
α

′Dp
z

η∗ + α′Mu
z

η

)]
. (C4)

APPENDIX D: RADIATED FIELDS AND POWER
FROM A POINT SOURCE

1. Acoustic monopole

If we generate sound by periodically introducing and with-
drawing fluid from a small symmetric region of space, we
produce a monopole. The excited pressure wave satisfies

∇2 p − 1

c2

∂2 p

∂t2
= −∂2M

∂t2
δ(r), (D1)

where M = ∫
V0

ρdV . Using the free-space Green’s function,
we obtain the solution

pM = −ω2M

4πr
e−iωt eikr, (D2)

which in turn yields the total radiated power

�M
rad =

∫ 2π

0

∫ π

0

k4c3|M|2
32ρπ2r2

r2 sin(θ )dθdϕ = k4c3|M|2
8ρπ

.

(D3)

2. Acoustic dipole

If sound is produced by moving a portion of fluid back and
forth, and no mass is added or removed, we have dipole radi-
ation. This can also be interpreted as two equal but antiphase

monopoles adjacent to each other. The excited pressure wave
satisfies

∇2 p − 1

c2

∂2 p

∂t2
= ∇ ·

(
∂2D
∂t2

δ(r)

)
, (D4)

where D = ∫
V0

ρrdV . Using the free-space Green’s function
[49] the pressure associated with the acoustic dipoles reads
[34]

p = ω2(D · r̂)
(ikr − 1)

4πr2
e−iωt eikr (D5)

and the corresponding particle velocity can be calculated as
∂u
∂t = −1

ρ
∇p. Thus, the total radiated power is [34]

�D
rad = k3ω3|D|2

24ρπ
. (D6)

APPENDIX E: FIELDS EXCITED BY AN INFINITE ARRAY
OF MONOPOLES/DIPOLES

1. Infinite sheet of acoustic monopoles

The acoustic pressure and velocity fields created by an
infinite acoustic monopole sheet can be calculated using the
conservation of mass

∇ · u + 1

ρc2

∂ p

∂t
= 1

ρ

∂M

∂t
δ3(r). (E1)

Let us use the setup shown in Fig. 1(a), considering only
a monopole excitation. If an infinitesimally small volume V0

intersects the monopole sheet, relation (E1) should hold inside
V0. Thus, using the divergence theorem we have∫

S0

u · ds + 1

ρc2

∫
V0

∂ p

∂t
dV = 1

ρ

∂M

∂t

∫
V0

δ3(r)dV. (E2)

The radiation from an acoustic monopole is a spheri-
cally symmetric diverging wave [43], thus the radiation field
from a monopole sheet (a dense monopole array) is a plane
wave. Therefore, by substituting p = p0e−iωt eikz and u =
p0

η0
e−iωt eikzẑ into relation (E2), and letting the envelope ap-

proach a very flat disc around the sheet, the second integral
on the left hand side will be zero and the value of p0 can be
calculated. Thus, the pressure field radiated from an acoustic
monopole sheet reads

pM = −i
ω2M

2kA
e−iωt eikz, (E3)

where A is the cross section of the integral volume and the
monopole sheet and M is the total acoustic monopole in the
integral volume. The radiated power per surface area is also
calculated as

�M
rad =

∮
S

1

2
Re[pu∗] · ds = ω4|M|2

4η0Ak2
. (E4)

2. Infinite sheet of acoustic in-plane dipoles

Using the definition of acoustic dipole, the problem of
radiation from an acoustic sheet of in-plane dipoles can be
interpreted as the superposition of two out of phase monopole
sheets shifted in the x or y direction by δ, where δ → 0.
Hence, using (E3) and considering that the radiation of the
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monopole sheet is not a function of x or y, we can write for
in-plane acoustic dipoles Dx and Dy

pDx = pDy = lim
δ→0

{
pM

− δ
2
− pM

+ δ
2

} = 0. (E5)

Using relation (E5) we conclude that the radiated power
per surface area is also zero,

�
Dx
rad = �

Dy

rad = 0. (E6)

3. Infinite sheet of acoustic out-of-plane dipoles

The acoustic pressure and velocity fields created by an
infinite sheet of acoustic out of plane dipoles can be calculated
using conservation of momentum

∇p + ρ
∂u
∂t

= ∂2Dz

∂t2
δ3(r)ẑ. (E7)

