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Analog time machine in a photonic system
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Analog physics has successfully tackled the problems of gauge theories, event horizons, Big Bang and
Universe expansion, and many others. Here, we suggest a photonic model system for a “time machine” based
on the paraxial beam approximation. We demonstrate how the closed timelike curves and the well-known
grandfather paradox can be studied experimentally in this system. We show how Novikov’s self-consistency
principle is realized in quantum mechanics owing to Heisenberg’s uncertainty principle.
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I. INTRODUCTION

Analog physics is based on the mathematical similarities
between different physical systems. These analogies often
help to solve long-standing problems in some fields, by bring-
ing the solutions known in the other fields. Among the most
well-known examples of the success of such analogies are
Maxwell’s equations (derived by analogy with the fluid dy-
namics in the presence of vortices) [1], Anderson’s suggestion
[2] for the mass generation of gauge bosons by symmetry
breaking via what is now known as the Higgs mechanism
[3] (based on the analogy with superconductors), and Se-
menoff’s proposal for the realization of Dirac’s Hamiltonian
in graphene [4] with the associated effect of Klein tunneling
[5], which stimulated the works on graphene [6]. One of
the particularly developed fields of analog physics is analog
gravity [7,8]. Thirty years after the initial proposal of Unruh
[9] for the observation of an analog of Hawking emission [10]
expected to arise at event horizons, such emission has indeed
been observed experimentally in classical [11,12] and quan-
tum fluids [13,14]. The studies of analog spacetimes are not
limited to Hawking emission: They include also superradiance
[15] and the Penrose effect [16] for Kerr black holes, the Big
Bang and the expansion [17–19], analog wormholes [20–22],
and even false vacuum decay [23,24].

A very interesting conclusion of the general relativity is the
possibility of the existence of closed timelike curves (CTCs),
commonly called “time machines” [25]. Indeed, the relativity
of simultaneity implies that there is no common “now” for
the whole Universe, and therefore that different moments
of time coexist, and can possibly be traveled to. Soon after
the discovery of the wormhole-type solutions of Einstein’s
equations for the spacetime metric [26,27], it was understood
that traversable wormholes [28,29] allowed faster-than-light
travel, which, in turn, makes time travel possible [25]. More-
over, it seems that any faster-than-light travel, which is a goal
of current NASA projects [30], appears as backward time mo-
tion for some observers. CTCs are the spacetime trajectories
of objects traveling through a time machine: Their closed
character implies the possibility for the object to affect its

own past. The most well-known theoretical result concerning
CTCs is Novikov’s self-consistency principle stating that the
only events which can occur along such closed curves are
those which are globally self-consistent [31]. These works
have inspired a strong research activity on both classical [32]
and quantum [33] problems in the presence of time machines,
including the problem of free will [34]. In quantum mechanics
with CTCs, many counterintuitive results were obtained, such
as the solution of NP-complete problems in polynomial time
[35]. Recently, the interaction of a qubit with another one
trapped in a CTC has been simulated experimentally, marking
another milestone for analog physics [36]. The long-standing
question of casualty, free will, and the possibility of changing
one’s own past has moved from the realm of philosophical
problems into the dominion of experimental physics.

Photonics offers extended possibilities for analog physics,
including analog spacetimes [37]. The whole field of topo-
logical photonics [38,39] was born from the possibility to
simulate wave functions in periodic crystal lattices using elec-
tromagnetic waves in artificially constructed periodic media.
The advantage of photonics is the opportunity to observe wave
functions experimentally (including the phase) and to perform
wave-function engineering with artificial potentials, e.g., pe-
riodic lattices. As an example, the possibilities to simulate
electromagnetic wormholes with metamaterials were recently
suggested [40,41]. In particular, the well-known paraxial ap-
proximation for light has been used for analog physics studies
in atomic vapor cells [42,43], nonlinear crystals [44], and in
coupled waveguides [45].

In this paper, we propose to study the self-consistency of
time travel by using the equivalence between the time co-
ordinate in the Schrödinger equation and one of the space
coordinates (the z coordinate, corresponding to the beam
propagation direction) in a paraxial configuration. We show
with numerical simulations that the system indeed converges
to a stationary self-consistent solution, confirming Novikov’s
principle, which is realized owing to the inherent quan-
tum uncertainty. We demonstrate that in the stationary case,
the time-looped signal can be either self-amplified or self-
suppressed. We show that this suppression can never be
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FIG. 1. Scheme of the experiment. The dielectric medium char-
acterized by susceptibility χ is shown as a gray rectangle. The input
beam arrives from the left. The z-dependent envelope of the electric
field E (x, y, z) behaves as a time-dependent wave function ψ (x, y, t ),
its diffusion sketched with black lines. The output region marked
with a magenta line is transferred to the input region marked with
a blue line using four mirrors (Mach-Zehnder interferometer setup).
The time-traveler signal (TTS) goes around the closed timelike curve
(CTC) marked with a dashed line.

complete. Traveling to the past and killing the younger version
of yourself is therefore impossible.

