
PHYSICAL REVIEW B 103, 054304 (2021)

Dynamic properties of a polaron coupled to dispersive optical phonons
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We study static and dynamic properties of an electron coupled to dispersive quantum optical phonons in
the framework of the Holstein model defined on a one-dimensional lattice. Calculations are performed using
the Lanczos algorithm based on a highly efficient construction of the variational Hilbert space. Even small
phonon dispersion has a profound effect on the low-energy optical response. While the upward phonon dispersion
broadens the optical spectra due to single-phonon excitations, the downward dispersion has the opposite effect.
With increasing dispersion, a multiphonon excitation (MPE) state becomes the lowest excited state of the system
at zero momentum and determines the low-frequency response of the optical conductivity where the threshold for
optical absorption moves below the single-phonon frequency. Multiphonon states form a well-defined bandlike
feature just above the polaron band as clearly seen in the electron spectral function. Low-energy MPEs should be
observable in systems with strong optical phonon dispersion in optical as well as angle-resolved photoemission
experiments.

DOI: 10.1103/PhysRevB.103.054304

I. INTRODUCTION

Interaction between electron and lattice degrees of free-
dom represents one of the fundamental paradigms in modern
solid-state physics. In this context, the Holstein model (HM)
[1] is commonly used to study the interaction between an
electron and dispersionless optical phonons. Despite its sim-
plicity, a body of past as well as recent works have been
devoted to this model ranging from variational approaches
[2–14] and diagrammatic techniques [15–17], among which
the momentum-averaged approximation has been particularly
successful for the description of static as well as dynamic
properties of the model [18–22]. Early exact diagonalization
approaches on finite lattices [23–29] have been followed by
various Monte Carlo methods [30–33]. In this class of ap-
proaches, a combined diagrammatic and world-line Monte
Carlo method [34] has been applied to determine the mobility
of an electron subject to local lattice vibrations. Density-
matrix renormalization-group techniques [35,36] represent
yet another class of advanced techniques most successful in
tackling the Holstein model in one spatial dimension. Re-
cently, this approach has been extended to obtain spectral
properties of the HM at finite temperatures [37]. In the limit of
infinite dimension, dynamical mean field approaches [38,39]
dominate the research in this field.

One of the most commonly used simplifications in treating
electron-phonon interaction based on the HM is to assume
that optical phonons are dispersionless, which results in a
singular phonon density of states. While a straightforward
generalization of the model is the introduction of dispersion
among localized (Einstein) phonons, there exist surprisingly
few attempts in the literature in this direction. Coupling of

the electron to acoustic phonons has been treated using per-
turbative approaches [40,41]. More related to this study is
the research in Ref. [42] where authors have investigated the
influence of the dispersion among optical phonons on the
polaron effective mass.

Phonon dispersion also has a profound effect on the propa-
gation of an electron in a one-dimensional disordered system.
Coupling of the particle to dispersive optical phonons leads
to delocalization of the particle by virtue of a subdiffusive
spread from the initially localized state while in the case
of coupling to dispersionless phonons the particle remains
localized [43]. Recently, an important influence of phonon
dispersion on the formation of charge-density-wave order has
been demonstrated in a system with finite-electron density
using the quantum Monte Carlo technique [44].

The work described here investigates dynamic properties
of an electron coupled to dispersive optical phonons in the
context of the HM in one spatial dimension. It is rather sur-
prising that despite a multitude of research devoted to the
HM with dispersionless optical phonons, there are a lack of
investigations describing the influence of phonon dispersion
on dynamic quantities such as the optical conductivity and
the electron spectral function. The absence of research could
be either due to difficulties introduced by extra terms in the
Hamiltonian or due to a common belief that the phonon dis-
persion does not lead to any unexpected new phenomena.

Our research was motivated in part by recent measurements
of the Holstein polaron spectral function in a surface-doped
layered semiconductor MoS2 [45]. In most materials, the
bandwidth of optically dispersive phonons is much smaller
than the position of the middle of the optical band. A large
dispersion of optical phonons can be expected in systems
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where intracellular interactions are comparable to those be-
tween cells, and where the atomic masses do not differ greatly.
One such example are GaLaAs superlattice systems where
the ratio between maximum and minimum optical frequency
is roughly ω(0)/ω(qmin) ∼ 1.2 [46]. Moreover, in the hexag-
onal nitride AlN semiconductor, with the C4

6v space-group
symmetry, the lowest optical mode E2 shows strong upward
dispersion along �-K direction with the ratio ω(K )/ω(�) ∼
2.2 and downward dispersion along the �-A direction
where ω(�)/ω(A) ∼ 1.7 [47].

