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First-principles study of the anomalous Hall effect based on exact muffin-tin orbitals
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Based on the exact muffin-tin orbitals (EMTOs), we developed a first-principles method to calculate the current
operators and investigated the anomalous Hall effect in bcc Fe as an example, with which we successfully
separated the skew scattering contribution from the side jump and intrinsic contributions by fitting the scaling law
with the introduction of sparse impurities. By investigating the temperature dependence of the anomalous Hall
effect in bulk Fe, we predicted a fluctuated anomalous Hall angle as a function of temperature when considering
only phonons, which, in the future, can be measured in experiments by suppressing magnon excitation, e.g., by
applying a high external magnetic field.
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I. INTRODUCTION

The anomalous Hall effect discovered by Hall [1] is one of
the most important effects in the field of spintronics and refers
to the generation of a charge current normal to the primary
electrical current and the magnetization in a ferromagnetic
conductor [2–9] in the absence of an external magnetic field.
The origins of the anomalous Hall effect are mainly ascribed
to the intrinsic Berry curvature [10,11] and extrinsic skew
scattering [12,13] and side jump [14] mechanisms.

However, compared to the well-studied intrinsic contribu-
tion obtained by Berry curvature calculations [9,15–17], the
extrinsic contributions are much more complicated due to
the multiple impurities in experiments, such as defects [18],
phonons [19–21], alloys [22,23], amorphous disorder [24],
and surface roughness [25]. Thus, more work should be done
to study the extrinsic contributions to the anomalous Hall ef-
fect. For the extrinsic contributions, the side jump contribution
is independent of the scattering strength and disorder density
[26] and is treated as constant and as being entangled with the
intrinsic contribution in experiments [27,28]. Therefore, skew
scattering, an adjustable contribution, has more possibilities
for applications and needs to be studied individually by sepa-
rating it from the intrinsic and side jump contributions.

Recently, a first-principles calculation method using the
Landauer-Büttiker formalism based on linear muffin-tin or-
bitals (LMTOs) was reported to be able to calculate the full
current operators for disordered systems [29–34] and was
successfully used to investigate spin current-related physical
issues, such as the spin Hall effect and spin diffusion length.
Furthermore, improved EMTOs have been reported over the
years [35–38] and been used to study alloys [39,40], sur-
faces/interfaces [41,42], and magnetic tunnel junctions [43].
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Based on the above progress, in this work, we reproduce
the full current operators [30–33] using the EMTOs and apply
them to study the anomalous Hall effect in Fe as shown
in Sec. II with all computational details. In Sec. III A, to
distinguish the extrinsic contributions to the anomalous Hall
effect, we first calculate the anomalous Hall conductivity for
bcc Fe by introducing sparse impurities, such as C, Cr, Cu,
Pd, Ag, and Pt, into Fe at zero temperature and investigate
the corresponding scaling law to separate the skew scattering
contribution from the side jump and intrinsic contributions.
In Sec. III B, we study the temperature-dependent anomalous
Hall angle with magnons and phonons and find an unexpected
fluctuation with only phonons. In this sense, this fluctuated
anomalous Hall angle can be measured in future experiments
by suppressing magnon excitation using various methods,
such as applying a high external magnetic field. To understand
this fluctuated anomalous Hall effect, in Sec. III C, we carry
out the Berry curvature calculations with phonons contribu-
tion, and the results reveal that this fluctuation comes from the
changing of the Berry curvature induced by the twisted bands
that cross over the Fermi energy. In Sec. IV, a brief conclusion
of this work is given.

II. MODEL AND METHOD

Within the frame of the Landauer-Büttiker transport the-
ory [44–48], the structure of the calculated system in this
paper is constructed by two leads and one scattering region
as shown in Fig. 1, where the two leads (L and R) are
semi-infinite crystallines, used to inject electrons from the
left or right lead to the scattering region (S), respectively.
Following Refs. [29,32], the scattering wave functions of the
whole scattering region (S) are calculated layer by layer using
the wave-function matching method, which can be used to
calculate the currents [29–33] and thereby the anomalous Hall
effect as follows.
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FIG. 1. Scattering model with fcc Ag leads and bcc Fe in be-
tween. The transport direction (z) is along the [001] direction of the
Fe lattice. The Ag lattice is rotated by 45◦ to match the Fe lattice.
With magnetization along the x axis, the generated anomalous Hall
current flows along the y axis.