II. THE MODEL

The paraxial approximation consists in considering the
envelope of an electric field and neglecting ∂2E⊥/∂z2 with
respect to k0∂E⊥/∂z in the Laplacian term of the Helmholtz
equation for the electromagnetic field. The resulting equation
for the envelope (neglecting the spin-orbit coupling effects)
reads

i
∂E

∂z
= − 1

2k0

(
∂2

∂x2
+ ∂2

∂y2

)
E − k0χ

2
E , (1)

where χ is the dielectric susceptibility of the medium and k0 is
the propagation wave vector along z. This equation is equiva-
lent to the time-dependent two-dimensional (2D) Schrödinger
equation

ih̄
∂ψ

∂t
= − h̄2

2m
�ψ + Uψ, (2)

with the mass m determined by k0 and the potential U deter-
mined by the susceptibility profile χ . Nonlinear terms can be
present in both equations. Their role will be considered in the
following sections. It is because of the paraxial approximation
that the derivatives over z and x, y appear differently in this
equation, which corresponds to the difference between the
spatial coordinates and the time (in particular, in the nonrela-
tivistic limit, in which the Schrödinger equation is written).

The z coordinate of Eq. (1) maps to the time variable in the
Schrödinger equation (2). We propose to use this mapping to
create a model of a CTC or a time machine by coupling the
output of the medium to its input, as shown in Fig. 1. This
analog system is not supposed to reproduce the wormhole
itself, which is a relativistic object, but rather its effect on

the asymptotically flat regions of spacetime. The initial beam
from the source enters the medium described by Eqs. (1) and
(2) from the left. The evolution of the electric field envelope
(or wave function) with z (analog time) is sketched by a black
solid line. A set of four mirrors (forming a Mach-Zehnder
interferometer) loops a part of the beam from the output on
the right back to the entrance on the left, forming the CTC
(dashed line). Only the internal part of the CTC is simu-
lated in the analog system, whereas the external part (the
wormhole) is supposed to transmit the signal with minimal
changes (as expected for a time machine). Our configuration
quite faithfully reproduces such an imaginary device, because
the wave packet is actually described by the same equation
(corresponding to the nonrelativistic limit of a flat Minkowski
spacetime) along all four parts of the optical path. Indeed,
an object moving through a wormhole is supposed to be still
moving forward in time in its local frame, while going back-
ward with respect to an external observer. We note that the
requirement of minimal changes during “time travel” might
imply using a different refraction index for the main part of the
system, in order to increase the relative weight of the useful
“forward” optical path with respect to the “backward” outside
path.

III. LINEAR MEDIUM

We begin by considering the problem of a possible station-
ary solution for the electric field envelope E (x, y, z) equivalent
to the existence of a stable history of the Universe ψ (x, y, t )
mathematically. Let us consider that the signal from a single
point x0, y0 at the moment T given by ψ (x0, y0, T ) is sent
backward into the past to the same point at the moment t = 0
and adds to the wave function already existing at that moment
as

ψ (x0, y0, 0) ← ψ (x0, y0, 0) + αψ (x0, y0, T ), (3)

where α is a complex coefficient describing the efficiency
of the time machine. In a realistic optical system without
gain, |α| � 1, but in principle it can also exceed unity. The
most efficient way to find a stationary solution for E is to
use iterations: Solve the time-dependent equation for ψ from
t = 0 to t = T , and then use ψ (x0, y0, T ) as the input for the
next iteration. We can therefore write

ψn+1(x0, y0, 0) = ψn(x0, y0, 0) + αψn(x0, y0, T ). (4)

From a mathematical point of view, the values of the sig-
nal sent backward (describing the state of the time traveler)
represent a sequence. This sequence is either convergent or
not. If it converges to a certain limit ψn(x0, y0, T ) → c, four
interesting situations are possible at first glance: (1) c = 0,
complete suppression of the time-traveler signal (TTS); (2)
|c| < |ψ0(x0, y0, T )|, partial suppression of the TTS; (3) |c| >

|ψ0(x0, y0, T )|, limited amplification of the TTS; and (4) c =
∞, unlimited amplification of the TTS.