In this work we show that introduction of dispersion among
optical phonons can have a profound effect on the excited
states of the model. Even small phonon dispersion has a
significant effect on the low-energy optical response and
the quasiparticle band dispersion observed in the electron
spectral function. Upward phonon dispersion broadens the
optical spectra due to single-phonon excitations. In contrast,
the downward dispersion narrows contributions of single- and
multiple-phonon excitations rendering them more easily de-
tectable in the optical response.

While in the dispersionless HM the lowest excited state
consists of a polaron and an extra phonon excitation with zero
momentum, at large-phonon dispersion MPEs from the edge
of the Brillouin zone form the lowest excited states that are
optically active. They shift the threshold of the optical ab-
sorption spectra towards frequencies below the single-phonon
excitation frequency. A large-phonon dispersion renders mul-
tiphonon states observable in the electron spectral function
where they obtain a significant spectral weight just above the
polaron band.

The paper is organized as follows. In Sec. II we present the
model and give a brief description of the method. In Sec. III
we first introduce dynamic quantities such as the optical con-
ductivity and the electron spectral function. In Sec. III A we
present results of various static quantities where a special
emphasis is on the description of dispersion relations of a few
lowest-energy bands. In Sec. III B we analyze the influence of
phonon dispersion on the optical conductivity and the electron
spectral function. In Sec. IV we give concluding remarks.

II. MODEL AND METHOD

We analyze a single electron coupled to dispersive optical
phonons on an infinite one-dimensional system

H = −tel

∑
j

(c†
j c j+1 + H.c.) + g

∑
j

n̂ j (a
†
j + a j )

+ tph

∑
j

(a†
j a j+1 + H.c.) + ω0

∑
j

a†
j a j, (1)

where c†
j and a†

j are electron and phonon creation operators

at site j, respectively, n̂ j = c†
j c j represents the electron den-

sity operator, and tel the nearest-neighbor hopping amplitude.
ω0 denotes the position of the center of the dispersive opti-
cal phonon band ω(q) = ω0 + 2tph cos(q). We also introduce
the dimensionless effective electron-phonon coupling strength

λ = εp/2tel = g2/2tel

√
ω2

0 − 4t2
ph where εp is the polaron en-

ergy in the limit tel = 0 [42].

We have used a numerical method described in detail
in Refs. [4,5] The method generates the variational Hilbert
space starting from the initial single-electron Bloch state c†

k |∅〉
where c†

k = 1√
L

∑
j eik jc†

j , with no phonons on an infinite
lattice. The variational Hilbert space is then generated by
applying the first two off-diagonal terms of the Hamiltonian
in Eq. (1), representing the electron kinetic energy and the
electron-phonon coupling term, Nh times. In the intermedi-
ate coupling regime the method provides computation of the
ground-state energy in the thermodynamic limit to extremely
high accuracy, better than ∼22 digits. Even though the method
is based on an infinite one-dimensional lattice, the constructed
variational Hilbert space allows only a finite maximal distance
of a phonon quanta from the electron position, Lmax = Nh − 1.
This limitation is in turn responsible for a discrete phonon
dispersion ω(q). Furthermore, the maximal amount of phonon
quanta at the electron position is given by Nphmax = Nh while
on the Mth neighboring site to the electron, it is reduced to
Nphmax = Nh − M. We have used a standard Lanczos proce-
dure [48] to obtain static as well as dynamic properties of the
model.

We have performed numerical calculations in the param-
eter regime given by ω0/tel � 0.5 and λ � 2.0, where our
numerical approach gives most reliable results. In the adia-
batic regime, i.e., ω0/tel → 0, other semiclassical approaches
are possibly more adequate. In addition, we have limited our
calculations to one spatial dimension even though calculations
at higher dimensions are possible using our approach as have
been shown for static properties in Ref. [5].