A. Scattering wave functions

The screened Korringa-Kohn-Rostoker (KKR) equation
for the EMTOs basis can be written as [35,43,49]

∑
R

aR′ [ŜR′R − δR′RD̂R(ε)]VR = 0, (1)

where aR′ is the hard sphere radius of atom R′, VR is the
corresponding expansion coefficient vector for the EMTOs
basis, and ŜR′R and D̂R(ε) are the slope matrices and loga-
rithmic derivative matrices at a defined energy ε, respectively,
which can be obtained by the EMTO-CPA self-consistent
code [38,39,43,50].

For a transport system with lateral (x-y plane) periodic
boundary conditions, as shown in Fig. 1, the KKR equation
above can be transformed into a layer-resolved representation
as follows:

−Ŝk‖
I,I−1VI−1 + (

D̂I (ε) − Ŝk‖
I,I

)
VI − Ŝk‖

I,I+1VI+1 = 0, (2)

with

Ŝk‖
I,J =

∑
T∈{TIJ }

Ŝ(T)eik‖·T, (3)

where I and J denote the layer index, {TIJ} represents the
vectors that connect one lattice site in the Ith layer with lattice
sites in the Jth layer, and k‖ denotes the reciprocal lattice
inside the lateral Brillouin zone.

The form of Eq. (2) is the same as that of the equation
of motion of electrons in the wave-function matching method
[29,32,51]. Thus, we can follow Refs. [29,32] to obtain the
scattering wave functions of the whole system as

� ≡

⎛
⎜⎜⎜⎜⎜⎜⎝

V0

V1

V2
...

VN

VN+1

⎞
⎟⎟⎟⎟⎟⎟⎠

= (
D̃ − S̃

)−1 ×

⎛
⎜⎜⎜⎜⎜⎜⎝

Ṽ0

0
0
...

0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (4)

where D̃ and S̃ are block tridiagonal matrices that contain all
D̂I (ε) and Ŝk‖

I,J of the whole system, respectively. One may

notice that, except directly putting D̂I (ε) and Ŝk‖
I,J in the cor-

responding location in the D̃ and S̃ matrix, the slope matrices
in the leads (S̃k‖

0,0, S̃k‖
N+1,N+1) and the injecting wave function

from L lead (Ṽ0) are renormalized by the boundary condition
in the leads [29,32], accordingly.

B. Current operators

With the scattering wave function � from Sec. II A and
projecting it into the basis of every atom R inside the scat-
tering region (S), the atomic scattering wave functions for
all atoms can be obtained and marked as �R. Therefore, the
corresponding local charge density will be nR = 〈�R|�R〉. It
is known that the time derivative of the charge density on a
single atom R that comes from the charge current from the
surrounded atoms R′ reads,

∂nR

∂t
=

∑
R′

JRR′ , (5)

where JRR′ is the local charge current from the atom R′ to R.
Considering a two-atom system, the Schrödinger equation can
be written as

∂t

(
�R

�R′

)
= 1

ih̄

(
ĤRR ĤRR′

ĤR′R ĤR′R′

)(
�R

�R′

)
. (6)

Therefore, we can obtain that

∂nR

∂t
= 〈∂t�R|�R〉 + 〈�R|∂t�R〉

= 1

ih̄
[〈�R|ĤRR′ |�R′ 〉 − 〈�R′ |ĤR′R|�R〉]. (7)

Then, the local charge current from atom R′ to atom R is given
by [30–33,42,52]

JRR′ = 1

ih̄
[〈�R|ĤRR′ |�R′ 〉 − 〈�R′ |ĤR′R|�R〉]. (8)

In this sense, the electronic transport properties between any
two atoms of the whole system can be estimated and used for
the study of the anomalous Hall effect.

C. Anomalous Hall effect

By calculating all local charge currents JRR′ between any
two atoms inside the scattering region (S) and projecting the
current density in the longitudinal and transverse directions
[31,33], we obtain the primary charge current density jz

c and
the Hall current density jy

c when m ‖ x, respectively. Thus, the
anomalous Hall angle is then given by �AH = jy

c/ jz
c .

