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Prethermal quasiconserved observables in Floquet quantum systems
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Prethermalization, by introducing emergent quasiconserved observables, plays a crucial role in protecting
periodically driven (Floquet) many-body phases over an exponentially long time, while the ultimate fate of such
quasiconserved operators can signal thermalization to infinite temperature. To elucidate the properties of prether-
mal quasiconservation in many-body Floquet systems, here we systematically analyze infinite-temperature
correlations between observables. We numerically show that the late-time behavior of the autocorrelations
unambiguously distinguishes quasiconserved observables from nonconserved ones, allowing one to single out a
set of linearly independent quasiconserved observables. By investigating two Floquet spin models, we identify
two different mechanisms underlying the quasiconservation law. First, we numerically verify energy quasicon-
servation when the driving frequency is large, so that the system dynamics is approximately described by a
static prethermal Hamiltonian. More interestingly, under moderate driving frequency, another quasiconserved
observable can still persist if the Floquet driving contains a large global rotation. We show theoretically how to
calculate this conserved observable and provide numerical verification. Having systematically identified all qua-
siconserved observables, we can finally investigate their behavior in the infinite-time limit and thermodynamic
limit, using autocorrelations obtained from both numerical simulation and experiments in solid-state nuclear
magnetic resonance systems.

DOI: 10.1103/PhysRevB.103.054305

I. INTRODUCTION

Controlling quantum systems using a periodic (Floquet)
drive has emerged as a powerful tool in the field of condensed-
matter physics and quantum information science. It has been
used to realize Hamiltonians that are not accessible in a static
system, such as modifying the tunneling and coupling rates
[1–6], inducing nontrivial topological structures [7–17], cre-
ating synthetic gauge fields [18–22], and spin-orbit couplings
[23]. On a quantum computer, Floquet engineering also en-
ables universal quantum simulation via the Trotter-Suzuki
scheme [24–30]. Floquet systems also possess interesting
dynamical phenomena, ranging from the discrete-time crys-
talline phase [31–35] to dynamical localization [36,37],
dynamical phase transitions [38,39], and coherent destruction
of tunneling [40–42].

While the connection to an effective time-independent
Hamiltonian is appealing, the active drive leads to energy
absorption by the Floquet many-body system, which is then
expected to heat up to infinite temperature. The heating is
detrimental to any quantum application, as no local quan-
tum information is retained and all interesting phenomena
mentioned above disappear [43–45]. It has been shown
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theoretically [46–50] and experimentally [51,52] that even
when the system heats up, the thermalization time can be
exponentially long in the drive parameters (typically the
frequency of a rapid drive). Then, a long-lived prethermal
quasiequilibrium is established, which allows exploitation of
the engineered Floquet Hamiltonian for quantum simulation
[53–55]. The emergent symmetries and conserved observ-
ables in the prethermal state distinguish it from the fully
thermalized state and underpin the existence of novel Floquet
phases [34,35,50]. Even more surprisingly, some numerical
studies have shown that the emergent conserved observ-
ables might not display thermalizing behavior even in the
infinite-time limit [53–56]. Many-body localization [32,57–
63], dynamic localization [53,55,64], and some fine-tuned
driving protocols [54,56,65] provide a way to escape the
thermalization fate, which could also be absent in finite-
size systems. Indeed, distinguishing the long-lived prethermal
state from an eventual thermal state is challenging. Numerical
studies are bound to finite-size (and often small) systems,
while experiments can only probe finite times, before the
external environment induces thermal relaxation.

Here we tackle this problem by a numerical and experi-
mental study of two Floquet models in spin chains, namely,
the kicked dipolar model (KDM) and the alternating dipolar
model (ADM). While most studies on spin chain dynamics
have focused on the evolution of pure states, here we propose
to study Floquet prethermalization using infinite-temperature
correlations. This metric provides information about quasi-
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conserved observables across the whole spectrum and serves
as a direct measurable quantity in nuclear magnetic resonance
(NMR) experiments. In Sec. II, we show that the existence of
long-lived quasiconserved observables can be unambiguously
identified using late-time behavior of the correlations, based
on which we provide a method to systematically search for all
linearly independent local quasiconserved quantities. Then we
provide both numerical and analytical tools to investigate such
prethermal conserved observables and their origins. We first
show that the prethermal Hamiltonian Hpre obtained from the
Magnus expansion under rapid drive yields a quasiconserved
observable in each model, in Sec. III A. We further show,
in Sec. III B, that when the driving Hamiltonian contains a
large global rotation, the Floquet propagator can induce an
additional conserved observable, as shown by going beyond
the usual Magnus expansion. With all the quasiconserved
observables at hand, we investigate, in Sec. IV, whether they
exist in the thermodynamic limit and infinite-time limit by
looking at the dependence of autocorrelations on system size
(numerically) and on time (experimentally). Both methods in-
dicate that quasiconserved observables vanish and the system
thermalizes to infinite temperature.

II. QUASICONSERVED OBSERVABLES

A. Hamiltonians and correlations

In this paper, we use the Trotter-Suzuki scheme for the
driving protocol, where the time-dependent Hamiltonian is
piecewise constant in one driving period. However, our results
are general for any form of periodic driving. The evolution
of the system that we study is given by the unitary propa-
gator in one period, UF = e−iH2τ e−iH1τ , where in each period
we consider the system to be under the Hamiltonian H1 for
a time τ , and then under H2 for another duration τ . Mo-
tivated by NMR experiments, we consider two models of
an L-site spin-1/2 chain: the kicked dipolar model (KDM),
where H (K )

1 =JDy and H (K )
2 =hZ , and the alternating dipolar

model (ADM), where H (A)
1 =JDy and H (A)

2 =JDx. Here, Dα =∑
j<k

1
2 (3S j

αSk
α − �S j · �Sk )/| j − k|3 is the dipolar interaction

operator in an arbitrary direction set by α (α = x, y, z), where
S j

α are spin-1/2 operators of the jth spin ( j = 1, . . . , L) and
�S j = (S j

x , S j
y , S j

z )T . As shown in Ref. [35], the 1/r3 interaction
is sufficiently short range in one dimension (1D) to yield
no qualitative difference with respect to the nearest-neighbor
interaction, and thus for simplicity in numerical and analytical
studies we only keep the nearest-neighbor interaction unless
explicitly mentioned. Z = ∑

j S j
z is the collective magneti-

zation operator along the z axis, and below we will also
use X = ∑

j S j
x ,Y = ∑

j S j
y . J and h are the strength of the

dipolar interaction and the collective z field, respectively, and
we fix h = J throughout the paper. In numerics, we assume
periodic boundary conditions.