III. RESULTS

Our main focus is on dynamic properties of the model.
We first present common formulas for the real part of the
optical conductivity, based on the linear response theory. For
the specific model Hamiltonian in Eq. (1) the real part of the
optical conductivity can be written in two parts Reσ (ω) =
Dδ(ω) + σ reg(ω) where the Drude weight, also known as the
charge stiffness D, represents the ballistic response of a sys-
tem. The regular part σ reg(ω) corresponds to the absorption of
an AC field

σ reg(ω) = π

ω

∑
n

∣∣〈ψ (n)
0

∣∣ ĵ
∣∣ψ (0)

0

〉∣∣2
δ(ω − [E (n)(0) − E (0)(0)]),

(2)

where ĵ = −itel
∑

i c†
i+1ci − c†

i ci+1 is the current operator
while ψ

(n)
0 = ψ

(n)
k=0 are many-body eigenstates and E (n)(0) =

E (n)(k = 0) corresponding energies computed at zero mo-
mentum and n indicates the nth excited state. The Drude
weight can be determined from the following expression:

D = −〈
ψ

(0)
0

∣∣Hkin

∣∣ψ (0)
0

〉/
2 −

∑
n �=0

∣∣〈ψ (0)
0

∣∣ ĵ
∣∣ψ (n)

0

〉∣∣2

E (n)(0) − E (0)(0)
, (3)

where Hkin represents the first term in Eq. (1). Alter-
natively, D can as well be determined from the proper-
ties of polaron dispersion relation D = 1

2 d2E (0)(k)/dk2|k=0,
which can serve as a test of the method. Note also
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FIG. 1. The energy band E (0)(k) (full lines) and the first excited
state energy E (1)(k) (dashed lines) computed at ω0 = 1, λ = 0.01
in (a) and (b) and λ = 0.5 in (c) and (d). Open circles in (a) and
(b) denote E1ph(k) = −2tel + ω0 + 2tph cos(k) while open squares in
(b) E2ph(k) = −2tel + 2ω0 − 4tph cos(k/2). In this and in all subse-
quent figures we set tel = 1 as the unit of energy. Tiny dotted line in
(a) and (b) denotes the free-electron energy Efree(k). In this and in all
subsequent figures, we have used Nh = 18.

that
∫ ∞

0 Reσ (ω)dω = −π
2 〈ψ (0)

0 |Hkin|ψ (0)
0 〉 represents the so-

called optical sum rule. Note that the optical spectral weight
due to the optical phonons themselves is not included. One
way to think of this is that we are modeling the case where the
tight-binding lattice is in the x direction, the external applied
electric field is also in the x direction, and the optical phonon
ion displacement is in the y direction.

We also define the electron addition spectral function

A(ω, k) =
∑

n

∣∣〈ψ (n)
k

∣∣c†
k |∅〉∣∣2

δ[ω − E (n)(k)], (4)

where |∅〉 represents the electron and phonon vacuum.

A. Static properties

We start with the analysis of the low-lying energy spectra.
In Fig. 1 we present the expectation value of the lowest-energy
band E (0)(k) = 〈ψ (0)

k |H |ψ (0)
k 〉 and the first excited energy

band E (1)(k) = 〈ψ (1)
k |H |ψ (1)

k 〉 using different values of tph. We
have explored the whole range of |tph| < ω0/2. We should also
keep in mind that tph > 0 represents the downward dispersion
relation of optical phonons. We first analyze results in the limit
λ → 0, presented in Figs. 1(a) and 1(b). In all cases E (0)(k) at
small momentum approximately follows the free-electron dis-
persion relation E (0)(k) ∼ Efree(k) = −2tel cos(k). For tph �
0, the lowest-energy band at some finite momentum bends
over towards E (0)(k) ∼ E1ph(k) = −2tel + ω0 + 2tph cos(k).
This state is composed of a free electron with momentum
kel = 0 and one phonon excitation with momentum k [49].
This holds true up to tph = 0.1. Naively, one would expect
that the first excited state at zero momentum always consists
of an additional single-phonon excitation which would yield
an excitation gap at k = 0: 
E = ω0 + 2tph. In contrast, at
tph = 0.3 and 0.4 we observe a significant decrease of the

energy of the first excited state which is due to a state that con-
sists of an electron with momentum kel = 0 and two phonon
excitations with identical momenta q1 = q2 = π + k/2 yield-
ing a total momentum k = kel + 2q1 and the excitation energy
E2ph(k) = −2tel + 2ω0 − 4tph cos(k/2). For tph = 0.3 and 0.4,
E (0)(k) with increasing k bends over from Efree(k) towards the
two-phonon energy E2ph(k) then to E1ph(k), which gives rise
to a somewhat unusual dispersion relation. From the condi-
tion E2ph(k = 0) = E1ph(k = 0) we obtain the threshold value
t th
ph(Mph = 2) = ω0/6 when the two-phonon excitation energy

first appears below the one-phonon one. Multiple crossings
also explain the polaron dispersion relation at λ = 0.5 as
shown in Figs. 1(c) and 1(d).