Moreover, the localized scattering wave functions �±
R can

be solved by injecting electrons from both leads, where ±
denotes the right-going and left-going electrons. Thus, the
nonequilibrium density of states can be obtained as n±

R =
〈�±

R |�±
R 〉Vb, induced by the small voltage Vb. In this way, we

can define a normalized chemical potential μ̃R = n+
R /(n+

R +
n−

R ) and project them to the longitudinal direction (z) to obtain
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FIG. 2. (a) Calculated normalized chemical potential at room
temperature (T = 300 K) as a function of the atomic position along
the transport direction (z). (b) Corresponding anomalous Hall current
in the entire scattering region, where “L” and “R” represent the
calculated results with injecting electrons from left and right leads,
respectively.

μ̃(z). Using the Ohm’s law

jz
c = − 1

ρzz

∂μ̃(z)

∂z
Vb, (9)

the longitudinal resistivity ρzz can also be calculated. Thus,
the corresponding anomalous Hall conductivity will be σ AH =
�AH/ρzz.

Typically, at room temperature (T = 300 K) with both
phonons and magnons contributions, we plot the calculated
normalized chemical potential (μ̃) and the normalized anoma-
lous Hall current ( jy

c/ jz
c) as a function of the z coordinate

of Fe in Figs. 2(a) and 2(b), respectively. Except for the
distortion around the Ag|Fe interfaces, both the normalized
chemical potential and the anomalous Hall current agree with
our previous statements. With a simple linear fitting, we have
the resistivity ρzz 	 14.2 μ	 cm and anomalous Hall angle
�AH 	 0.8% for Fe at room temperature.

Furthermore, we should know that the anomalous Hall ef-
fect was treated as a bulk Fermi sea effect for long time, which
needs to calculate all the contributions under Fermi energy
[4,9,17]. This concept is apparently different with the spirit of
the Landauer-Büttiker transport theory [44–46], where only
the contribution at Fermi energy is necessary for the transport
calculations. However, it had recently been proved that, for
the “nonquantized part” of the intrinsic Hall conductivity, the
integration of the Berry curvature over the entire Fermi sea
can be equivalently reduced to an alternative integration on the
Fermi surface [15] and confirmed by individual first principle

calculations [16]. To verify these concepts using our approach,
we calculate the anomalous Hall current with injecting elec-
trons from both left and right leads as shown in Fig. 2(b).
It can be seen that the anomalous Hall currents induced by
injecting electrons from left and right leads will annihilate
each other (black circles) at finite temperature, indicating
that the contribution of the Fermi sea is negligible, which
is consistent with the spirit of the conventional Landauer-
Büttiker transport theory. Thus, by taking the advantage of the
Landauer-Büttiker approach on the disorders calculations, the
extrinsic mechanisms can be taken into account easily, which
may supply a comprehensive understanding of the origin of
the anomalous Hall effect.

D. Computational details

The scattering geometry under study is shown in Fig. 1,
where the scattering region (Fe) is sandwiched by two semi-
infinite crystalline Ag leads. The transport direction (z axis)
is set to be along the [001] direction of the bcc Fe lattice.
The scattering region is sufficiently long (∼31.6 nm with
220 atomic layers) such that the influence of the interfaces
is negligible around the center. In the x-y plane, we use 5×5
lateral bcc supercells with periodic boundary conditions. For
the sake of convenience, the fcc lattices in the Ag leads are
rotated by 45◦ with a 0.65% stretch of the lattice constant to
match the Fe lattice at the interfaces (see the lower panel of
Fig. 1). Since the Fe lattice remains in its natural structure and
lattice constant aFe is 2.87 Å, the transport properties extracted
from the center of the scattering region are bulk properties and
free from the small lattice stretch in the leads.

In general, there are three typical kinds of disorders in
our work, impurity, phonon, and magnon, and these disorders
are introduced independently, thus we can study the disor-
der effect individually or with arbitrary combination of those
three typical kinds of disorders. Among these three types of
disorders, the impurity is much easier to generate, in which
only the random replacement by different types of atoms
on every atomic position is needed under the control of the
established concentration of the materials [29,53–55]. For the
phonon, we employ the static limit by introducing a random
displacement to each atom [56–62]. The displacements are
assumed to satisfy a Gaussian distribution with a temperature-
dependent variance estimated by the Debye model [60], which
has been demonstrated to be able to recover the tempera-
ture dependences of the resistivity, spin diffusion length, and
spin Hall effect observed in experiments [31,33,60–62]. In
the calculation, the Debye temperature of Fe is TD = 470 K
[63]. For the magnons, following Refs. [61,62], a random
series of spherical coordinates ϑi and φi is generated to map
the instantaneous static local magnetization configuration.
Note that Gaussian distributions are applied to ϑi under the
condition 〈cos ϑi〉 	 M(T )/Ms, which performs well in resis-
tivity calculations [61,62].