To investigate the quasiconservation properties, we
use infinite-temperature correlations as our metric,
〈O(t )O′〉β=0 ≡ Tr[UtOU †

t O′]/(‖O‖‖O′‖), where Ut is
the unitary evolution during time t , O and O′ are observables,
and the norm is defined as ‖O‖ ≡

√
TrO2 [66]. Note that

early works [67] used this metric to determine whether a
system is ergodic or integrable. Here we show that we can

(a) (b) (c)

(f)(e)(d)

FIG. 1. Typical dynamics of 〈O(t )O′〉 in a Floquet spin chain.
Here we choose KDM and O = O′. (a)–(c) Jτ = 0.5; (d)–(f) Jτ =
2. (a),(d) O = X ; (b),(e) O = Y ; (c),(f) O = Z . Different colors
correspond to different system size L, as shown in the legend.

also use these correlations to identify quasiconservation in
prethermal systems, even if they are expected to be ergodic.

Figure 1 shows numerical simulations of some exemplary
correlations, i.e., the magnetization along three axes O =
O′ = Z, X,Y in KDM (the qualitative behavior is general for
other observables and models.) The autocorrelations of X and
Y display oscillations around 0 and damping, which originate
from the z field and the dipolar interaction, respectively. In-
stead, 〈Z (t )Z〉 exhibits a more interesting behavior. For small
Jτ , it quickly equilibrates at a nonzero value independent of
L, and it remains constant afterwards. For relatively large Jτ ,
there is a slow decay of 〈Z (t )Z〉 toward a final value that de-
creases with increasing L. We thus expect the final value to be
zero in the thermodynamic limit, corresponding to an infinite-
temperature final state. Indeed, the observable Z displays the
defining characteristics of what we deem a quasiconserved
observable in the prethermal regime: the autocorrelation of
a quasiconserved observable is nonzero in the prethermal
regime, but goes to zero in the fully thermalized state. In
simulations, autocorrelations of quasiconserved observables
still have nonzero value at infinite time due to the small system
size [e.g., 〈Z (t )Z〉 in Fig. 1], while for nonconserved observ-
ables, autocorrelations are zero [e.g., 〈X (t )X 〉 in Fig. 1]. These
distinct behaviors serve as a direct metric to identify quasicon-
served observables. As any observable that overlaps with a
quasiconserved observable would have nonzero infinite-time
autocorrelation, we want to find a linearly independent, or-
thogonal set of eigenquasiconserved observables.

B. Eigenquasiconserved observables

We design a systematic procedure to search for
the set of eigenquasiconserved observables, {Eμ},
starting from the infinite-time correlations 〈O(∞)O′〉 ≡
limT →∞(1/T )

∫ T
0 〈O(t )O′〉dt . We note that eigenvectors {Eμ}

of the Floquet (super)propagator ÛF form an orthogonal
vector basis for the space of operators (here, Û [O] = UOU †)
|〈Ej (∞)Ek〉| ∝ δ jk , which we can call “eigenobservables.”
However, this operator basis is, in general, highly nonlocal
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(a) (b)

FIG. 2. By considering the matrix � obtained for each Jτ Trotter
step, we calculate the three largest eigenvalues as a function of Jτ

for (a) KDM and (b) ADM. The curve color represents different
eigenvalues and the curve style represents different system sizes.
From the eigenvalues and their dependence on system size, we see
that there are two eigenquasiconserved observables in KDM, while
only one in ADM.

and thus not practical. We then want to find a small, local set
of observables that approximates the exact eigenobservables
and has nonzero eigenvalues, that is, are quasiconserved. We
start from a basis set {O(α)} of Hermitian observables that are
translationally invariant sums of local operators,

O(α) =
∑

j

S j
α1

S j+1
α2

· · · S j+r−1
αr

. (1)

Here, (α) ≡ (α1, . . . , αr ) with αk ∈ {x, y, z, 0}, where S j
0 de-

notes the identity matrix operating on the jth spin. By
imposing α1, αr 
= 0, we say O(α) is of the range of r: each
term in O(α) acts nontrivially on most r neighboring spins.
Since the number of operators is exponentially large in system
size, we restrict our search to the operator subspace spanned
by O(α) whose range r � rc, which are local and thus experi-
mentally relevant. Starting from an orthonormal operator basis
{Oμ} of this subspace (with 〈OμOν〉 = δμν), we construct a
matrix from all pair correlations, �μν = 〈Oμ(∞)Oν〉. The
matrix � is the projection of the infinite-time propagator
ÛF (t → ∞) onto the rc-local subspace. The diagonalization
of � yields the local eigenobservables Ek , and eigenvalues
λk , satisfying 〈Ek (∞)El〉 = λkδkl . Note that since � is not
ensured to be unitary, its eigenvalues do not have unit am-
plitude, λk � 1. We note that the larger the λk , the better Ek

approximates an exactly conserved observable. The correla-
tions 〈O(∞)O′〉 between any two observables whose locality
is bounded by rc can be directly derived by decomposing the
observables onto the Eμ basis,

〈O(∞)O′〉 =
∑

μ

λμ〈OEμ〉〈EμO′〉. (2)

We apply this systematic procedure to the two models
under consideration. The infinite-time limit O(∞) is taken
by considering the diagonal ensemble of O (that is, keeping
only the diagonal matrix elements of O in the Floquet en-
ergy eigenbasis), which gives the same result as averaging
O over a long time. The results for rc = 3 are shown in
Fig. 2. At large Trotter steps τ , most eigenvalues go to zero.
The upward trends of the eigenvalues when Jτ = hτ → π

(most pronounced for the largest eigenvalue) are due to the
fact that [e−iH (K )

1 τ , e−iH (K )
2 τ ] = 0 at Jτ = hτ → π , making the

system equivalent to a time-independent system. Even for

small Trotter steps, most eigenvalues are already small and
decrease when increasing system size. However, a few eigen-
values are large and show little dependence on system size.
This last group comprises the eigenvalues associated with the
eigenquasiconserved observables that govern the nontrivial
dynamics at long times.