If an infinitesimally small volume V0 intersects the dipole
sheet, the relation (E7) should hold inside V0. Thus, using the
divergence theorem we have∫

S0

pds + ρ

∫
V0

∂u

∂t
dV = ∂2Dzẑ

∂t2

∫
V0

δ3(r)dV. (E8)

From similar considerations, we assume that the radiation
from a tightly arranged dipole array is a plane wave, and
utilize the same mathematical process, to obtain

pDz
± = ∓ω2Dz

2A
e−iωt e±ikz, (E9)

and

�
Dz

rad =
∮

S

1

2
Re[pu∗] · ds = ω4|Dz|2

4ηA
, (E10)

where p+ and p− are the propagating pressure field in the front
(+ẑ) and back (−ẑ) of the dipole sheet, respectively.

APPENDIX F: DEFINITION OF EQUIVALENT CURRENTS

Let us consider a 2D square lattice populated by acoustic
monopoles M and acoustic dipoles Dz, with ẑ being the normal
to the array plane. If we start from the mass conservation

∇ · u + 1

ρc2
0

∂ p

∂t
= q, (F1)

where q is a source term associated with time variation of
mass in space, typical of monopoles, and employ a localiza-
tion process by volume integrating the equation inside a very
thin box containing the surface, we find that

ρ(u2z − u1z ) = −iωM

A
, (F2)

where M is the acoustic monopole defined by Eq. (1). Thus,
we can define an equivalent monopole current JM = −iωM/A
and we obtain the familiar form of boundary condition

ρ(u2z − u1z ) = JM . (F3)

Alternatively, we start from the conservation of momentum

∇p + ρ
∂u
∂t

= f , (F4)

f being a source term associated with the force per unit
volume exerted on the fluid, typical of dipoles. If we follow
the same procedure, we obtain

(p2 − p1) = −ω2D

A
. (F5)

If we define JD = −iωD/A, then we obtain the boundary
condition as

(p2 − p1) = −iωJD. (F6)

APPENDIX G: INTERACTION COEFFICIENTS

The closed form relations for pressure and velocity inter-
action coefficients have been developed using three different
methods and explained in Ref. [34], presented here:

βM = −ω2

2πh

{
iπ

(
1

kd
− 1

2

)
+

(
γ + ln

kd

4π

)
+ 2π

∞∑
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(
1√

(2lπ )2 − (kd )2
− 1

2lπ

)

+ 4
∞∑

n=1

∞∑
m=1

K0

[
n

(
d

h

)√
(2πm)2 − (kh)2

]
− ln

[
2 sin

(
kh

2

)]
+ i

(π − kh)

2

}
, (G1)

βD
xx = kc

ρ

{ ∞∑
n=1

∞∑
m=1

8iπm2

h3
K0

[
nd

h

√
(2πm)2 − (kh)2

]
− ik2

2πh
ln

[
2 sin

(
kh

2

)]

− k2

4πh
(π − kh) − ik

πh2
Cl2(kh) − i

πh3
Cl3(kh) + k2

4h
− k3

6π

}
, (G2)

βD
yy = kc

ρ

{ ∞∑
m=1

∞∑
n=1

8iπn2

d3
K0

(
mh

d

√
(2πn)2 − (kd )2

)
− ik2

2πd
ln

[
2 sin

(
kd

2

)]

− k2

4πd
(π − kd ) − ik

πd2
Cl2(kd ) − i

πd3
Cl3(kd ) + k2

4d
− k3

6π

}
, (G3)
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βD
zz = k2c

2πh2ρ

{ ∞∑
n=1

−πkh

2

[
H (1)

0 (nkd ) + H (1)
2 (nkd )

] + 2i

kh

∞∑
m=1

[(2πm)2 − (kh)2]

×
[

K2

(
nd

h

√
(2πm)2 − (kh)2

)
− K0

(
nd

h

√
(2πm)2 − (kh)2

)]
−πkh

4
+ (kh)2

6
+ iCl2(kh) + i

kh
Cl3(kh)

}
, (G4)

where k is the wave number in the medium and h and d are the periodicity of the array in x̂ and ŷ, respectively. It should be noted
that the interaction coefficient forms a diagonal matrix and all the nondiagonal terms are zero.
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