In our approach, the lateral supercells can be treated as a
superlattice. However, in the electron transport process, the
electrons mainly travel in the longitudinal direction (z) be-
tween the leads and with only a small angle scattering due to
the impurities inside the scattering region. Therefore, it is not
necessary to make a huge lateral supercell even in the clean
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limit. Moreover, as the electrons have a limited scattering
length under disorder conditions [64], the superlattice effects
will be even smaller and can be suppressed further by the
average of large enough configurations. Thus, in this work,
we use 10 configurations for the calculations with impurities
and 30 configurations for the temperature calculations and
discretize the lateral Brillouin zone into an 80×80 mesh to
converge the outputs.

III. RESULTS AND ANALYSIS

A. Scaling law

The scaling law is generally used to distinguish different
contributions to the anomalous Hall effect. For example, un-
der the assumption of a single type of scatterer, the anomalous
Hall resistivity follows a function of the sum of a linear term
from skew scattering [12,13] and a quadratic term from both
the intrinsic and side jump mechanisms [14]. However, the
experimental measurements do not obey such a single-type
scatterer relationship because multiple impurities (including
phonons, magnons, and interface/surface roughness) always
exist that scatter the transport electrons [20,25,26,65–67]. In
addition to the above considerations, Hou et al. [27] systemi-
cally studied the anomalous Hall effect in iron with changing
thickness of the Fe film and temperature and reported a gen-
eral scaling form of the anomalous Hall resistivity within the
framework of multiple scattering [27,28].

In this sense, our first-principles method can be used to
study the extrinsic contributions by investigating the scaling
law. Considering only static impurities, we have the following
form of the scaling [27,28]:

σ AH = −ασzz − β0, (10)

where α is the contribution from skew scattering and β0 is
the contribution from both the side jump and Berry curvature
(intrinsic).

To confirm the above scaling law, we set up a clean struc-
ture of Fe and introduce few static impurities to calculate the
anomalous Hall effect, e.g., Fe1−cPtc alloy at the condition
of different c as shown in Fig. 3. Here for a clear view of
the data, we use a log-log scale to plot the calculated results
of the longitudinal conductivity σzz and the corresponding
anomalous Hall conductivity σ AH; the red dashed line rep-
resents the linear fitting when c < 0.01. It can be seen that
the results agree well with the above Eq. (10) when c < 0.01,
which shows a good linear relationship between σzz and σ AH.
However, when c > 0.01, the results exceed the scaling law of
Eq. (10); this is because when c becomes larger, the calculated
anomalous Hall effect will be from the property of an alloy,
which beyond the assumption of the clean bulk Fe with barely
doped static impurities and Pt will give more contribution to
break the scaling law.

On top of the above considerations, we only introduce
sparse impurities (<1%) of different kinds of elements (C,
Cr, Cu, Pd, Ag, and Pt) to investigate the scaling law of
the anomalous Hall effect. Due to the sparse impurities, the
contribution to the anomalous Hall effect should entirely come
from impurity scattering under the same Fe background. The
calculated anomalous Hall conductivity σ AH as a function

FIG. 3. Anomalous Hall conductivity σ AH =�AH/ρzz of Fe1−cPtc

as a function of the longitudinal conductivity σzz = 1/ρzz, where c ∈
{0.001 ∼ 0.04} is the corresponding concentration of Pt with labels
for all calculated points. The red dashed line is for the linear fitting
when c < 0.01 and the vertical dashed line separates the nonlinear
and linear region.

of the longitudinal conductivity σzz is plotted in Fig. 4. We
find good linear relationship between σ AH and σzz as shown
in Fig. 4 for all kinds of impurities. Thus, we can fit the
corresponding parameters α and β0, respectively. The fitting
parameter values are shown in Table I, together with the
values from experiment [68] for comparison. It can be seen
that our result with Cu impurity shows good agreement with
the experiment but one magnitude smaller with Cr impurity.
This difference with Cr impurity may come from the complex
antiferromagnetic order of Cr in Fe in the experiments, which

FIG. 4. Anomalous Hall conductivity σ AH =�AH/ρzz of Fe1−cXc

as a function of the longitudinal conductivity σzz = 1/ρzz, where
X = C, Cr, Cu, Pd, Ag, Pt denotes the impurities, and c ∈
{0.001, 0.004, 0.007} is the corresponding concentration.
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TABLE I. Fitting parameters α and β0 from linear fitting of the anomalous Hall conductivity in Fig. 4 for different kinds of impurities and
their corresponding orbital momentum Morb. Here the related values of αexp from experimental measurements [68] are shown for comparison.

