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Limits of the quasiharmonic approximation in MgO: Volume dependence of optical modes
investigated by infrared reflectivity and ab initio calculations

Eugenio Calandrini,1 Lorenzo Paulatto,1 Daniele Antonangeli,1 Fei He,1 Ricardo P. S. M. Lobo ,2,3 Francesco Capitani,4

Jean-Blaise Brubach,4 Pascale Roy,4 Laetitia Vincent,5 and Paola Giura 1,*

1Sorbonne Université, Museum National d’Histoire Naturelle, UMR CNRS 7590, Institut de minéralogie,
de physique des matériaux et de cosmochimie (IMPMC), 4 place Jussieu, F-75005 Paris, France

2LPEM, ESPCI Paris, PSL University, CNRS, F-75005 Paris, France
3Sorbonne Université, CNRS, LPEM, F-75005 Paris, France

4Synchrotron Soleil, L’Orme des Merisiers Saint Aubin, BP 48 91192 Gif-sur-Yvette, France
5Université Paris-Saclay, CNRS, Centre de Nanosciences et Nanotechnologie, C2N, Palaiseau 91120, France

(Received 5 November 2020; revised 18 December 2020; accepted 13 January 2021; published 5 February 2021)

Experimental and numerical investigation of phonon optical modes of MgO as a function of temperature (from
300 to 1400 K) and pressure (from 0 to 21 GPa) are here presented. Infrared reflectivity measurements were
performed to probe energies and widths of the optical phonons, as well as of the multiphonon processes affecting
the spectral shape, over a variation of the unit-cell volume exceeding 20%. Calculations within quasiharmonic
approximation (QHA) account well for the volume dependence of the optical phonon energies observed in high-
pressure experiments, while they fail at larger volumes, corresponding to the highest investigated temperatures.
Moreover, QHA calculations more closely predict energies of transverse optical (TO) modes than those of
longitudinal optical (LO) ones. This can be ascribed to known limitations in the modeling of the effective charges
(Z∗) and dielectric constant (ε∞) that lead to an underestimation of the LO-TO splitting. Based on the comparison
of our experimental and theoretical results, we propose an empirical analytical expression for Z∗2/ε∞ as a
function of the atomic cell volume. Density-functional perturbation theory including phonon-phonon scattering
up to the third order of the lattice potential expansion is used to calculate phonon widths. These calculations
reproduce and explain remarkably well the nontrivial volume dependence of both TO and LO phonons linewidths
determined by the experiments.
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I. INTRODUCTION

Lattice dynamics controls many of the physical quantities
responsible for the thermodynamic properties of condensed
matter. Among them, we found entropy, thermal capacity,
specific heat, thermal expansion, and thermal conductivity [1].
To be able to interpret, predict, and eventually modify these
physical quantities in actual materials, is essential to establish
an accurate enough model of the force fields, velocities, and
scattering rates responsible for atomic movement [2]. This has
motivated an advanced treatment of the interatomic potential
in which the anharmonic terms are explicitly considered.

Anharmonicity of the interatomic potential leads the in-
teractions between phonons and is therefore responsible for
their mutual scattering. Several microscopic descriptions have
been developed to explain anharmonic forces and their contri-
bution to intrinsic phonon-phonon scattering processes, either
based on experimental data [3], or first-principles approaches
[4–10]. However, further refined experiments and advanced
calculations are needed to adequately understand multiphonon
scattering and its impact on the physical properties of solids
[11–16].

*Corresponding author: paola.giura@sorbonne-universite.fr

To this end, infrared spectroscopy is a first-choice tech-
nique to directly address anharmonicity by probing the energy
and the lifetime of the infrared active lattice modes. In a purely
harmonic picture for diatomic cubic crystals, the infrared ab-
sorption spectra should consist of one narrow line. In reality,
the measured infrared spectra of cubic crystals show a broad
band and at least a secondary band [17]. This discrepancy is
qualitatively attributed to anharmonic terms in the potential
energy. Thanks to them, the interaction between lattice modes
becomes possible, so that a combination of two or more lattice
waves can absorb in the infrared region even when the individ-
ual waves cannot. Within this context, simple materials, such
as the insulating, rocksalt-structured magnesium oxide (MgO)
provide an ideal playground, both for experiments (high-
quality samples are commercially available) and calculations
(with its two atoms per unit cell and six phonon branches it
is not computationally demanding, allowing more complex,
detailed, and realistic calculations). Furthermore, the stability
of MgO, which retains the NaCl (B1) structure over several
megabars and thousands of degrees (Ref. [18] and references
therein), can be exploited to vary interatomic distances by
either pressure or temperature, independently tailoring the
phonon-phonon coupling as it will be seen in the following.