Let us first focus on the first possibility, which corresponds
precisely to the time-traveler (or grandfather) paradox: Is it
possible to kill one’s own younger self? The answer that we
can prove mathematically is no. Indeed, let us suppose that
c = lim ψn(x0, y0, T ) = 0. By definition, it means that there
exists an N such that for n > N , |ψn(x0, y0, T )| < ε (with
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arbitrary small ε). Then, for the next iteration n + 1 at t = 0
we have an initial value which is arbitrarily close to the zeroth
(that is, initial) iteration,

|ψn+1(x0, y0, 0) − ψ0(x0, y0, 0)| < |α|ε, (5)

because this initial value is given by

ψn+1(x0, y0, 0) = ψ0(x0, y0, 0) + αψn(x0, y0, T ). (6)

For any finite |α|, the product |α|ε can be made arbitrarily
small. Next, we apply the Lyapunov analysis of stability [46].
If the original system (without the CTC) is stable (not chaotic)
and all its Lyapunov exponents are negative, the arbitrarily
small separation of initial conditions (at t = 0) implies an
even smaller separation of the final values (at the moment T ):

|ψn+1(x0, y0, T ) − ψ0(x0, y0, T )| < |ψn+1(x0, y0, 0)

− ψ0(x0, y0, 0)| < |α|ε. (7)

We find therefore that ψn+1 is arbitrarily close to zero and
at the same time to the zeroth iteration value ψ0(x0, y0, T ),
which is impossible, unless ψ0(x0, y0, T ) = 0 (there was no
time traveler from the start, which is a trivial situation). We
must conclude that the signal sent to the past cannot suppress
itself completely.

The three other configurations are possible mathematically.
We note, however, that the infinite self-amplification is impos-
sible in a physical implementation of an analog time machine
that we suggest because of the inevitable gain saturation
mechanisms. We conclude that, in practice, the TTS is either
partially suppressed or amplified.

It is also possible that the sequence ψn does not converge at
all: The stationary configuration of the electromagnetic field
does not settle down in the system. This can occur if the
original system has a positive Lyapunov exponent (exhibits
a chaotic behavior), because in this case even a weak signal
into the past strongly modifies the future, including itself. The
possibility of the creation of such a configuration in an analog
system in the quantum case that requires dynamical quantum
chaos [47] remains an open question that we leave for future
works.

We have to stress that we restrict our consideration to
the case of a negligible beam evolution outside the dielectric
(ensured by the difference of the refractive indices). Indeed,
if the optical path outside the dielectric medium is significant,
the changes in the spatial profile of the reinjected beam (with
respect to the output profile) can become non-negligible. In
this case, our initial assumption is not valid, and the whole
reasoning should no longer be applied. The analogy with a
“time machine” still remains valid, but the causal links are
more complicated.

Figure 2 shows the results of numerical simulations based
on the linear time-dependent Schrödinger equation with a
Gaussian profile of the beam (width w) and a Gaussian spa-
tial profile of the CTC (qualitatively describing the mirrors
shown in Fig. 1), coupling the final value of the wave function
ψ (y, T ) into its initial value ψ (y, 0). The problem is reduced
to 1D (the system is considered to be homogeneous along x)
in order to focus on its essential features. The simulations con-
firm the possibility of the achievement of a stationary solution
for the electromagnetic field, an equivalent of a self-consistent
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FIG. 2. Numerical simulations. (a) Initial distribution of
|ψ (y, t )|2 (without CTC), log scale. (b) Final stationary distribution
of |ψ (y, t )|2 (with CTC), log scale. (c) Difference between the initial
and the stationary distributions, linear scale. (d) Convergence of the
TTS integrated density with iteration number. Red lines mark the
CTC windows.

history in the presence of a CTC. Figure 2(a) shows the initial
distribution of the probability density |ψ (y, t )|2 (no CTC),
while Fig. 2(b) shows the stationary distribution. The TTS is
clearly visible in the bottom part of the figure. It presents a
nonzero wave vector oriented downward, because only such
components (present in the original beam) can penetrate into
the CTC window located at around y/w = −20. Figure 2(c)
shows the difference of the probability density between the
initial and the stationary configurations. The TTS appears
as red (local probability increase), but blue regions are also
visible: The TTS locally exhibits a negative interference with
the initial beam. Finally, Fig. 2(d) demonstrates the conver-
gence of the system: The deviation from the final (stationary)
solution drops down to the machine precision in just about
five iterations. The sequence ψn(x0, y0, T ) converges to a
value about 11% larger than the initial value ψ0(x0, y0, T ).
This numerical simulation confirms that a stationary solution
can be found in this case and that the system can exhibit a
self-consistent history, at least in the linear case.