Note also that higher excited states, not shown in Fig. 1,
with Mph = 4, 6, . . . number of even phonon excitations
with qMph = π + k/Mph, lie below a single-phonon excita-
tion with q = k around k ∼ 0 as long as t th

ph(Mph) � (Mph −
1)ω0/[2(Mph + 1)]. In the case when tph = 0.4ω0 there exist
Mph = 2, 4, . . . , 8 MPEs below the single-phonon one since
t th
ph(Mph = 8) = 0.39ω0.

The existence of the two-phonon first excited state is
further analyzed by computing the expectation number of
phonons N (n)

ph (k) = 〈ψ (n)
k | ∑i a†

i ai|ψ (n)
k 〉 in the ground and the

first excited states, n = 0 and 1, respectively. At small λ =
0.05 we observe a sudden jump in N (1)

ph (k = 0) by 
N (1)
ph (k =

0) ∼ 1 around tph ∼ 0.18 that is very close to the analyti-
cal estimate t th

ph(Mph = 2) = 0.17. The difference is due to
a small finite-size effect [50]. With increasing λ, up to λ ∼
1.0, the effective t th

ph(Mph = 2) scales with λ as it shifts sig-
nificantly towards smaller, physically more relevant values.
For λ = 1 we obtain t th

ph(Mph = 2) ∼ 0.06, which yields the
ratio ω(π )/ω(0) ∼ 1.27. Consequently, in the intermediate
electron-phonon coupling regime, MPEs can be observed
already at relatively small optical phonon dispersion. The
ground state N (0)

ph (k = 0) decreases as tph increases around
tph = 0 and shows no significant change in the vicinity of
t th
ph. In the strong coupling regime, at λ = 2.0, the two-phonon

excitation above the ground state crosses over to a state with
nearly identical values of N (0)

ph (k = 0) ∼ N (1)
ph (k = 0) for tph �

0.2. The ground state N (0)
ph (k = 0) qualitatively follows the

strong coupling prediction [42] N sc
ph = 2telω0λ/

√
ω2

0 − 4t2
tp.

In Fig. 2(b) we present the Drude weight that as expected
decreases with increasing λ while its behavior around tph = 0
changes from increasing with tph in the weak to interme-
diate coupling regime to decreasing at λ = 2.0, consistent
with results of the effective mass in Ref. [42]. The latter
can be understood within the strong coupling limit where
Dsc = exp [−2telλ/(ω0 − 2tph)].

An important difference between the upward tph > 0 and
the downward dispersion tph < 0 is also reflected in the
lowest-energy state momentum dependence of N (0)

ph (k), as

shown in Fig. 2(c). While N (0)
ph (k) monotonically increases

with increasing momentum for tph = −0.4, it displays at
tph = 0.4 a clear nonmonotonic momentum dependence. The
physics of the latter dependence is most clearly seen from
the weak coupling regime at λ = 0.5, where it starts around
zero at k = 0 then jumps to N (0)

ph (k1 ∼ 0.2π ) ∼ 2 followed

by a drop to N (0)
ph (k2 ∼ 0.6π ) ∼ 1. The lowest-energy wave
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FIG. 2. (a) The expectation number of phonons N (0,1)
ph in the

ground (full lines) and excited (dashed lines) states vs tph for four
different values of λ and zero momentum. The dotted line represents
the strong coupling prediction [42] N sc

ph, given in the text. Arrows
indicate threshold values t th

ph(Mph = 2). (b) The Drude weight vs tph.

(c) N (0)
ph (k) computed for two different values of λ = 0.5 and 1 and

three different values of tph = ±0.4 and 0. (d) Z (k) computed using
identical parameters as in (c). In all cases the phonon frequency is set
to ω0 = 1.

function consists for k � k1 predominantly of an electron
with momentum kel = k then for k1 � k � k2 of an electron
with momentum kel near zero and two-phonon excitations
each with momentum near q1,2 = π + k/2 and finally for
k � k2 of an electron with kel near zero and a single-phonon
excitation with q ∼ k. Such structure of the polaron wave
function is as well reflected in the quasiparticle weight Z (k) =
|〈ψ (0)

k |c†
k |∅〉|2 as seen in Fig. 2(d) where for tph = 0.4 we ob-

serve a sudden decrease with k while at tph = 0.0 the decrease
is much more gradual.