Based on these results, we find that there are two eigen-
quasiconserved observables for KDM, E (K )

1 , E (K )
2 , and one

for ADM, E (A)
1 . In both models, E1 is close to their average

Hamiltonian, H = H1 + H2 (blue curves in Fig. 2), while E (K )
2

for KDM is close to Dz [red curves in Fig. 2(a)]. Similar ad-
ditional conserved quantities were predicted in static models
[49]. Here we can more carefully analyze these Floquet qua-
siconserved observables and describe analytically their origin
in the limit of small τ in the next section. Even so, we remark
that there is an interesting regime at intermediate τ , where
E (K )

1 , E (K )
2 are well conserved, since λ

(K )
1 , λ

(K )
2 are still large,

but they deviate from their static (τ → 0) counterparts. This
indicates that the quasiconserved observables truly arise from
the Floquet dynamics and are not simply a remnant of the
approximated, static Hamiltonian.

III. ANALYTICAL DERIVATION OF CONSERVED
OBSERVABLES

A. Prethermal Hamiltonian

It is intuitive to expect that a quasiconserved observable
might emerge from energy conservation. Indeed, one can al-
ways regard the Floquet evolution as arising from an effective
static Hamiltonian by setting UF = e−iτHF for some Hermitian
operator HF . However, in general, this Hamiltonian is highly
nonlocal and thus it is not associated to a local quasicon-
served observable. Still, when the driving frequency is large
compared to local energy scales (here, J, h), the stroboscopic
dynamics is given by a time-independent local prethermal
Hamiltonian Hpre plus a small correction δH (t ) [46,48], which
may be nonlocal. It is this prethermal Hamiltonian Hpre that
can be associated with a local quasiconserved observable. Hpre

can be obtained from the Floquet-Magnus expansion [68,69]
truncated at an optimal order m∗,

Hpre =
m∗∑

m=0

τm
m, (3)

where the zeroth-order term is the average Hamiltonian

0 =H =1/τ

∫ τ

0 H (t )dt and higher-order terms 
m involve
m nested commutators. Then, for spin chains with nearest-
neighbor couplings, the range of 
m grows linearly with m.

The truncation m∗ is crucial not only to keep the prether-
mal Hamiltonian local, but also because the series in Eq. (3)
diverges for a generic many-body system [48]. The time-
dependent correction δH is, however, exponentially small
in 1/Jτ , leading to an exponentially long time tpre for the
system to heat up. Thus, for t < tpre, the system effectively
prethermalizes to the state e−βHpre , where β is determined by
the initial state energy, making Hpre an eigenquasiconserved
observable. Although one should investigate the prethermal-
ization process by studying the dynamics of an infinitely large
system at long times approaching infinity, numerically we
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FIG. 3. (a)–(c) The Magnus expansion given by Eq. (3) of KDM; (d)–(f) that of ADM. (a),(d) Circles show the norm of 
m (normalized by
L2L). The solid line represents the linear fit. (b),(e) Infidelity 1 − 〈Hpre(∞)Hpre〉 of infinite-time averaged Hpre evaluated up to the mth order.
Different curves stand for Jτ from 0.2 to 2, with a step of 0.2. The darker color represents smaller Jτ . L = 12 is used. (c),(f) Infinite-time
autocorrelation of Hpre as a function of Jτ for different system sizes. Order m = 7.

can only tackle small system sizes, so we take a different
approach—we set the time to infinity and study how the
observable correlations change when increasing system size.
The validity of this approach relies on the fact that for a system
size L < m∗, the term δH does not appear in the expansion,
making O1 = Hpre exactly conserved even at infinite time for
sufficiently small τ . From a physics point of view, this means
that the energy 2π h̄/τ is larger than the many-body bandwidth
(∼JL), and thus the system cannot absorb energy from the
drive if it is faster than 1/JL. Since the zeroth-order term of
Hpre is H , the autocorrelation of Hpre provides a bound for that
of H , leading to bounded Trotter error in the Trotter-Suzuki
scheme [53].

As further verification, we calculate numerically the Flo-
quet Magnus expansion, given by Eq. (3), up to m = 10 and
evaluate not only the convergence of the expansion, but also
operator conservation. For the first metric, we plot ‖
m‖
in Figs. 3(a) and 3(d) for the two models studied. We find
that up to the computationally accessible order, the norm
of 
m decays exponentially, indicating that Hpre converges
when τ is small. From the slopes in Figs. 3(a) and 3(d),
we get radii of convergence Jτ ≈ 3 for both models. Still,
the expansion convergence does not guarantee the resulting
Hpre is a quasiconserved observable. In Figs. 3(b) and 3(e),
we compute the long-time infidelity (1 − 〈Hpre(∞)Hpre〉) by
truncating the expansion in Eq. (3) at increasing orders. When
Jτ is small, the autocorrelation exponentially approaches 1
with increasing order, suggesting that the optimal truncation
order m∗ should be larger than our largest accessible order
here, or even absent in the system size we study. Instead,
for larger Jτ , the correlation stops converging at some order;
for even larger Jτ (Jτ = 1, for example), the correlation is

almost zero for all orders. Therefore, even within the radius of
convergence, Jτ ≈ 3, Hpre from Eq. (3) may fail to be quasi-
conserved. We plot the infinite-time correlation 〈Hpre(∞)Hpre〉
versus Jτ in Figs. 3(c) and 3(f) and show how it changes with
system size (here, Hpre is evaluated to seventh order). The
drop of 〈Hpre(∞)Hpre〉 with increasing system size is evident
for Jτ � 1.2 in both models, suggesting that for the system
size we explore, the effective Hamiltonian picture fails in the
above parameter space. Note that in the L → ∞ limit, the
correlations are expected to be zero for any τ > 0, as will be
discussed in Sec. IV.