The fast convergence is ensured not only by the fact that
this simplest quantum system is not chaotic, but even stronger
by its diffractive nature. The spreading of the wave pack-
ets guarantees that |ψn(x0, y0, T )|2 < |ψn(x0, y0, 0)|2, which
means that the TTS is weakened with each iteration, and thus
the sequence rapidly converges. The nonrelativistic quantum
mechanics with a CTC appears to respect the self-consistency
principle.

A less trivial example is shown in Fig. 3: The wave packet
has a nonzero initial wave vector along y [Fig. 3(a), ky < 0],
directed towards the time machine (red line). It enters the time
machine and reappears at t = 0, still directed downwards.
Then the wave packet is reflected at a potential barrier at the
boundary of the system and gets a new wave vector ky > 0 di-
rected upward. It then reenters the CTC and reappears at t = 0
once again, this time continuing to propagate upward. Three
copies of the same wave packet are present in the system at
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FIG. 3. Numerical simulations showing a more complicated con-
figuration with an initially propagating wave packet. (a) Initial
distribution of |ψ (y, t )|2 (without CTC), linear scale. (b) Final sta-
tionary distribution of |ψ (y, t )|2 (with CTC), linear scale. Red lines
mark the CTC windows.

any moment of time. This configuration is close to that of
the classical billiard ball problems [31], with a time-traveling
billiard ball hitting a previous version of itself. One could
expect that the wave packets might interfere destructively at
some point, either at t = 0 or at t = T , and thus suppress the
TTS, but this does not happen, because of the nonzero wave
vector: Actually, an interference pattern between positive and
negative ky is observed at t = 0 and at t = T , and an extra
phase simply shifts this interference upward or downward, but
it does not lead to the complete suppression of the TTS. The
convergence in this case is as fast as in the configuration of
Fig. 2.

The most self-affecting configuration corresponds to a
wide beam with ky = 0, exhibiting almost no diffraction and
entering straight into the CTC, as shown in Fig. 4. This
beam reappears at t = 0 with the same wave vector ky = 0
and thus reenters the CTC again and again. Two limiting
cases are possible: The phase of the CTC coupling coeffi-
cient φ = arg α can be either zero [constructive interference,
Figs. 4(a) and 4(c)] or π [destructive interference, Figs. 4(b)
and 4(d)]. In the first case, we could expect that the wave
packet might exhibit unlimited amplification and thus no
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FIG. 4. Numerical simulations of the strongest self-affecting
configuration. (a), (b) Final stationary distribution of |ψ (y, t )|2 (with
CTC), log scale. Coupling phase: (a) φ = 0, (b) φ = π . (c), (d) Cor-
responding total probability density exhibiting convergence.

stationary solution could be reached. This does not happen, as
can be seen from Fig. 4(c), showing the integrated probability
density, whose value saturates around 12 (twelve copies of
the wave packet simultaneously present in the system). Such
cases are rarely treated in science fiction literature (but see,
e.g., Ref. [48]). Diffraction prevents a further increase of the
self-amplification. Similarly, diffraction prevents the complete
suppression of the beam in Fig. 4(b) (φ = π ). The main part
of the beam is strongly suppressed, and the integrated prob-
ability initially drops down to ≈0.1, meaning that the time
traveler managed to kill its own former self by about 90%.
But complete suppression does not occur, in agreement with
our analytical predictions. The system converges in about 30
iterations to a value of about 30% of the initial wave packet,
exhibiting a strongly broadened spatial distribution. We can
conclude that Novikov’s self-consistency principle is ensured
in quantum mechanics by Heisenberg’s uncertainty principle.

IV. NONLINEAR MEDIUM

The paraxial propagation of a beam in a nonlinear medium
is described by the nonlinear Schrödinger equation,

ih̄
∂ψ

∂t
= − h̄2

2m
�ψ + g|ψ |2ψ + Uψ. (8)

Depending on the sign of the nonlinearity, the interactions
(characterized by the constant g) can be either attractive (g <

0, in which case the system is unstable) or repulsive (g > 0).
The evolution of long-wavelength weak excitations (charac-
terized by a speed of sound cs = √

gn/m) in such a system
can be described using a relativistic wave equation [49],

∂ν (
√−ggμν∂νϕ) = 0, (9)

written with an effective metric tensor gμν totally determined
[9] by the background stationary velocity v = (h̄/m)∇ arg ψ

and the local speed of sound cs:

gμν = mn

c

⎛
⎜⎝

−(c2 − v2)
... −v

. . . . . . . . . . . . . . . .