B. Dynamic properties

We shall now investigate whether the existence of multi-
phonon excitations affects any measurable quantities, such as
the optical conductivity or the spectral function. In Fig. 3 we
present σ reg(ω). In the weak coupling regime, i.e., at λ = 0.5
and for tph � 0.2 the incoherent absorption spectra starts at
ω1ph = ω0 + 2tph. In particular, at tph = −0.2 we observe a
series of peaks that are after the initial increase monotonically
decreasing with increasing ω. The response of the system
at small ω can be explained by processes where an electron
with initial momentum kel = 0 emits a phonon excitation
with momentum q while the electron in this scattering pro-
cess changes its momentum to kel = −q. Contributions due
to single-, two-, or multiple-phonon excitations can not be
distinguished between each other. Discrete peaks appear due
to a limited variational Hilbert space that leads to a discrete
set of internal momenta q. Additional discussion concerning
the numerical precision of the numerical method is provided
in Appendix A. At tph = 0.0 that represents the standard

FIG. 3. σ reg(ω) computed at ω0 = 1 for different tph as denoted
in legends where ω is in units of tel = 1. Full lines with downward
arrows denote positions of the lowest single-phonon excitation above
the ground state ω1ph = ω0 + 2tph, while multiple dashed lines with
arrows represent the lowest Mph = 2, 4, 6, and 8 phonon excitation
ωMph = Mph(ω0 − 2tph ) threshold in all figures where ωMph < ω1ph .
We have used artificial broadening η = 0.05.

HM with dispersionless Einstein phonons we already ob-
serve two slightly separated groups of peaks whereby the first
represents single-phonon emission processes and the second
two-phonon ones. Aside from a shift towards higher ω with
further increasing tph we observe a substantial narrowing of
the single-phonon emission spectra that is followed by another
well-defined two-phonon emission peak, separated approxi-
mately ω0 from the first one. The narrowing of the spectra at
tph > 0 is a consequence of the downward phonon dispersion.
In the above-described phonon emission process the energy
of the emitted phonon at finite q decreases in comparison to
q = 0 which has the effect of narrowing the single-phonon
emission spectra in comparison to tph � 0. Similar effects are
even more pronounced in the intermediate coupling regime
λ = 1.0.

Even more unexpected is the appearance of the absorp-
tion spectra below the one-phonon emission threshold ω1ph

as in Fig. 3 indicated by vertical full lines with arrows.
Dashed lines with arrows indicate the threshold of multi-
phonon emission spectra ωMph = Mph(ω0 − 2tph) where an
electron scatters off an even number of Mph phonons, each
with momentum q = π + k/Mph while the electron shifts af-
ter scattering from kel = 0 to −k. Optical absorption due to
two-phonon emission processes obtains a substantial spectral
weight at the intermediate coupling regime λ = 1.0, as seen in
Fig. 3(b).

We continue with the discussion of the electron spectral
function. We first present results for a single site, i.e., for tel =
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FIG. 4. A(ω) computed from Eq. (5) at ω0 = g = 1 for different
tph as denoted in legends. Results do not depend on the sign of tph. We
have used Nq = 10 and artificial broadening η = 0.05. For further
details, see caption of Fig. 9.

0, where A(ω) is given by the following expression:

A(ω) = e− ∑
q g̃2

q

∞∑
mq1 ,mq2 ,...,mqNq

=0

[
�q

g̃2mq

mq!