B. Emergent dipolar order

To search for additional conserved observables in KDM,
we develop a method inspired by the existence of discrete
time-translation symmetry-protected phases in prethermal
Floquet systems [50]. Similar results have been obtained for
the static Hamiltonian H = hZ + JDy associated with the
(zero-order) KDM. For this model, it has been shown that the
polarization Z is quasiconserved and does not reach its ther-
mal equilibrium value until a time that is exponentially long in
h/J [49,50,70], even if according to eigenstate thermalization
hypothesis (ETH) the system should thermalize.

Since the average Hamiltonian picture breaks down when
increasing τ , even though we see from Fig. 2(a) that the
second observable is conserved even for larger τ , we must
go beyond the static case and work directly on the Floquet
system. This kind of system was first studied in [50], where
they further focused on the case h = π to identify a prether-
mal Floquet time crystal. Here we generalize their analysis
to obtain the novel quasiconserved observable for any h, by

054305-4



PRETHERMAL QUASICONSERVED OBSERVABLES IN … PHYSICAL REVIEW B 103, 054305 (2021)

following the intuition in [49]: thanks to the integer spectrum
of Z , we expect that there exists a frame where the polarization
is conserved up to some small, highly nonlocal corrections in
the Hamiltonian. Taking into account the Floquet nature of our
problem, we find such rotated frame order by order, using not
only J/h but also hτ as a small parameter.

We first transform the Floquet operator by going to a ro-
tated frame as

eSe−ihτZ e−iτH1 e−S = e−ihτZ e−iτ (D+δH ), (4)

and demand [Z, D] = 0. By appropriately choosing S, D,
it will be shown that δH is exponentially small in
min[O( h

J ), O( 1
hτ

)] [71]. Therefore, for small τ and large
enough ratio h/J � 0.5 [70], the operator D approximately
commutes with the Floquet unitary in the rotated frame, mak-
ing Dpre = e−SDeS a prethermal quasiconserved observable in
the original frame. We emphasize that the right-hand side of
Eq. (4) still describes a Floquet system; therefore we derived
the quasiconservation without first transforming to a static
Hamiltonian. Note that Zpre = e−SZeS is quasiconserved in
the same sense as Dpre. However, whereas Dpre, is orthogonal
to Hpre to zeroth order, Zpre ≈ Hpre − Dpre and it cannot thus
be considered an eigenquasiconserved observable.

Now we describe in detail how to find the desired S, D. We
first write the transformation given by Eq. (4) in an equivalent
form,

e−iτ (D+δH ) = eiεZ̃ eSe−iεZ̃ e−iε2τH1 e−S. (5)

Here we make the shortcut Z̃ ≡ hτZ , and assume that J/h
and hτ are small parameters of the same order marked by
ε. S and D can be expressed as a Taylor series of ε, S =
εS1 + ε2S2 + · · · , D = ε2D2 + ε3D3 + · · · . Because S j are
artificial variables, we can choose Sj such that Dj+1 satisfy the
requirement [Z, Dj+1] = 0. Repeating the process order by
order, we have [Z, D] = 0 up to a small error term δH . More
specifically, one can do Magnus expansion of the right-hand
side of Eq. (5) to get

−iτ
j∗∑

j=2

ε jD j =
j∗∑

j=2

ε j ([iZ̃, S j−1] + h j ), (6)

where we have ignored the high-order δH . Here, hj is defined
recursively as nest commutators of iZ̃ , −iτH1 and S j′ with
j′ < j − 1. For example, the first few orders are

h2 = −iτH1,

h3 = [S1, h2] + 1
2 ([iZ̃, [iZ̃, S1]] − [S1, [S1, iZ̃]]). (7)

Recursively, assuming all Sj′ with j′ < j − 1 (and thus h j)
are known (which is trivially true for j = 2), we determine
S j−1 and Dj from the jth order of Eq. (6) by requiring that
Dj = [iZ̃, S j−1] + h j commutes with Z . To do this, we first
decompose h j = ∑

q=0,±1,··· h jq such that [Z, h jq] = qh jq (h jq

are called the qth quantum coherence of Z [72–74]). This
decomposition is possible as long as the dominant part of
the Hamiltonian has integer eigenvalues (up to a common
constant), a frequent feature shared by the collective rotation
H (K )

2 ∝ Z in our case. [Z, D] = 0 is then satisfied by choosing
−iτDj = h j0 and S j−1 = i

∑
q 
=0 h jq/(hqτ ). We note that S is

a sufficiently local operator, r(S j ) = j, for KDM with nearest-

neighbor interaction. Similar to the prethermal Hamiltonian
given by Eq. (3), the expansion in ε generally diverges and
should be truncated at some order j∗, leading to the exponen-
tially small nonlocal residual δH ; see, e.g., Refs. [46,50].

When τ is small, the S j operators are dominated by the
(J/h) j term. Therefore, in the τ → 0 limit, the quasicon-
served observable found here for the Floquet model reduces
to the prethermal quasiconserved observable of the static
Hamiltonian H

(K )
[50,70], where the expansion is a series of

J/h and δH̃ ≈ exp[−O(h/J )]. In this regime, Dpre = − 1
2 Dz +

O[(J/h)2], and the expansion converges for h/J � 0.5 (up to
truncation at exponentially large order) as shown in Ref. [70]
(note that here we used h/J = 1). Instead, for relatively
larger hτ , the S j operators are dominated by (hτ ) j and δH̃ ≈
exp[−O(1/hτ )], and thus the system exhibits exponentially
slow Floquet heating as expected.