An improved understanding of the properties of MgO
has also direct implications for Earth and planetary science,
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being MgO the compositional end member of ferropericlase
(Mg1−x, Fex )O, one of the most abundant constituents of
the Earth’s lower mantle [19–21] and planetary mantles at
megabar pressures [22]. In particular, vibrational properties
of MgO and (Mg1−x, Fex )O are directly relevant for the inter-
pretation of lower-mantle seismological observations [23–25]
and to model the heat transfer across the planet [4,5,26–28].
In addition, MgO has a technical relevance since it is widely
employed as a substrate in chips for THz devices [29].

Despite such a great and diversified interest, MgO vibra-
tional properties as a function of temperature and pressure are
relatively poorly known. This paper focuses on the study of
the intrinsic phonon-phonon scattering (phonon anharmonic-
ity) and its impact on the normal optical modes in terms
of their energies and widths. The evolution with pressure
and temperature of these dynamical parameters is here mon-
itored over variations in the unit cell volume of 20% by
a combined experimental and theoretical approach. Interest-
ingly, the rearrangement of the phonon density of states at
high pressure triggers multiphonon processes that increase
the linewidth of the longitudinal modes. Finally, the here-
presented methodological approach can be extended to the
study of the thermoelastic properties and of the lattice ther-
mal conduction of other insulating crystals of geophysical or
technological interest.

II. METHODS

Infrared reflectivity measurements have been performed
on MgO single crystals as a function of temperature and
pressures in multiple runs, exploiting different instruments
and experimental configurations (see Supplemental Material
[30]). High-quality data have been collected between 300 and
1400 K at ambient pressure, and between 0 and 21 GPa at
ambient temperature. While measurements covered a larger
spectral range, features of current interest locate in the 200 to
1,000-cm−1 range.

Experiments have been complemented by lattice dynamics
calculations implemented in the QUANTUM ESPRESSO suite
(see Supplemental Material).

III. EXPERIMENTAL AND COMPUTATIONAL RESULTS

The reflectance spectra of MgO measured as a function
of temperature and pressure are shown in Figs. 1(a) and
1(b), respectively. All spectra are characterized by a fre-
quency band of high reflectivity, the so-called reststrahlen
band. The transversal and longitudinal optical phonon fre-
quencies at almost zero wave vector, ωTO and ωLO, limit
this band. These frequencies relate to the normal modes of
lattice vibrations. Outside this spectral region, the reflectivity
is constant. The fringes in the high-pressure measurements
are due to the multiple internal reflections inside the pressure
chamber. The reststrahlen band is perturbed by a shoulder at a
frequency slightly lower than ωLO, whose nature goes beyond
the quasiharmonic approximation of lattice dynamics, and
can be ascribed to anharmonic phonon-phonon interactions as
discussed in detail in a recent work [31]. Briefly, this shoulder
is the signature of an excess of spectral weight (ESW) due
to the decay of a photon with energy h̄ωESW and vanishing

FIG. 1. Reflectivity spectra of MgO single crystal as a function
of temperature (top) and pressure (bottom). The curves are all rigidly
vertically shifted by the same amount (0.2) for better visibility. The
red dashed curves are representative fit results. Red, blue, and gray
symbols highlight the position of TO and LO phonons and the ESW
feature, respectively. Circles and squares are for different experimen-
tal runs.

wave vector (qin ∼ 0) in two phonons with opposite wave
vector (qout, −qout), whose energies sum up to h̄ωESW. These
multiphonon processes are particularly pronounced in ionic
compounds, such as MgO, for which the peculiarities of the
phononic band structure allow a discretization of the density
of state and the onset of pockets, favorable to the phonon-
phonon interaction [31].