−v
... δi j

⎞
⎟⎠. (10)

It is already widely used for the analog studies of general
relativity, including time-related effects. This regime allows
us to map the electromagnetic wave in a nonlinear medium not
to the nonrelativistic quantum mechanics, as in the previous
section, but to a relativistic wave equation for light. Moreover,
this nonlinear system also admits another type of nontrivial
solution: solitons, localized density perturbations character-
ized by a phase jump and behaving as relativistic massive
particles [50]. These have also already been used for analog
studies [51,52].

We note that in this case the physical signal to be sent along
the CTC in the analog system should be taken as a deviation
from the mean value of the electric field, and not the total
electric field as in (3):

ψ (x0, y0, 0) ← ψ (x0, y0, 0) + α[ψ (x0, y0, T ) − ψ̄ (x, y, T )].
(11)

This is best achieved in a pump-probe configuration, where
the pump can be suppressed by interference.
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FIG. 5. Numerical simulations for a nonlinear system. (a) Initial
distribution of |ψ (y, t )|2 (without CTC), linear scale. (b) Final sta-
tionary distribution of |ψ (y, t )|2 (with CTC), linear scale. Red lines
mark the CTC windows.

This analog system is much closer to the problems of
general relativity and exhibits a much richer behavior than
the linear system. In particular, it is possible to simulate the
configuration of the billiard ball striking the former version of
itself [32] using shallow solitons. They have the advantage of
being relatively weakly interacting and propagating almost at
the speed of sound. Their presence also does not significantly
perturb the phase of the condensate.

Figure 5 shows the results of numerical simulations of shal-
low soliton propagation in a nonlinear system. The initially
created density minimum separates into two gray solitons
propagating almost at the speed of sound in the medium cs.
One of them enters a CTC and reappears at t = 0, generating
two more shallow solitons, the trajectory of one which crosses
one of the initial solitons [Fig. 5(b)]. At high speeds, the
interaction between the solitons is relatively weak, and even
though it leads to a slight deviation of the first soliton, it does
not prevent it from entering the CTC. Thus, the time traveler
does not destroy itself completely once again, and the system
exhibits a self-consistent history.

The characteristic speed of the propagation of the changes
in the history in this model system is fundamentally different
from the analog of the speed of light. Indeed, the role of the
speed of light is played by cs, whereas the changes propagate
from the past to the future along the equivalent of the time
axis z with the speed of light in the medium c/n. It means
that a change in the past does not affect the time traveler
immediately, and for some moment (of the laboratory time)
the traveler “remembers” the previous version of the history.

V. DISCUSSION

If the past, the present, and the future exist simultaneously,
it means the future “already” exists, and our free will arises

only from the impossibility to predict the future (which is
already existing anyway). In this case, the only possibility
of a real change in the Universe is given by time machines.
Time travel changes history and thus changes the past and the
future. On the other hand, the final (stationary) version of a
history in the presence of a time machine is not so different
from what we actually experience. We have seen that a signal
from the future can change history in a quite significant way,
and the only certain point is that this signal cannot disappear
completely as a result of these changes. But history does not
keep track of its initial version, and only the final one can be
observed.

Ultimately, any time machine can be represented as a sys-
tem with feedback in a stationary equilibrium configuration.
The behavior of systems with a feedback has been studied by
control theory in many works. Our own brain is a complicated
feedback system, and in this sense, works as a time machine:
We conceive a certain future which is ultimately not realized,
because we get some information from this potential future
and adapt our behavior correspondingly, in order to optimize
the outcomes. But the realized version of history contains
our “mind simulations” and the feedback signal that we have
received from them as a part of our personal history.

VI. CONCLUSIONS

To conclude, we have shown that it is possible to sim-
ulate “time machines” or systems with closed timelike
curves, using electromagnetic beams in the paraxial config-
uration, mapped to a time-dependent Schrödinger equation.
We have shown that it is possible to check Novikov’s self-
consistency principle experimentally in such systems. Our
analysis demonstrates how the time-traveler (or the grand-
father) paradox is resolved in quantum mechanics. We have
shown that the self-consistency is ultimately achieved owing
to Heisenberg’s uncertainty principle. However, it might be
violated in systems with dynamical quantum chaos.
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