We numerically evaluate the convergence properties of
Dpre in the KDM [Fig. 4(a)], using the metrics discussed in
the previous section, i.e., convergence of the order-by-order
expansion terms and infinite-time autocorrelation. We find
that the series converges up to order 7 in the hτ regime that
we are interested in. The infinite-time autocorrelation is close
to 1 at small τ , as shown in Figs. 4(b) and 4(c), confirming that
the local truncation of Dpre (as obtained by the first few orders)
gives rise to quasiconserved observable E (K )

2 . Comparing these
results to the prethermal Hamiltonian shown in Figs. 3(b) and
3(c), we find that (i) the normalized autocorrelation of Dpre

converges to 1 in a larger parameter range (Jτ � 1.6 for Dpre

and Jτ � 1 for Hpre), (ii) the autocorrelation shows a signif-
icant drop at Jτ � 1.8 for Dpre and Jτ � 1.2 for Hpre, with
a steeper drop when L is increased from 8 to 12. Both facts
suggest that Dpre is more robust than Hpre, in agreement with
the experimental results presented in Ref. [51]. This provides
evidence that it is possible to realize novel Floquet phases
beyond the effective Hamiltonian picture.

IV. TOWARD INFINITE TEMPERATURE:
EXPERIMENTAL AND NUMERICAL SIGNATURES

Although it is generally believed that Floquet many-body
systems should heat up to infinite temperature, some numeri-
cal works [53–56] have found signs of nonthermal behavior in
various models. Here we provide evidence of thermalization
in the long-time and thermodynamic limit, using numerics
and experiments in a NMR quantum simulator [51,70,72],
respectively. In simulations, we can access the infinite-time
limit using exact diagonalization, but only for small system
sizes. Conversely, the system size in NMR experiments is
large enough to achieve the thermodynamic limit, but the
evolution time cannot be too long due to hardware limitation.
Still, by looking at the dynamics for increasingly longer times
(experimentally) and larger system sizes (numerically), we
can extract insight into the final fate of the Floquet systems.

The experimental system is a single crystal of fluorapatite
(FAp) [75]. We study the dynamics of 19F spin-1/2 using
NMR techniques. Although the sample is 3D, 19F form a
quasi-1D structure because the interaction within the chain is
∼40 times larger than the interaction between different chains
[76–78]. The average chain length is estimated to be >50
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FIG. 4. Dpre expansion of KDM. (a) Norm of the mth-order term of the quasiconserved observable Dpre (normalized by L2L). Different
curves stand for hτ = Jτ from 0 to 2, in steps of 0.2. The darker color represents smaller Jτ . (b) Infidelity 1 − 〈Dpre(∞)Dpre〉 of infinite-time
averaged Dpre evaluated up to the mth order. L = 12 is used. (c) Fidelity 〈Dpre(∞)Dpre〉 evaluated to seventh order as a function of hτ for
different system sizes.

and the coherence time of the 19F spins is T1 ≈ 0.8 s. The
sample is placed in a 7 T magnetic field where the Zeeman
interaction dominates, thus reducing the 19F spins interaction
to the secular dipolar Hamiltonian H = J0Dz with J0 = −29.7
krad/s (we define z as the magnetic field direction). While
the corresponding 1D, nearest-neighbor XXZ Hamiltonian is
integrable [79–81], the experimental 1/r3 Hamiltonian can
lead to diffusive [82,83] and chaotic [84] behavior in 3D. In
the presence of a transverse field, the system is known to
show a quantum phase transition [85]. We use 16 rf pulses
[51,70,72,86] to engineer the natural Hamiltonian into H (A)

1 =
JDy and H (A)

2 = JDx with tunable J . This enables varying
the Floquet steps by tuning J , while keeping τ fixed. Then,
experimental imperfections such as decoherence and pulse
errors remain the same, and we can faithfully quantify the
Floquet heating rate. The initial state is a high-temperature
thermal state with small thermal polarization in the magnetic
field direction, ρ(0) ≈ (1 − εZ )/2L with ε ≈ 10−5, and the
observable is the collective magnetization along the x axis,
O = X . As the identity part does not change under unitary
evolution and does not contribute to the signal, it is convenient
to consider only the deviation from the identity δρ(0) = Z ,
which can be rotated to a desired observable O′. Therefore,
the NMR signal is equivalent to an infinite-temperature corre-
lation, Tr[δρ(t )X ] → 〈O′(t )O〉β=0.

We experimentally study the heating rates of the quasicon-
served observables and their scaling with Floquet period to
reveal the prethermal phase and investigate the eventual heat-
ing to infinite temperature. In Fig. 5, we show results for ADM
(the two quasiconserved observables in KDM show simi-
lar behavior as reported elsewhere [51]). To study the auto-
correlation of Hpre = H + O(τ ) in ADM, we measure the

average Hamiltonian, H
(A) =JDy+JDx =−JDz, since the

higher-order terms in Eq. (3) are not accessible. We use the
Jeener-Broekaert pulse pair [87] to evolve the initial state δρ

and experimental observable X into Dz ∝ H
(A)

. Because of
the difference Hpre − H , we still expect an initial transient,
over a time ∼‖Hpre‖−1, where the average Hamiltonian ther-
malizes to the prethermal Hamiltonian. When more Floquet
periods are applied, the autocorrelation of Dz slowly decays
from its prethermal value.

The decay rate in the prethermalization regime is shown
in Fig. 5(b) and can be fitted to an exponential function in
1/(Jτ ) on top of a constant background decay (which is due
to experimental imperfections; see SM [88] for more details).
By normalizing the data to the data collected under the fastest
drive (Jτ = 0.35), the background decay is canceled, and the
resulting dynamics only arises from the coherent evolution,
as shown in Fig. 5(c). For given n, the normalized correlation
decreases when increasing Jτ because Hpre = H + O(Jτ ) and
thus H that we measure has less overlap with the true quasi-
conserved observable Hpre for larger Jτ . The overall drop of
the curves when increasing n is instead an indicator of Floquet
heating.