Overall, spectra undergo a continuous redshift upon in-
creasing temperature and blueshift with increasing pressure.
To better highlight this behavior, ωTO, ωLO, and ωESW fre-
quencies are marked by colored points in the spectra shown
in Fig. 1. A useful way to look at this is by considering, rather
than temperature and pressure, the lattice volume, which sys-
tematically increases by moving from the bottom to the top of
Fig. 1. Qualitatively, phonon softening is commonly expected
with increasing interatomic distances. The softening of the
ESW energy is a consequence of the general phonon ener-
gies shift over the entire reciprocal space, which effectively
moves toward lower energies the high phonon density of state
pockets responsible for the ESW.
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FIG. 2. Experimental and computed optical function of MgO. Panels (a), (c), (e), and (g) show the experimental data analysis results:
Lorentz fit (black curves) and Kramers-Kronig analysis (red curves). Panel (a) and panel (c) show the imaginary part of the dielectric function
ε2 at high temperature (a) and high pressure (c). Panel (e) and panel (g) shows the energy loss function at high temperature (e) and high
pressure (g). Panels (b), (d), (f), and (h) show the calculated spectral function of TO and LO at high temperature (b), (f) and high pressure (d),
(h). N.B. The ordinate axes are in logarithmic scale. Stars (*) indicate the ESW structure. The main features due to the transverse and to the
longitudinal optical phonon are indicated by arrows. Temperature (top panels) increases from the bottom to the top. Pressure (bottom panels)
increases from the top to the bottom. Curves are staggered for better visibility.

The thermodynamic behavior of the aforementioned lattice
excitations and their lifetimes can be quantitatively described
by retrieving the dielectric function of MgO, which directly
relates to the refractive index. Results have been analyzed
both according to a Lorentz model, and when possible, based
on the Kramers-Kronig relation (Supplemental Material)
[32,33]). As illustrated for the high-temperature measure-
ments [Figs. 2(a)–2(e)], both the Lorentz model (in black)
and the Kramers-Kronig relations (in red) capture the relevant
features of the dielectric function of the system, and only
differ at the edge of the investigated ranges. Concerning the
high-pressure measurements, the unavoidable fringes hamper
the Kramers-Kronig analysis. As such, in the following, the
analysis will be based on the Lorentz model. Representative
curves of this fitting procedure are superimposed to the cor-
responding measured spectra as red dashed lines in Fig. 1.
Knowing the dielectric constant, the imaginary part of the
energy loss function ε2/(ε2

1 + ε2
2 ) provides the frequency and

linewidth of LO phonons. The results of this approach are
presented in Fig. 2, where ε2 is shown in panels (a) and (c)
and the imaginary part of the energy loss function in panels (e)
and (g) for high temperature and high pressure, respectively.

As already mentioned, the peaks’ blueshift with decreasing
volume (going from top to bottom) is clearly visible. In par-
ticular, the ESW peak exhibits a larger shift than the phonons
peaks, so that at high pressure it crosses the LO [panel (g)].
The evolution of peak linewidths can also be directly inferred.
As expected, a general broadening is observed at high temper-

ature for all the considered excitations. Conversely, TO and
ESW linewidths remain constant at high pressure, while the
LO linewidths unexpectedly increase.

These experimental results can be directly compared with
the density-functional perturbation theory (DFPT) calcula-
tions. The resolution of the exact ionic Hamiltonian, using
harmonic phonons as the basis, and perturbatively threatening
the third order of the total energy approximation, provides
corrections to the phonon self-energy, which acquires an
imaginary part and confers to the phonons a finite lifetime,
i.e., an intrinsic linewidth. The calculated spectral functions
of TO and LO phonons take into account these corrections
and are displayed in Figs. 2(b)–2(f) and Figs. 2(d)–2(h) for
temperatures and pressures between 300 and 1473 K and 0
and 40 GPa, respectively. The agreement with the experiments
[in panels (a),(c), (e), and (g) of Fig. 2)] is remarkable.

Calculations directly provide the energies and linewidths of
normal modes. More interestingly, the analysis of the spectral
functions of panels (b), (d), (f), and (h) of Fig. 2 also allows
addressing multiphonon processes. Two extra bands, on top
of that corresponding to normal models, are well visible. The
first (indicated with a star symbol) is the ESW, several orders
of magnitude weaker than the normal modes. The second
one, further out, is even weaker and highly structured. As
the latter lies outside the reststrahlen band, reflectivity mea-
surements are of little use for its investigation, all the more
in the case of high-pressure measurements, as the fringes
complicate the data interpretation. Thus, while we will discuss
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here ESW-related features, we defer the analysis of this sec-
ond extra band to further dedicated studies. However, it is
worth noticing that DFPT calculations can reveal these multi-
phonon processes, and the discrepancies between the Lorentz
model and the Kramers-Kronig analysis at high wave numbers
[Figs. 2(a)–2(e)] can be related to the omissions of such pro-
cesses. The ωESW frequency is assigned evaluating the local
maximum of σTO and rapidly crosses the ωLO frequency, as
can be seen in panels (f) and (h) of Fig. 2. This complicates
the analysis of the imaginary part of the energy loss function
because for certain thermodynamic conditions the ωLO and
ωESW modes are closer than the respective linewidths.