]

× δ

(
ω +

∑
q

ωqg̃2
q −

∑
q

mqωq

)
, (5)

where g̃q = g√
Nqωq

, Nq represents the number of discrete

q values, the average number of phonon excitations is
given by N̄ph = ∑

q g̃2
q, the polaron energy spectrum is εp =

−∑
q ωqg̃2

q + ∑
q mqωq, and the quasiparticle weight can be

obtained by setting all mqi = 0, which leads Zqp = e− ∑
q g̃2

q . In
Appendix B we further elaborate on the derivation of Eq. (5)
as well as on some details concerning the numerical summa-
tion to obtain A(ω) as presented in Fig. 4. In the case of zero
dispersion tph = 0, A(ω) matches well-known results for dis-
persionless phonons [51,52], The lowest peak is positioned at
the ground-state quasiparticle energy ε0

p = −∑
q ωqg̃2

q while
peaks at higher ω represent multiphonon contributions, spaced
by ω0. All peaks are represented by Lorentzian forms of delta
functions with artificial broadening and have zero physical
width. At small but finite tph = 0.05 and 0.1 all peaks except
the lowest one obtain a finite width at half-maximum W , given
by the bandwidth of the phonon spectrum W = 4tph. Con-
tributions from one-phonon, two-phonon, and multiphonon
excitations remain well separated. At even larger tph contribu-
tions from multiphonon excitation start merging into a broad
continuum. Notable is also the closing of the gap between the
quasiparticle peak and the rest of the spectra.

The introduction of optical phonon dispersion has a
profound effect on the electron spectral functions A(ω, k)
also at tel �= 0 as presented in the form of density
plots in Fig. 5. As guides to the eye we also display
with tiny dashed lines the dispersion relations of the
lowest-energy band marking the position of the polaron band
E (0)(k) as well as the analytical estimate of the single-phonon

FIG. 5. A(ω, k) computed at ω0 = 1 for different tph as denoted
in legends where ω is in units of tel = 1. Dashed lines represent the
lowest-energy band E (0)(k) and dotted-dashed lines at the center of
the Brillouin zone represent the single-phonon excitation E1ph (k). We
have used artificial broadening η = 0.05. Identical color coding has
been used in all panels.

excitation above the lowest-energy band: E1ph(k) = E (0)(k =
0) + ω0 + 2tph cos(k) using dotted-dashed lines shown only
in the vicinity of the center of the Brillouin zone.

At small λ = 0.5 [see Figs. 5(a)–5(e)], in the case of the
upward dispersion, i.e., for tph = −0.2, the polaron band is
monotonically increasing with increasing momentum while
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FIG. 6. A(ω, k) computed at ω0 = 0.5 for different values of tph

as denoted in legends where ω is in units of tel = 1. Dotted-dashed
lines represent the lowest-energy band E (0)(k). We have used artifi-
cial broadening η = 0.05. Identical color coding has been used in all
panels.

the gap between the quasiparticle band and the rest of the inco-
herent spectrum diminishes in comparison to tph � 0.2. There
is a well-defined part of the incoherent spectrum above the
polaron band around k = 0 at the position that corresponds to
the single-phonon excitation E1ph(k). For tph � 0.2 the spec-
tral weight of the incoherent part around E1ph(k) decreases.
The polaron band obtains a nonmonotonic k dependence as
a consequence of the downward phonon dispersion. At tph =
0.4 there is a notable deviation of the dispersive spectral
weight at lowest ω from E (0)(k) around k = 0.4π which is
a consequence of the existence of MPEs just above E (0)(k).

In the intermediate coupling regime at λ = 1.0 [see
Figs. 5(f)–5(j)], we find an expected overall decrease of the
polaron bandwidth in comparison to λ = 0.5 case, which is
more pronounced at tph > 0. The most prominent effect is
the appearance of the dispersive spectral weight between the
polaron band and the single-phonon excitation E1ph(k) which
is due to two-phonon excitations first observed at tph = 0.2,
presented in Fig. 5(h). At larger tph = 0.3 it shifts down in
energy and increases in the overall spectral weight, while
at tph = 0.4 we observe a broader dispersive spectral weight
due to multiple- (two-, four-, possibly even six-) phonon
excitations just above the polaron band. In the latter case, a
well-defined quasiparticle peak is observed only in a narrow
interval around the center of the Brillouin zone, consistent
with the rapid decrease of Zk seen in Fig. 2(d).

At smaller ω0 = 0.5 and λ = 1, presented in Fig. 6, we
observe further flattening of the polaron band in comparison to
ω0 = 1 case while the high-ω spectral weight is concentrated
around the free-electron band. In the dispersionless case, i.e.,
tph = 0.0, two well-defined bands, spaced by ω0, are observed
above the lowest-energy polaron band. They represent polaron
states with the addition of one- and two-phonon excitations. In
the case of upward phonon dispersion tph = −0.2, the distance
between low-ω bands decreases while additional bands appear

around the middle of the Brillouin zone. Squeezing of bands is
a result of the upward phonon dispersion since additional mul-
tiphonon excitations appear at lower energies in comparison to
the dispersionless case. The opposite is expected to hold true
in the case when tph > 0, nevertheless, we observe additional
structure just above the lowest-energy polaron band that is in
this case a consequence of multiphonon processes from the
edge of the Brillouin zone.