To better quantify the final thermalization process, we de-
fine a critical value Jc such that when Jτ > Jcτ , the system is
thermalized at a given number n of periods in the thermody-
namic limit or for a system size L at infinite time. Studying
the scaling of Jc as a function of n (experimentally) and L
(numerically) provides hints on the long-time, thermodynamic
limits.

We numerically obtain the autocorrelations 〈O(∞)O〉 as
a function of Jτ using exact diagonalization. In Fig. 6(a),
we show simulation results for O = H

(K )
, Dz for KDM, and

O = H
(A)

for ADM. (Here we explicitly consider the exact
dipolar interaction instead of truncating to nearest neighbors).
Note that both observables in KDM show a nonmonotonic
behavior. They appear to be quasiconserved until Jτ = 1; the
decrease in overlap is, however, interrupted by a revival at
Jτ = 1.6. This is because H

(K )
and Dz are an approximation

of Hpre and Dpre to leading order. Thus, H
(K )

(Dz) still has a
small overlap with Dpre (Hpre), giving rise to a second plateau
at Jτ ≈ 1.6 (Jτ ≈ 1). The experimentally measured autocor-
relations of quasiconserved observables in KDM can be found
in [51]. For both experiments and simulations, we then find
Jcτ from the point where the curves drop below a threshold
value of 0.5 (any other reasonable choice would not quali-
tatively change the results). We linearly interpolate between
data points to get Jcτ for every quasiconserved observable and
plot the Jcτ in Figs. 6(b) and 6(c). The decrease of numer-
ically calculated Jcτ with L in Fig. 6(b) indicates that even
the correlations of quasiconserved observables decay to zero
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(a) (b) (c)

FIG. 5. Autocorrelation of the average Hamiltonian for the alternating dipolar model. (a) Autocorrelation as a function of n. Different curve
stands for Jτ from 0.35 to 2.27, with a step of 0.175. The darker color represents smaller Jτ and the lighter color represents larger Jτ . We fit
the autocorrelations from n = 20 to n = 64 to exponentially decaying function exp(−γ n) and plot the decay rate γ in (b). The length of the
error bars corresponds to two standard deviations of the fitted decay rate. The solid curve indicates the fit to function γ = a exp(−b/Jτ ) + c.
The fitted coefficients a, b, c are shown in the plot with the 95% confidence interval. (c) Autocorrelation vs Jτ for different n. The lighter colors
represent smaller n and the darker colors represent larger n. For a given n, the autocorrelation is normalized by 〈H (n)H〉 at Jτ = 0.35, i.e., the
leftmost point is normalized to 1. In (a) and (b), error bars are determined from the noise in the free induction decay [see the Supplemental
Material (SM) [88] for details of the experimental scheme].

as the system thermalizes to infinite temperature, suggesting
that this nonthermalizing behavior should not persist to the
thermodynamic limit. A similar result is also observed from
experimentally measured Jcτ , as shown in Fig. 6(c) [89]. Note
that although Jcτ for 〈H (K )

(n)H
(K )〉 shows only a moderate

dependence on n [Fig. 6(c)], its decay is still larger than
experimental uncertainties.

V. CONCLUSION

As Floquet driving is a promising avenue for quantum sim-
ulation, it is crucial to evaluate its robustness, the existence of
a long-lived prethermal phase, and the eventual thermalization
to infinite temperature. Investigating Floquet heating, which
breaks the prethermal regime, is particularly challenging, not
only because of inherent limitations in numerical and experi-
mental studies, but also because of the challenge to properly
identify all quasiconserved observables in the complex, many-
body driven dynamics.

Here we tackle both of these issues by combining ana-
lytical, numerical, and experimental tools. First, we provide

a systematic strategy to find local, eigenquasiconserved ob-
servables in the prethermal regime using infinite-temperature
correlations. By systematically searching over local opera-
tors, we find that counterintuitive quasiconserved observables
might emerge, as we identify two eigenquasiconserved ob-
servables: the first, not surprisingly, is associate with energy,
Hpre, under sufficient fast drive; in addition, we find an-
other quasiconserved observable, Dpre, for the KDM in
the presence of a large driving field. Our search proto-
col would be useful in other settings, such as identifying
the underlying Hamiltonian or symmetries from measure-
ments.

We then use numerical and experimental evidence to ob-
tain insight into the inaccessible thermodynamic limit and
long-time regime, to show that autocorrelations of quasi-
conserved observables indeed decrease toward zero due to
Floquet heating, suggesting the Floquet system approaches
the infinite-temperature state.

Our results not only provide a metric to study thermal-
ization in driven quantum systems, but also open intriguing
perspectives into the existence of quasiconserved observ-

0.5 1 1.5 2 2.5
0

1

0.5 1 1.5 2 2.5
0

1

0 0.5 1 1.5 2 2.5 3
0

1

(a) (b) (c)

FIG. 6. Scaling of the critical Trotter step for KDM (H
(K )

: blue; Dz: green) and ADM (H
(A)

: red). (a) Simulated autocorrelations as a
function of Jτ for L = 8, 9, . . . , 17 using exact diagonalization. The darker colors represent larger L as shown in the color bar. (b) Jcτ at which
the numerical autocorrelation (L = 17) drops to half of the value under infinitely fast driving (Jτ → 0). (c) Jcτ at which the experimentally
measured autocorrelation drops to half of the value under the fastest driving (Jτ = 0.35). Error bars are determined from the noise in the free
induction decay (see SM [88]).
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ables other than the energy. It is an open question when
they emerge and how they interact with each other. A
better understanding of quasiconserved observables would
benefit our understanding of heating in closed driven sys-
tems and in designing a robust protocol to slow down
thermalization.