Both experimental and numerical results on TO, LO, and
ESW are summarized in Fig. 3, where the frequencies and
linewidths are displayed as a function of lattice volume (bot-
tom axis) and as a function of temperature and pressure
(top axis). The agreement on phonon energies between ex-
periments and calculations, and their smooth, almost-linear
dependence on lattice volume, indicate that the quasiharmonic
approximation is suitable to describe the lattice dynamics
of the system over an extended volume range. Some dis-
crepancies exist concerning LO phonon energy, which result
in an underestimation of the theoretically computed LO-TO
splitting. This is a known limitation, deriving from the en-
ergy functional approximation used to calculate the electronic
ground state of the system. However, this problem can be
overcome, as discussed later on.

Very differently, the TO and LO phonons linewidths show
a nontrivial dependence on the lattice volume [Fig. 3(b)]. Here
the anharmonic treatment of the problem is needed to recover
the overall behavior of linewidths and its nonmonotonic de-
pendence on lattice volume. Even if the absolute values do
not closely match, the increases in the TO and LO phonon
linewidths by almost a factor of 3 at large volumes are well
reproduced. Noteworthy, since the mismatch is uniform for
both the modes, it is conceivable to ascribe this to extrinsic
origins. Adding scattering due to isotopic disorder into our
calculations does not significantly affect resulting linewidths.
Experimentally observed broadening could thus be due to
point defects, or other scattering sources.

IV. DISCUSSION

A. Modes energies

Figure 3 compares the volume dependence of ωTO and
ωLO obtained by experiments and by ab initio simulations.
Despite the scatter in the experimental data, it is possible
to appreciate the good agreement between experiments and
QHA simulations up to a critical volume, above which cal-
culations start to deviate from measurements (please refer to
Supplemental Material, Fig. S1 for a closer comparison). For
the longitudinal phonon, deviation starts at volumes corre-
sponding to room pressure–room temperature measurements,
while for the transverse phonon, deviation occurs at higher
volumes, indicating a more harmonic behavior with respect
to the longitudinal mode. Also, while calculations fit well
the experimental transverse energies, longitudinal energies are
systematically underestimated. As better addressed in the next
section, this is a direct consequence of the difficulties in repro-

FIG. 3. (a) Phonon energies calculated in the quasiharmonic ap-
proximation (lines) and extracted from the Lorentz fit of recorded
spectra (circles and squares). (b) Phonon widths calculated includ-
ing the third order (lines) and extracted from the Lorentz fit of
recorded spectra (circles and squares). Literature data from Ref. [17]
are reported as open diamonds. Colored markers correspond to P-
T conditions at which we performed phonon DOS and final state
calculations reported in Fig. 7. To assign an experimental error,
the Lorentz fits were repeated after a rescaling of the measured
reflectivity of ±1%. This procedure reduces any errors caused by
the uncertainty on the absolute intensity of the single spectrum and
minimizes the effects of misalignment intrinsic to the acquisition of
the background. This approach produced the reported error bars for
the phonon widths, while no significant effect was produced on the
phonon energies.

ducing the effects of the mean local electric field associated
with the long-wavelength limit longitudinal phonon.

A first interesting observation that can be made by con-
sidering the experimental results at around V = 74.1 Å3

(gray-shaded area in Fig. S1) is that the energy of the optical
modes measured at moderate pressures (∼1 GPa) and room
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temperature (full circles) is, within uncertainties, the same
energy of the optical modes measured for the same volumes,
but at ambient pressure and low temperature (<300 K) (open
circles from Ref. [33]). As expected within a quasiharmonic
approximation, volume seems to be the thermodynamic vari-
able controlling the dynamics, irrespective of actual pressure
and temperature conditions leading to this volume. It may
therefore be instructive to see over which volume range such
observation holds, or in other words, to find the limits above
which the quasiharmonic approximation cannot be satisfacto-
rily used anymore.

QHA calculations reproduce well the overall energy-
volume relations observed in the high-pressure experiments
(but for a rescaling of the absolute values of LO), suggesting
that a quasiharmonic approximation holds at ambient temper-
ature at least up to 22 GPa, corresponding to a volume of
67.22 Å3. High volumes, obtained for ambient pressure and
high temperatures, are more critical, and QHA calculations
fail at reproducing the energy-volume relations established by
our experiments and available literature data [17]. The differ-
ence between experiments and calculations is already sizable
at 373 K (74.87 Å3) for LO and becomes evident at 773 K
(76.05 Å3) for TO as well (Fig. 3 and Fig. S1 in Supplemental
Material). Thus, the quasiharmonic approximation does not
provide an appropriate description of the system at ambient
pressure and high temperature.