Impurity α αexp β0 (106 	−1 cm−1) Morb (μB)

C 0.0044 ± 0.0009 −0.00426 ± 0.00097 −0.001
Cr −0.00394 ± 0.00008 −0.027 0.00149 ± 0.0002 0.02
Cu −0.02391 ± 0.0002 −0.025 0.01516 ± 0.0006 0.006
Pd −0.01858 ± 0.00181 0.01934 ± 0.01776 0.038
Ag −0.02288 ± 0.0005 0.0109 ± 0.00116 0.016
Pt −0.0252 ± 0.001 0.01909 ± 0.00205 0.037

could introduce more contributions to the anomalous Hall
effect and needs further investigations.

For the skew scattering coefficient, all the impurities except
for the C impurity have a negative α. Conversely, the β0 of
the C impurity is negative, while the other impurities have
positive values. This sign change between skew scattering and
side jump can be understood by the direction of the orbital
momentum Morb, as the anomalous Hall conductivity of fer-
romagnetic systems has been proven to be fully determined
by the response of the orbital momentum [69], where the
Hall current is proportional to the orbital momentum. Thus,
we also calculate the corresponding orbital momentum of the
impurities under the Fe background, and the results are also
shown in Table I. The sign of the orbital momentum of C is
different from that of the other impurities. In this sense, the
anomalous Hall conductivity with C impurities will have a
different sign, leading to the different signs of α and β0.

The intrinsic anomalous Hall conductivity from Berry cur-
vature calculations is approximately σ AH

intr = 751 	−1 cm−1

[9,16] at zero temperature. Therefore, as the longitudinal con-
ductivity σzz is on the order of 106 	−1 cm−1, as shown in
Fig. 4, the corresponding anomalous Hall conductivity from
skew scattering σ AH

ss = ασzz will be on the same order as that
from the side jump σ AH

sj = β0 − σ AH
intr but much larger than the

intrinsic σ AH
intr for bcc Fe with sparse impurities.

B. Temperature dependence

We first address the longitudinal resistivity (ρzz) of Fe
before discussing the anomalous Hall effect. The calculated
results are plotted in Fig. 5(a), where “p” denotes calculation
with phonons only, while “m+p” represents calculation with
both magnons and phonons. For comparison, we also plot the
experimental data measured in a high quality 33 nm thick
thin film [27]. The ρzz calculated with only phonons is far
from the experimental results, while when both phonons and
magnons are considered, the calculated ρzz agrees well with
the experimental data in a broadened temperature zone. These
results indicate that even though the fluctuation of the magne-
tization is very small (e.g., 〈cos ϑi〉 	 0.97 for T = 300 K),
the magnons contribute to electronic transport significantly.
Thus, the contribution from magnons to the anomalous Hall
effect should also be studied accordingly.

The corresponding anomalous Hall angle �AH as a func-
tion of temperature is plotted in Fig. 5(b) together with the
data (stars and blue hexagon) from the experiments [27,70].
We can see that the �AH calculated with both magnons and
phonons is close to one experimental result (blue hexagon)

at room temperature but much smaller than the other (stars).
This is because the measurements in Ref. [27] were applied
on a 33 nm thin film, in which we believe that there should
be an extra strong contribution from the surface roughness
as reported in Ref. [25]. Moreover, we obtain a fluctuation
in the calculation with only phonons. This fluctuation al-
most disappears when including magnons, with only a small

FIG. 5. (a) Longitudinal resistivity ρzz as a function of tempera-
ture. The black squares and the red dots are calculated without and
with magnons. The stars show the experimental data measured in a
thin film with a 33 nm thickness [27]. (b) Corresponding anomalous
Hall angle �AH as a function of temperature. The stars [27] and blue
hexagon [70] are from experimental measurements and plotted for
comparison.
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peak remaining at approximately T = 100 K, which is why
a general measurement in experiments cannot reveal this
fluctuation effect. However, if one could suppress magnon
excitation by applying a strong external magnetic field, then
this phenomenon could be measured in the future.