IV. CONCLUSIONS

Despite a body of work investigating various phenomena
related to the electron phonon coupling based on the HM,
the introduction of dispersion among optical phonons opens
pathways for future research in this field. Already a small
amount of downward dispersion narrows the absorption spec-
trum in the frequency range of single-phonon excitations. It
also changes the dispersion of the polaron band as observed in
the spectral function and narrows the frequency range where
a strong quasiparticle peak is observed.

With increasing downward dispersion, a MPE state appears
as the lowest excited state of the system at zero momentum
and even becomes the lowest-energy state at finite momentum.
The lower edge of the absorption spectrum shifts below the
single-phonon excitation frequency at zero momentum due
to an electron scattering off an even number of MPEs from
the edge of the Brillouin zone. Moreover, MPEs strongly
influence the shape of the electron spectral function in the
intermediate coupling regime. They emerge as a dispersive
incoherent spectral weight below the single-phonon excitation
threshold just above the polaron band. Low-energy MPEs
should be observable in systems with strong optical phonon
dispersion in optical as well as angle-resolved photoemission
experiments.

It is important to stress that MPEs become the lowest
excited states in the weak coupling limit at large optical
phonon dispersion that may not be common in experimental
systems. The analytical estimate for the threshold t th

ph(Mph =
2) = ω0/6 in the λ → 0 limit yields the ratio ω(0)/ω(π ) = 2.
With increasing λ the effective t th

ph(Mph = 2) shifts towards
smaller, physically more common values. In the case of
λ = 1 we obtain t th

ph(Mph = 2) ∼ 0.06, which yields the ratio
ω(0)/ω(π ) ∼ 1.27. Consequently, in the case of intermediate
electron-phonon coupling, MPEs can be observed already at
relatively small optical phonon dispersion. They remain ob-
servable even as the phonon dispersion is reduced. They may
no longer be the lowest-energy feature, but they are still there,
with a singularity (van Hove) where they start to appear. The
existence of low-energy MPEs may have a profound effect
also on nonequilibrium [53–58] and finite-T properties [51]
of electron-phonon coupled systems.
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APPENDIX A: EFFICIENCY OF THE NUMERICAL
METHOD

In Fig. 7 we demonstrate the efficiency of the method by
plotting A(ω, k) for three different sizes of the Hilbert space.
Apart from barely noticeable differences at higher ω results
seem to have well converged.

FIG. 7. A(ω, k) computed at ω0 = 1.0, λ = 1.0, tph = 0.2 com-
puted using three different sizes of the Hilbert space ranging from
Nst = 10 391 for Nh = 12 in (a), Nst = 43 310 for Nh = 14 in (b),
through Nst = 178 617 for Nh = 16 in (c). The lowest-energy band
E (0)(k) is shown using dashed lines. We have used artificial broaden-
ing η = 0.05. Identical color coding has been used in all panels.
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FIG. 8. σ (ω) computed at ω0 = 1.0, λ = 1.0, and tph = −0.2
and 0.2 in (a) and (b), respectively. Systems sizes were from
Nst = 10 391 (many-body states per site) for Nh = 12 through Nst =
731 027 for Nh = 18. We have used artificial broadening η = 0.05.

In Fig. 8 we present comparison of σ (ω) at two distinct
sets of parameters of the model and four different sizes of
the Hilbert space. The dependence of results in terms of
increasing sizes of the variational Hilbert space is more pro-
nounced in the case of “upward” phonon dispersion, i.e., for
tph = −0.2, where a multitude of peaks becomes denser as
the system size increases. Even though the polaron is defined
on an infinite one-dimensional lattice, the variational Hilbert
space allows only a finite maximal distance between the elec-
tron and phonon excitation given by Lmax = Nh − 1, which
consequently yields a discrete phonon spectrum ω(q).