To further characterize the limits of validity of the quasi-
harmonic approximation, measurements obtained at constant
volume for a different combination of pressure and temper-
ature are necessary (e.g., Ref. [35]). To the same extent, it
will be worth to perform perturbative calculations, in par-
ticular at high temperature, including both third and fourth
orders in the development of the phonon self-energy, which
antagonistically contribute to phonon energy determinations,
and whose relative weights are expected to depend on actual
thermodynamic conditions.

B. LO-TO splitting

While first-principle calculations well predict the energy of
the TO phonons, computed values of the LO energies are sys-
tematically below the measured ones (Fig. 3). This problem
can be partially solved by empirical corrections based on the
analysis of LO-TO splitting.

The LO-TO splitting, i.e., the removal of degeneracy be-
tween the LO and TO phonons at the Brillouin-zone center,
arises from the breaking of the lattice symmetry by the long-
range electric fields associated with long-wave longitudinal
phonons. This effect can be accounted for in the dynamical
matrix as q → 0, introducing a nonanalytic contribution given
by

4π

V
e2

(qZ∗
i )α (qZ∗

j )
β

qε∞q
, (3)

where V is the volume of the primitive cell, Z∗
i( j) is the

Born effective charge tensor for the i( j)th atom, ε∞ is the
high-frequency static dielectric tensor, and e is the electronic
charge. Thus, the knowledge of the tensor z∗ of the Born
effective charges and the tensor ε∞ of the macroscopic high-
frequency dielectric constant is needed to correctly describe

FIG. 4. Ratio Z∗2/ε∞ as a function of volume. The estimation
from experimental results (dots) is compared to estimations from the
ab initio simulations (thin lines) performed in this study (DFPT) and
available in the literature [5,34]. Inset (a): Lorentzian fit (blue line)
of the high-energy trend of the mean reflectivity curve 〈R〉 (red line).
Inset (b): effective charge number Z∗.

the dynamical matrix at the Brillouin-zone center. Actu-
ally, the ratio Z∗2/ε∞ controls the magnitude of the LO-TO
through the relation

Z∗2

ε∞
= μV

4πe2

(
ω2

LO − ω2
T O

)
, (4)

where μ is the reduced atomic mass and V the volume of the
unit cell. The values for Z∗ and ε∞ can be self-consistently
calculated in the framework of DFPT, but also derived from
the experiments. In the latter case, the high-frequency di-
electric constant is a fit parameter, while the Born effective
charges can be determined by the following relation:

Z∗2 = μ V S ω2
T O

4πe2
, (5)

where μ is the reduced mass of MgO, V is the volume of the
unit cell, S and ω2

T O are, respectively, the oscillator strength
and frequency of the transverse phonon, and e is the electronic
charge.

Figure 4 compares the measured and calculated values for
Z∗, the tensor ε∞, and the ratio Z∗2/ε∞. In particular, the
Z∗2/ε∞ experimental values shown in Fig. 4 are obtained by
the Lorentz model analysis used to estimate:

(i) the mean value of the high-frequency dielectric con-
stant, ε∞ [Fig. 4, inset (a)] from the high-energy trend of the
mean reflectivity curve obtained by averaging the experimen-
tal data at the different volumes.

(ii) the effective charge number Z∗ [Fig. 4, inset (b)] from
the transverse optic phonon oscillator strength.

Despite that the present ab initio calculations plot closer
to the experimental determination than previous work [5,34],
computed Z∗2/ε∞ are systematically below the experimental
values. This discrepancy mostly comes from the overestima-
tion of the high-frequency dielectric constant and not from the
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Born effective charge [inset (b) of Fig. 4)], as also evidenced
by the systematic underestimation of the longitudinal optical
mode energy shown in Fig. 3. In particular, all theoretical
models underestimate the increasing LO-TO splitting with
increasing volume.