ACKNOWLEDGMENTS

The authors would like to thank H. Zhou, W.-J Zhang, and
Z. Li for discussion. This work was supported in part by the
National Science Foundation under Grants No. PHY1734011,
No. PHY1915218, and No. OIA-1921199.

[1] A. Eckardt, C. Weiss, and M. Holthaus, Phys. Rev. Lett. 95,
260404 (2005).

[2] N. Tsuji, T. Oka, P. Werner, and H. Aoki, Phys. Rev. Lett. 106,
236401 (2011).

[3] J. Mentink, K. Balzer, and M. Eckstein, Nat. Commun. 6, 6708
(2015).

[4] S. Kitamura and H. Aoki, Phys. Rev. B 94, 174503 (2016).
[5] R. Mikhaylovskiy, E. Hendry, A. Secchi, J. H. Mentink, M.

Eckstein, A. Wu, R. Pisarev, V. Kruglyak, M. Katsnelson, T.
Rasing et al., Nat. Commun. 6, 8190 (2015).

[6] F. Görg, M. Messer, K. Sandholzer, G. Jotzu, R. Desbuquois,
and T. Esslinger, Nature (London) 553, 481 (2018).

[7] N. H. Lindner, G. Refael, and V. Galitski, Nat. Phys. 7, 490
(2011).

[8] Y. Wang, H. Steinberg, P. Jarillo-Herrero, and N. Gedik, Science
342, 453 (2013).

[9] T. Oka and H. Aoki, Phys. Rev. B 79, 081406(R) (2009).
[10] Z. Gu, H. A. Fertig, D. P. Arovas, and A. Auerbach, Phys. Rev.

Lett. 107, 216601 (2011).
[11] A. G. Grushin, A. Gómez-León, and T. Neupert, Phys. Rev.

Lett. 112, 156801 (2014).
[12] L. E. F. Foa Torres, P. M. Perez-Piskunow, C. A. Balseiro, and

G. Usaj, Phys. Rev. Lett. 113, 266801 (2014).
[13] M. S. Rudner, N. H. Lindner, E. Berg, and M. Levin, Phys. Rev.

X 3, 031005 (2013).
[14] L. Jiang, T. Kitagawa, J. Alicea, A. R. Akhmerov, D. Pekker, G.

Refael, J. I. Cirac, E. Demler, M. D. Lukin, and P. Zoller, Phys.
Rev. Lett. 106, 220402 (2011).

[15] A. Kundu and B. Seradjeh, Phys. Rev. Lett. 111, 136402 (2013).
[16] T. Kitagawa, E. Berg, M. Rudner, and E. Demler, Phys. Rev. B

82, 235114 (2010).
[17] D. V. Else, P. Fendley, J. Kemp, and C. Nayak, Phys. Rev. X 7,

041062 (2017).
[18] N. Goldman and J. Dalibard, Phys. Rev. X 4, 031027 (2014).
[19] M. Bukov, L. D’Alessio, and A. Polkovnikov, Adv. Phys. 64,

139 (2015).
[20] M. Bukov, M. Kolodrubetz, and A. Polkovnikov, Phys. Rev.

Lett. 116, 125301 (2016).
[21] J. Struck, C. Ölschläger, M. Weinberg, P. Hauke, J. Simonet, A.

Eckardt, M. Lewenstein, K. Sengstock, and P. Windpassinger,
Phys. Rev. Lett. 108, 225304 (2012).

[22] M. Aidelsburger, M. Atala, M. Lohse, J. T. Barreiro, B. Paredes,
and I. Bloch, Phys. Rev. Lett. 111, 185301 (2013).

[23] J. Struck, J. Simonet, and K. Sengstock, Phys. Rev. A 90,
031601(R) (2014).

[24] H. F. Trotter, Proc. Am. Math. Soc. 10, 545 (1959).
[25] S. Lloyd, Science 273, 1073 (1996).
[26] Y.-X. Liu, J. Hines, Z. Li, A. Ajoy, and P. Cappellaro, Phys.

Rev. A 102, 010601(R) (2020).

[27] G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger,
D. Greif, and T. Esslinger, Nature (London) 515, 237 (2014).

[28] M. Aidelsburger, M. Lohse, C. Schweizer, M. Atala, J. T.
Barreiro, S. Nascimbene, N. R. Cooper, I. Bloch, and N. Gold-
man, Nat. Phys. 11, 162 (2015).

[29] C. Kokail, C. Maier, R. van Bijnen, T. Brydges, M. Joshi, P.
Jurcevic, C. Muschik, P. Silvi, R. Blatt, C. Roos et al., Nature
(London) 569, 355 (2019).

[30] A. M. Childs, D. Maslov, Y. Nam, N. J. Ross, and Y. Su, Proc.
Natl. Acad. Sci. USA 115, 9456 (2018).

[31] S. Choi, J. Choi, R. Landig, G. Kucsko, H. Zhou, J. Isoya, F.
Jelezko, S. Onoda, H. Sumiya, V. Khemani, C. von Keyserlingk,
N. Y. Yao, E. Demler, and M. D. Lukin, Nature (London) 543,
221 (2017).

[32] J. Zhang, P. W. Hess, A. Kyprianidis, P. Becker, A. Lee, J.
Smith, G. Pagano, I.-D. Potirniche, A. C. Potter, A. Vishwanath,
N. Y. Yao, and C. Monroe, Nature (London) 543, 217 (2017).

[33] R. Moessner and S. L. Sondhi, Nat. Phys. 13, 424 (2017).
[34] D. J. Luitz, R. Moessner, S. L. Sondhi, and V. Khemani, Phys.

Rev. X 10, 021046 (2020).
[35] F. Machado, D. V. Else, G. D. Kahanamoku-Meyer, C. Nayak,

and N. Y. Yao, Phys. Rev. X 10, 011043 (2020).
[36] D. H. Dunlap and V. M. Kenkre, Phys. Rev. B 34, 3625 (1986).
[37] S. Fishman, D. R. Grempel, and R. E. Prange, Phys. Rev. Lett.