-3 -2 -1 0 1 2 3 4 5 6
ω

0

0.5

1

1.5

2

2.5

3

A
(ω

)

tph=0.3
tph=0.2
tph=0.1
tph=0.0
Eq.(18)

FIG. 9. Comparison of A(ω) obtained using Lanczos approach
with tel = 0 and Nh = 18 presented with full lines and numerical
summation of Eq. (5) shown in dashed lines. Parameters of the

single-site model were ω0 = 1 and g =
√

2(ω2
0 − 4t2

ph ). In the lat-

ter case, the product was performed using Nq = 10 equally spaced
q values, q = 2nπ/Nq, n ∈ [1, . . . , Nq], while the summation over
different phonon quanta was limited to mqi = [0, 1, 2, 3]. In addition,
final results were averaged over shifted values q, i.e., q → q + 
q
where 
q = 2mπ/(Nq ∗ Mq ), m = 1, . . . , Mq, and Mq = 4. In both
cases, we have used artificial broadening η = 0.05.
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APPENDIX B: A(ω) FOR A SINGLE SITE

In the case when tel = 0 the Hamiltonian in Eq. (1) is
reduced to

Htel=0 =
∑

q

ωqa†
qaq + gn̂0(a†

0 + a0), (B1)

which can be solved using a Lang-Firsov [59] transformation.
In the case of a single electron on site 0, i.e., n0 = 1, the
ground state is given by [42]

|O〉 = e− ∑
q g̃2

q/2−g̃qa†
q c†

0|∅〉, (B2)

where g̃q = g√
Nqωq

, and excited states are obtained from

|m〉 = e−∑
q g̃2

q/2�q

(
(a†

q + g̃q)mq√
mq!

e−g̃a†
q

)
c†

0|∅〉, (B3)

where |m〉 = |mq1 , mq2 , . . . , mqNq
〉. The energy spectrum is

given by

εm = − 1

Nq

∑
q

g2

ωq
+

∑
q

mqωq. (B4)

Finally, A(ω) in Eq. (5) is obtained using the scalar product

|〈∅|c0|m〉|2 = e− ∑
q g̃2

q�q
g̃

2mq
q

mq!
. (B5)

The analytical expression in Eq. (5) can be used to check
the precision of our numerical approach using the variational
Hilbert space. Comparison is given in Fig. 9.
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(2019).
[18] M. Berciu, Phys. Rev. Lett. 97, 036402 (2006).
[19] B. Lau, M. Berciu, and G. A. Sawatzky, Phys. Rev. B 76,

174305 (2007).
[20] M. Berciu and G. L. Goodvin, Phys. Rev. B 76, 165109 (2007).
[21] G. L. Goodvin, M. Berciu, and G. A. Sawatzky, Phys. Rev. B

74, 245104 (2006).
[22] G. L. Goodvin, A. S. Mishchenko, and M. Berciu, Phys. Rev.

Lett. 107, 076403 (2011).
[23] J. Ranninger and U. Thibblin, Phys. Rev. B 45, 7730 (1992).
[24] F. Marsiglio, Phys. Lett. A 180, 280 (1993).
[25] A. S. Alexandrov, V. V. Kabanov, and D. K. Ray, Phys. Rev. B

49, 9915 (1994).
[26] H. Fehske, J. Loos, and G. Wellein, Z. Phys. B: Condensed

Matter 104, 619 (1997).

[27] B. Bäuml, G. Wellein, and H. Fehske, Phys. Rev. B 58, 3663
(1998).

[28] H. Fehske, J. Loos, and G. Wellein, Phys. Rev. B 61, 8016
(2000).

[29] M. Hohenadler, M. Aichhorn, and W. von der Linden, Phys.
Rev. B 68, 184304 (2003).

[30] N. V. Prokof’ev and B. V. Svistunov, Phys. Rev. Lett. 81, 2514
(1998).

[31] A. S. Alexandrov and P. E. Kornilovitch, Phys. Rev. Lett. 82,
807 (1999).

[32] V. Cataudella, G. D. Filippis, A. S. Mishchenko, and N.
Nagaosa, Phys. Rev. Lett. 99, 226402 (2007).

[33] F. F. Assaad, Phys. Rev. B 78, 155124 (2008).
[34] A. S. Mishchenko, N. Nagaosa, G. De Filippis, A. de Candia,

and V. Cataudella, Phys. Rev. Lett. 114, 146401 (2015).
[35] E. Jeckelmann and S. R. White, Phys. Rev. B 57, 6376 (1998).
[36] C. Zhang, E. Jeckelmann, and S. R. White, Phys. Rev. B 60,

14092 (1999).
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