To improve the accuracy of the theoretical modeling and
to minimize the difference with respect to measurements, a
Z∗2/ε∞ ratio scaled on the experimental data can be treated
as an external input parameter for the calculations. Starting
from a polynomial fit to the experimental values (bold thick
black line in Fig. 4), we can define an empirical analytical
expression for (Z∗2/ε∞)exp as a function of the atomic unit-
cell volume V:

(Z∗2
/ε∞)exp(V ) = 0.4(2) + 1.9(1) × 10−2 V − 9.7(4)

× 10−5 V 2. (6)

Such empirical scaling is neither meant to replace more
advanced treatments of the dynamical matrix in the limit of
q → 0, nor of the Born effective charge tensor over an ex-
tended pressure or temperature range. Here we simply aim at
providing an analytical correction to be applied to estimation
of the LO-TO splitting by quasiharmonic calculations over
the here-considered volume range, and within the limit of a
quasiharmonic approach.

C. Grüneisen parameters

A classic, but still largely used way to describe and to
quantify anharmonicity is through the Grüneisen parameter
(γ ) [36]. In this microscopic picture of the lattice dynamics,
atomic oscillations are controlled by a pair potential energy
containing an attractive and a repulsive term, which depend
on the relative mean distance between the atoms. At finite,
but relatively low temperature, the atomic displacement is
sufficiently small with respect to the interparticle distances,
so that the potential energy around the equilibrium position
could be satisfactorily approximated by a parabola giving
rise to an elastic recovering force (pure harmonic model).
In the Grüneisen description, the equilibrium position is a
function of temperature and pressure to account for the vol-
ume variation caused by thermal expansion or by compression
(quasi-harmonic approximation). Noteworthy, in this model
the only influence of pressure and temperature on the vibra-
tional frequency comes from the effect that these have on
the interatomic equilibrium position, or in other terms, on the
volume V. These arguments and approximations lead to the
classically used equations:

1

υ

∂υ

∂T
= −γ

1

V

∂V

∂T
, (7)

1

υ

∂υ

∂P
= −γ

1

V

∂V

∂P
, (8)

− ∂ ln (υ )

∂ ln (V )
= γ , (9)

where γ is the Grüneisen parameter that can be written for
every phonon mode as follows:

γi = − ∂ ln(υi )

∂ ln(V )
, (10)

FIG. 5. Natural logarithm of the phonon energy ωLO (red) and
ωTO (blue) as a function of ln(V) for high-pressure and high-
temperature measurements (dots) and QHA calculations (solid lines).
Linear fits for the high-volume (HV) experimental data, there where
the QHA calculations do not account for the experimental observa-
tions anymore, are displayed as dashed lines with consistent color
coding.

where vi refers to the frequency of the i th phonon mode.
From a macroscopic standpoint, the Grüneisen parameter

is defined as [37]

γ = αKT V

CV
= αKSV

Cp
, (11)

where KT (Ks) is the isothermal (adiabatic) bulk modulus, α is
the thermal expansion coefficient, and CV (Cp) is the specific
heat at constant volume (pressure). From Eq. (11), one can see
that the Grüneisen parameter sets a link between the thermal
and the elastic properties of a solid.

Figure 5 shows the natural logarithm of the phonon energy
of the optical modes probed in this study, ln(ωLO) (red) and
(ωTO) (blue), as a function of ln(V) for both high-pressure and
high-temperature ranges. To facilitate comparison, quantities
are rescaled to their respective values at ambient condi-
tions, i.e.,T = 300 K and P = 1 atm (V = 74.704 Å3, wLO =
727 cm−1, and ωTO = 400 cm−1). At high pressures (low vol-
umes) QHA calculations well account for the observations,
within the scatter of the data. Conversely, a departure from
the quasiharmonic model can be noticed at high temperature,
with increasing volumes, at first for LO, then for TO. Over this
volume range, both LO and TO data can be well described by
a linear fit (dashed lines in Fig. 5), whose slope is less steep
than what is expected according to QHA calculations.

It can also be readily observed that the energy of the
transverse mode has a more pronounced dependence on the
volume than the energy of the longitudinal one. This can be
rationalized by considering the effect of atomic distances on
the Coulomb force associated with the long-range electric
fields at the origin of the LO-TO splitting: with increasing/
decreasing interatomic distances (increasing/decreasing vol-
ume) the Coulomb force decreases/increases.
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FIG. 6. Grüneisen parameters for LO (blue) and TO (red)
phonons as a function of volume. Continuous lines are QHA re-
sults; dashed lines are obtained by the derivative of the fits to the
experimental data at the high volumes (dashed lines in Fig. 5). The
shaded region highlights the HV range over which QHA calculations
progressively deviate from experimental observations. Inset: TO/LO
Grüneisen parameters ratio.