49, 509 (1982).
[38] V. M. Bastidas, C. Emary, B. Regler, and T. Brandes, Phys. Rev.

Lett. 108, 043003 (2012).
[39] V. M. Bastidas, C. Emary, G. Schaller, and T. Brandes, Phys.

Rev. A 86, 063627 (2012).
[40] F. Großmann, T. Dittrich, P. Jung, and P. Hänggi, Phys. Rev.

Lett. 67, 516 (1991).
[41] F. Großmann and P. Hänggi, Europhys. Lett. 18, 571 (1992).
[42] M. Grifoni and P. Hänggi, Phys. Rep. 304, 229 (1998).
[43] A. Lazarides, A. Das, and R. Moessner, Phys. Rev. E 90, 012110

(2014).
[44] L. D’Alessio and M. Rigol, Phys. Rev. X 4, 041048 (2014).
[45] H. Kim, T. N. Ikeda, and D. A. Huse, Phys. Rev. E 90, 052105

(2014).
[46] D. A. Abanin, W. De Roeck, W. W. Ho, and F. Huveneers, Phys.

Rev. B 95, 014112 (2017).
[47] D. A. Abanin, W. De Roeck, and F. Huveneers, Phys. Rev. Lett.

115, 256803 (2015).
[48] T. Kuwahara, T. Mori, and K. Saito, Ann. Phys. 367, 96 (2016).
[49] D. Abanin, W. De Roeck, W. W. Ho, and F. Huveneers,

Commun. Math. Phys. 354, 809 (2017).
[50] D. V. Else, B. Bauer, and C. Nayak, Phys. Rev. X 7, 011026

(2017).
[51] P. Peng, C. Yin, X. Huang, C. Ramanathan, and P. Cappellaro,

Nat. Phys. (2021), doi: 10.1038/s41567-020-01120-z.

054305-8

https://doi.org/10.1103/PhysRevLett.95.260404
https://doi.org/10.1103/PhysRevLett.106.236401
https://doi.org/10.1038/ncomms7708
https://doi.org/10.1103/PhysRevB.94.174503
https://doi.org/10.1038/ncomms9190
https://doi.org/10.1038/nature25135
https://doi.org/10.1038/nphys1926
https://doi.org/10.1126/science.1239834
https://doi.org/10.1103/PhysRevB.79.081406
https://doi.org/10.1103/PhysRevLett.107.216601
https://doi.org/10.1103/PhysRevLett.112.156801
https://doi.org/10.1103/PhysRevLett.113.266801
https://doi.org/10.1103/PhysRevX.3.031005
https://doi.org/10.1103/PhysRevLett.106.220402
https://doi.org/10.1103/PhysRevLett.111.136402
https://doi.org/10.1103/PhysRevB.82.235114
https://doi.org/10.1103/PhysRevX.7.041062
https://doi.org/10.1103/PhysRevX.4.031027
https://doi.org/10.1080/00018732.2015.1055918
https://doi.org/10.1103/PhysRevLett.116.125301
https://doi.org/10.1103/PhysRevLett.108.225304
https://doi.org/10.1103/PhysRevLett.111.185301
https://doi.org/10.1103/PhysRevA.90.031601
https://doi.org/10.1090/S0002-9939-1959-0108732-6
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1103/PhysRevA.102.010601
https://doi.org/10.1038/nature13915
https://doi.org/10.1038/nphys3171
https://doi.org/10.1038/s41586-019-1177-4
https://doi.org/10.1073/pnas.1801723115
https://doi.org/10.1038/nature21426
https://doi.org/10.1038/nature21413
https://doi.org/10.1038/nphys4106
https://doi.org/10.1103/PhysRevX.10.021046
https://doi.org/10.1103/PhysRevX.10.011043
https://doi.org/10.1103/PhysRevB.34.3625
https://doi.org/10.1103/PhysRevLett.49.509
https://doi.org/10.1103/PhysRevLett.108.043003
https://doi.org/10.1103/PhysRevA.86.063627
https://doi.org/10.1103/PhysRevLett.67.516
https://doi.org/10.1209/0295-5075/18/7/001
https://doi.org/10.1016/S0370-1573(98)00022-2
https://doi.org/10.1103/PhysRevE.90.012110
https://doi.org/10.1103/PhysRevX.4.041048
https://doi.org/10.1103/PhysRevE.90.052105
https://doi.org/10.1103/PhysRevB.95.014112
https://doi.org/10.1103/PhysRevLett.115.256803
https://doi.org/10.1016/j.aop.2016.01.012
https://doi.org/10.1007/s00220-017-2930-x
https://doi.org/10.1103/PhysRevX.7.011026
https://doi.org/10.1038/s41567-020-01120-z
https://doi.org/10.1038/s41567-020-01120-z


PRETHERMAL QUASICONSERVED OBSERVABLES IN … PHYSICAL REVIEW B 103, 054305 (2021)

[52] A. Rubio-Abadal, M. Ippoliti, S. Hollerith, D. Wei, J. Rui, S. L.
Sondhi, V. Khemani, C. Gross, and I. Bloch, Phys. Rev. X 10,
021044 (2020).

[53] M. Heyl, P. Hauke, and P. Zoller, Sci. Adv. 5, eaau8342
(2019).

[54] L. D’Alessio and A. Polkovnikov, Ann. Phys. 333, 19 (2013).
[55] L. M. Sieberer, T. Olsacher, A. Elben, M. Heyl, P. Hauke, F.

Haake, and P. Zoller, npj Quantum Inf. 5, 78 (2019).
[56] T. Prosen, Phys. Rev. E 60, 3949 (1999).
[57] D. A. Abanin, W. De Roeck, and F. Huveneers, Ann. Phys. 372,

1 (2016).
[58] A. Lazarides, A. Das, and R. Moessner, Phys. Rev. Lett. 115,

030402 (2015).
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