The extrinsic contributions to the anomalous Hall effect
are proportional to ρzz or ρ2

zz [27,28], and ρzz was proven to in-
crease monotonically with temperature, as shown in Fig. 5(a);
therefore, the fluctuation of �AH with only phonons cannot
come from the extrinsic part of the anomalous Hall effect.
Thus, the intrinsic part of the anomalous Hall effect coming
from the Berry curvature [9,15,16,71] is the only option to un-
derstand this fluctuation, which is dominated by the detailed
band structure around the Fermi energy [15,16]. In addition
to the above information, we realized that the Berry curvature
from each k point inside the Brillouin zone can contribute
not only positively but also negatively to the anomalous Hall
effect and the anomalous Hall conductivity is dominated by a
few hot spots in the Brillouin zone, as reported in Refs. [9,71].
Moreover, the atomic displacements arising from phonons
directly affect the detailed band structure, which gives us
strong confidence that the fluctuation of �AH comes from
the changing Berry curvature, which will be confirmed in
Sec. III C with individual Berry curvature calculations.

On top of the above discussions, the results in Fig. 5
can be reinterpreted in a way that the whole temperature
dependent anomalous Hall effect includes both the extrin-
sic contributions from phonons and magnons (proportional
to ρzz or ρ2

zz) and the intrinsic contribution. Therefore, the
competition between the monotonic extrinsic effect and fluc-
tuated intrinsic effect will determine the shape of the curves
in Fig. 5(b). Therefore, the calculated results in Fig. 5(b)
indicate that when introducing phonons only, the fluctuated
intrinsic contribution dominates the anomalous Hall effect
and then the anomalous Hall angle fluctuates with increasing
temperature. When including both phonons and magnons,
the monotonic extrinsic contributions dominate, and then the
anomalous Hall angle increases with increasing temperature
and only a small peak around T = 100 K is left. However,
these assumptions should be verified by further investigations
in the future, which needs an emergent method to separate all
the contributions under one single frame.

The anomalous Hall conductivity σ AH is also studied with
both phonons and magnons contributions. This conductivity
is related to the longitudinal resistivity and anomalous
Hall angle by �AH = σ AHρzz. Thus, if we assume that
the anomalous Hall conductivity is independent of the
temperature, then σ AH can be obtained from the slope of the
function �AH(ρzz ), which is shown in Fig. 6(a). Except for the
fluctuation around T = 100 K induced by the corresponding
peak in Fig. 5(b), �AH and ρzz have an approximately linear
relation, and one can obtain the anomalous Hall conductivity
as σ AH 	 601 ± 49 	−1 cm−1. Furthermore, as shown in
Fig. 6(b), we calculate the anomalous Hall conductivity
point by point using σ AH = �AH/ρzz, and the shadow zone
represents the results from Fig. 6(a) for comparison. Together
with the analysis from Fig. 6(a), we can conclude that similar
to the �AH in Fig. 5(b) with both phonons and magnons
contributions, the anomalous Hall conductivity fluctuates at
low temperature and becomes constant when the temperature
is sufficiently high.

FIG. 6. (a) Anomalous Hall angle as a function of ρzz from our
calculations with both magnons and phonons and a linear fitting
to approach the temperature-independent anomalous Hall conduc-
tivity. (b) Corresponding anomalous Hall conductivity obtained by
σ AH = �AH/ρzz as a function of temperature, where the shadow zone
represents the results from the upper panel.

C. Berry curvature with phonons

To circumstantially verify the above assumption on the
nature of the fluctuation of the anomalous Hall effect with
only phonons, we set up a 3×3×3 supercell of the bcc Fe (54
atoms) and introduce random atomic displacements which is
the same as that in the transport calculation in Fig. 5 at T =
10 K with only phonons; then the Berry curvature can be stud-
ied with including the phonons contribution. As our transport
code is not able to individually calculate the Berry curvature
for now (all contributions are entangled together), the results
in this subsection are calculated using third-party codes.