The greater hardening of the TO mode with decreasing
volume is also clearly described by the Grüneisen parameter,
calculated according to Eq. (10), and whose trend with volume
is reported in Fig. 6. In the volume range where QHA calcu-
lations well describe the measurements, γ (V )QHA follows a
quadratic law much more pronounced for the transverse opti-
cal phonon than for the longitudinal one. At higher volumes,
we estimated the mode Grüneisen parameters starting from
the linear fit to the experimental data (dashed lines in Fig. 5).
In this volume range, γTO is more than three times γLO.

By looking at Fig. 6, it is possible to remark that within
the quasiharmonic approach, Grüneisen parameters decrease
with reducing volume. Such behavior is consistent with high-
pressure measurements, but it becomes soon inadequate for
the high-temperature measurements. At the high volumes,
corresponding to the highest-temperature conditions, γ (V)
strongly decreases for both modes while the relative ratio
between γ (V )TO/γ (V )LO increases (see inset in Fig. 6).

Quantitatively, although with a discontinuity likely less
sharp than that schematically illustrated in Fig. 6, the
Grüneisen parameter for the longitudinal phonon goes from
∼1 to ∼0.3, a value three times smaller, while that of the
transverse phonon changes by less than half passing from
∼2.2 to ∼1.3.

This drastic reduction of the Grüneisen parameter relates
to the increased anharmonic contributions. Interestingly, as
shown in Fig. 3, the measured phonon’s energies, and in
particular those of the LO mode, are higher than what is
expected according to the QHA predictions. Both the third
and fourth terms of the interatomic potential contribute to
the real part of the phonon self-energy, respectively, decreas-
ing and increasing the phonon energies. There where QHA
calculations well predict phonon energies, the two terms of
higher order compensate each other. Our results suggest that
for increasing temperature, cubic and quartic terms of the

crystal Hamiltonian do not compensate anymore, with the pro-
gressive prevalence of the latter one. Further, more extensive
perturbative calculations over an extended temperature range
will be necessary to quantitatively confirm this hypothesis.

D. Mode linewidths

The evolution of phonon widths with volume [Fig. 3(b)]
shows two different trends for high-pressure and high-
temperature data. The discontinuity observed for both the
optical modes’ widths seems located near ambient conditions.

In the high-temperature regime, the widths of the phonons
increase monotonically because thermal energy allows atoms
to move away from their equilibrium positions, exploring the
actual shape of the lattice potential beyond the quadratic well.
In other words, by increasing temperature, it is possible to
check the degree of anharmonicity of the system and the
weight of higher-order energy terms. In general, it has been
observed that the temperature dependence of the phonons’
widths on the third and fourth order of the potential expansion
has different trends. For the former the trend becomes linear
over a few tens of Kelvin, while no linearity is observed for the
latter as accurately shown in a recent work where calculations
are done up to temperatures around 1000 K at room pressure
[38]. In our case, the high-volume experimental data, i.e.,
high-temperature and room-pressure phonon widths, reported
in Fig. 3(b), exhibit a linear behavior on temperature that is
maintained up to 2000 K when adding literature data [17]
(please see Supplemental Material, Fig. S2 for an extended
view). This would suggest that four-phonon scattering has not
a strong effect. However, the discrepancy between measured
and computed data is not constant on temperature, differ-
ently from that observed on pressure. Moreover, the computed
linewidths for the LO phonon show a clear deviation from
linearity for temperatures higher than 1000 K. These find-
ing support the hypothesis that the four-phonon scattering
becomes non-negligible with increasing temperature at room
pressure not only for phonon energies, as discussed in the
previous section, but also for phonon widths with a particular
weight for the highest-energy modes.

Compared with temperature, high pressure could be spec-
ulated to have an opposite effect, reducing interatomic
distances, and enhancing the repulsive component in the in-
teratomic potential, and hence, in some way, increasing the
harmonic character of the collective vibrations. This is quali-
tatively compatible with the almost constant or slight decrease
of the width of the TO mode with decreasing volume caused
by the increasing pressure. However, this is not the case for
the LO mode, which shows an evident nonmonotonic increase
with decreasing volume, with a maximum width when LO
energy matches that of ESW. This picture becomes clear once
combining the theoretical and experimental results. The calcu-
lated MgO phonon density of states (DOS) reported in Fig. 7
features two main energy pockets, one highly populated by
phonon states belonging to TO and LA branches, the other
by phonons belonging to TA branches, which all display a
nearly flat dispersion (please refer to Ref. [31] for phonon
dispersions and a more detailed description).

These two energy pockets, which evolve following the
phonon band structure, i.e., blueshift decreasing the cell
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FIG. 7. Evolution of the phonon DOS with the thermodynamic
conditions. The color coding is consistent with marks in Fig. 3. The
blue- (gray)-shaded zone represents the final states of the LO (ESW)
decay process.

volume, host the final states of multiphonon decay processes
(almost irrespective of the actual exchange momentum).

If a particle, be this a photon or a phonon, possesses an
energy equal to the sum of these two energies it can de-
cay, generating two phonons: this is what happens to the
LO phonon or to photons having the ESW energy. At am-
bient conditions, the energies of the two pockets sum up
to 650 cm−1, and only photons satisfy the energy (and mo-
mentum) conservation. As the pressure increases, the band
structure rearranges; the ESW approaches the LO energy
that eventually matches the sum of the DOS energy pockets,
thus providing an effective channel for the LO phonon to
decay. The direct consequence is a progressive decrease in the
LO lifetime that manifests with the observed increase in the
linewidth. At the best energy matching, final states of ESW
and LO decay processes superimpose (21 GPa, 790 cm−1)
and the LO width goes through a maximum. As the pres-
sure further increases, the LO energy detunes, and its width
reduces. In conclusion, the presence of these pockets in the
DOS, whose energy combination is tuned with one of the
normal lattice modes, triggers multiphoton decay processes.
The presence of such multiphoton processes increases the

linewidth of normal modes and hence the anharmonicity of
the lattice dynamics even at high pressure, where the stiffer
and more packed environment should result in more harmonic
lattice dynamics (e.g., Ref. [35]).

V. CONCLUSIONS

In this paper, we present a thorough experimental and
numerical investigation of phonon optical modes of MgO as
a function of temperature (from 300 to 1400 K) and pressure
(from 0 to 21 GPa). The infrared reflectivity measurements
complement previous datasets [17,39], allowing for a more
detailed analysis, in particular at high pressure. Both phonon
energies and phonon widths of three active phonon processes
(LO, TO, and ESW, an excess of spectral weight caused by
multiphonon processes) are probed over a variation of the
unit-cell volume exceeding 20%. The experimental results
provide a critical testbench for the ab initio simulations.

While the theoretical approach is overall validated in terms
of optical phonon energy positions, calculations work better
for TO than for LO. This can be ascribed to known limitations
in the modeling of the effective charges and dielectric constant
that lead to underestimation of the LO-TO splitting in MgO.
Based on the comparison of our experimental and theoreti-
cal results we propose an empirical analytical expression for
Z∗2/ε∞ as a function of the atomic unit-cell volume V to
rescale results from quasiharmonic calculations.

Calculations within QHA account well for the volume
dependence of the optical phonon energies observed in
high-pressure experiments but fail both for TO and LO at
larger volumes, corresponding to the highest investigated
temperature. Higher-order, nonharmonic terms in the crystal
Hamiltonian become necessary, with the quartic term ex-
pected to dominate over the cubic one.

Phonon widths were calculated beyond a quasiharmonic
approximation, including phonon-phonon scattering up to the
third order of the lattice potential expansion. The results of
these calculations reproduce remarkably well the nontriv-
ial dependence on the lattice volume of both TO and LO
phonons’ linewidths highlighted by the experiments. Even if
the absolute values do not closely match, the increase in the
linewidths by almost a factor of 3 at large volumes is well
captured. Furthermore, the almost constant mismatch suggests
it might have an extrinsic origin. Interestingly, the calculations
allow explaining the maximum in LO phonon widths versus
pressure at around 21 GPa as the consequence of the progres-
sive opening and closing of phonon decay channels, triggered
by the energy of the ESW approaching and moving out that of
LO phonon.

The highly nonlinear evolution of phonon linewidth with
volume could have important consequences for the lattice
thermal conduction of MgO. More generally, predictions of
lattice conduction of insulating crystals of geophysical inter-
est based on a quasiharmonic approach might fail at providing
reliable estimates, as more complex models are required to
properly describe lattice dynamics.

Looking further in perspective, peculiar band structures
such as those of MgO can be reverse engineered to tailor
the desired set of final states and hence trigger decay pro-
cesses of a given phonon branch, eventually at a given k
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point of the reciprocal space. These customized materials will
find applications based on fine control of the lattice transport
properties in a given energy (temperature) range or along a
given direction. Additionally, the temperature evolution of the
band structure could be further exploited to set a temperature
threshold for the activation/deactivation of the aforementioned
decay processes.

All these fascinating applications call for an improved un-
derstanding of the anharmonic mechanisms controlling lattice
vibrations.
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