Technically, we carry out the calculations of the electronic
structure using the VASP (Vienna ab initio simulation package)
code [72,73], and all the calculations in this section are based
on DFT and the generalized gradient approximation (GGA)
with an interpolation formula according to Vosko, Wilk, and
Nusair [74] and a plane-wave basis set within the framework
of the projector augmented wave (PAW) method [75,76]. The
cutoff energy for the basis is 500 eV, and the convergence
criterion for the electron density self-consistency cycles is
10−5 eV for the whole supercell. In the Brillouin zone, we
sample (3×3×3) k-point grids using the Monkhorst-Pack
scheme [77] to make sure the results converged. Also for
convenience of further study of the anomalous Hall effect, the
spin-orbit coupling is introduced.

For the calculation of the anomalous Hall conductivity
from the contribution of the Berry curvature, a well-known
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formula [9,16] will be used, and when the magnetization
parallel to the z direction reads

σ AH
intr = −e2

h̄

∫
BZ

d3k

(2π )3
	z(k), (11)

where h̄ is the Planck constant, “BZ” represents the integra-
tion over the total Brillouin zone, k is the wave vector, and
	z(k) is the sum of the Berry curvatures over the occupied
bands for each k:

	z(k) =
∑

n

fn	
z
n(k) (12)

with the band number n and the corresponding equilibrium
Fermi-Dirac distribution function fn, and the Berry curvature
arises from the Kubo-formula derivation [78]:

	z
n(k) = −

∑
n′ �=n

2Im〈ψnk|vx|ψn′k〉〈ψn′k|vy|ψnk〉
(ωn′ − ωn)2

, (13)

where the energies of each band En = h̄ωn, vx,y are velocity
operators and ψ is the wave function.

The above formula had already been generated in the
open source code “WANNIER90” [79] and “Wannier Berri”
[80,81] with the maximally localized generalized Wannier
functions (MLWFs) [82–84] which can connected to our pre-
vious VASP results conveniently. In addition, the direction
of the magnetization is parallel to the bcc (001) direction,
which is the z axis in our global coordinate system. We use
a three-dimensional k mesh in the total Brillouin zone with
the spacing of k points being �k 	 2π

Len , where Len = 300,
typically. Moreover, to make the calculation more precise
around the typical k points with major contribution to the
Berry curvature, the adaptive recursive refinement algorithm
[80] is used, and we calculate 100 iterations to make sure the
Berry curvature calculations converged.

The calculated intrinsic anomalous Hall conductivities
from Berry curvature are about σ AH

intr 	 666 	−1 cm−1 at T =
0 K and σ AH

intr 	 388 	−1 cm−1 for one configuration at T =
10 K, respectively, which reveals that the Berry curvature is
quite sensitive to the phonons. Moreover, for a clear view
of the detailed Berry curvature distortion, we plot the corre-
sponding Berry curvature of four typical bands that cross over
the Fermi energy in Fig. 7, where the contour profiles stand
for the corresponding Fermi surface of each bands and the
color represents the value of the Berry curvature according
to the following color bar. It can be seen that, after intro-
ducing the phonons at T = 10 K, both the blue zone and
red zone are smoothed down, meaning that the hot spots
of the Berry curvature are suppressed by the phonons. This
can be understood in a way that the Berry curvature gives a
large contribution when the Fermi surface lies in a spin-orbit
induced gap [9], and by comparing the contour profiles (Fermi
surface) at T = 10 K with that at T = 0 K as shown in Fig. 7,
we can conclude that the corresponding bands that cross
over the Fermi energy can be easily twisted by the phonons,
which end up with the changing of the Berry curvature
accordingly.

FIG. 7. The Berry curvature of four typical bands that cross over
the Fermi energy at T = 0 K and T = 10 K respectively, where
the contour profiles stand for the corresponding Fermi surface of
each bands and the color represents the value of the Berry curvature
according to the following color bar.

IV. CONCLUSION

In this work, we developed a first-principles method based
on EMTOs and studied the anomalous Hall effect in ferro-
magnetic metals. We systematically investigated the scaling
law of the anomalous Hall effect by introducing sparse im-
purities and studied the temperature effect by taking into
account both phonons and magnons. We successfully sepa-
rated the skew scattering contribution to the anomalous Hall
effect from the side jump and intrinsic contributions. The
numerical results showed that the contributions from skew
scattering and side jump are on the same order, and they are
both much larger than the intrinsic mechanics in the doped
system.

Moreover, with the study of the contributions from
magnons and phonons separately, we found that the magnons
have a significant contribution to the anomalous Hall effect.
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Specifically, we predicted a remarkable fluctuation behav-
ior of the anomalous Hall angle when considering only
phonons, which needs to be checked by experiments in the
future.
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