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This paper investigates whether in frictional granular packings, like in Hamiltonian amorphous elastic solids,
the stress autocorrelation matrix presents long range anisotropic contributions just as elastic Green’s functions.
We find that in a standard model of frictional granular packing this is not the case. We prove quite generally that
mechanical balance and material isotropy constrain the stress autocorrelation matrix to be fully determined by
two spatially isotropic functions: the pressure and torque autocorrelations. The pressure and torque fluctuations
being, respectively, normal and hyperuniform force the stress autocorrelation to decay as the elastic Green’s
function. Since we find the torque fluctuations to be hyperuniform, the culprit is the pressure whose fluctuations
decay slower than normally as a function of the system’s size. Investigating the reason for these abnormal
pressure fluctuations we discover that anomalous correlations build up already during the compression of the
dilute system before jamming. Once jammed these correlations remain frozen. Whether this is true for frictional
matter in general or it is the consequence of the model properties is a question that must await experimental
scrutiny and possible alternative models.
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I. INTRODUCTION

During the last decade it became clear that the stress field
of amorphous solids whose interparticle forces derive from a
Hamiltonian present long ranged correlation tails of a form
similar to elastic Green’s functions [1–5]. The first observa-
tions of this phenomenon in nonfrictional granular media were
viewed as evidence to Edward’s ansatz [6] about the distri-
bution of possible packing near the jamming point. But more
recently it was demonstrated that these long range correlations
follow in Hamiltonian problems from the conjunction of three
properties. These are (i) mechanical balance, (ii) material
isotropy, and (iii) the normality of local pressure fluctuations
[4,5]. The derivation of these results depends crucially on the
symmetry of local stress which inevitably breaks down in the
presence of frictional forces which introduce local torques.
The question is then fully open about the nature of stress
correlations in frictional granular packings, an important, di-
verse, and widespread class of materials including sand, soils,
powders, etc.

In Hamiltonian systems with central forces, mechanical
balance and material isotropy demand the stress autocor-
relation matrix to be fully determined by the pressure
autocorrelation only. Here we show that in frictional granular
packings, in sharp contrast, it is determined not by one but
by two spatially isotropic functions, the pressure and torque
autocorrelations. We will demonstrate that in the absence of
external torques, the torque fluctuations are hyperuniform,
i.e., the torque autocorrelation vanishes in the zero wave-
number limit. As a consequence the torque contribution to

the stress autocorrelation is subdominant at large wavelength.
Consequently, the large distance decay of the stress autocor-
relation is again determined by the scaling of local pressure
fluctuations on domains of increasing sizes. When these fluc-
tuations are normal the presence of elasticlike long-ranged
anisotropic contributions follows. We find, however, that the
pressure fluctuations are not normal, and the tails of the stress
autocorrelation differ from those expected in elastic systems,
falling off more slowly.

The theoretical discussion in this paper will be backed by
numerical simulations using the standard and time-honored
Cundall-Strack model [7] of assemblies of frictional disks.
The model is described briefly in Sec. II. While this model
has been used by hundreds if not thousands of researchers,
it is a coarse grained model and our conclusions regarding
the nature of stress autocorrelation functions are achieved
subject to the assumptions embedded in it. Thus the fi-
nal conclusion regarding how stress autocorrelation function
decay in frictional granular matter at large distances must
await either experiments or other simulations using different
models.

Section III develops the theory of stress correlations in
frictional assemblies of disks. These purely theoretical results
are expected to be independent of the particular coarse grained
model employed to simulate frictional granular matter. The
main conclusion of the theory is that the decay of stress corre-
lations at large distance is determined by mechanical balance,
material isotropy, and the nature of torque and pressure fluc-
tuations. In Sec. IV we present numerical simulations of the
Cundall-Strack model and a demonstration of the applicability
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of the theory to the present model. As said, we will find that
the pressure fluctuation in this model are not normal, and
accordingly the stress autocorrelations are shown to decay
anomalously slowly. In Sec. V we provide a summary and
conclusions.

II. MATERIALS AND METHODS

In our simulations we create amorphous granular assem-
blies of N = 16 000 disks, half of which have a radius R1 =
0.35 and the other half with a radius R2 = 0.49, both in SI
units. We focus on frictional assemblies of granular disks that
are at mechanical equilibrium, having some finite pressure
above the jamming point, and confined in periodic cells. To
produce such meaningful granular states, we start from a
dilute granular medium in which the disks are placed ran-
domly without overlap and progressively compress it while
integrating Newton’s second law with added damping until a
mechanical equilibrium is reached at a desired target pressure.
The contact forces, which include both normal and tangential
components due to friction, are modeled according to the
discrete element method developed by Cundall and Strack [7],
combining a Hertzian normal force and a tangential Mindlin
component. For our 2D system in the (x, y) plane, consider
two particles i and j, at positions ri, r j with velocities vi,
v j and angular velocities ωiez, ω j ez. They interact only if
forming a contact, i.e., if the relative normal compression
�

(n)
i j = Di j − ri j > 0, where ri j = |ri j |, ri j = ri − r j , Di j =

Ri + Rj , and Ri, Rj the radii of grains i and j. We denote
ni j = ri j/ri j the normal unit vector and t i j its transform by
the π/2 rotation. The Cundall-Strack forces also depend on
the elastic tangential displacement �

(t )
i j , which is set to zero

when any contact is first made and integrated numerically as
long as it is maintained, using [8]

d�
(t )
i j

dt
= vi j · t i j − 1

2
(ωi + ω j )ri j, (1)

where vi j = vi − v j . It is useful to introduce the normal and
tangential component of the relative velocity at contact:

v
(n)
i j = (vi j .ni j ) ni j

v
(t )
i j = (vi j .t i j ) t i j − 1

2 (ωi + ω j ) × ri j, (2)

with × the cross product.
The Cundall-Strack force exerted by grain j on i is

F (n)
i j = kn�

(n)
i j ni j − γn

2
v

(n)
i j

F (t )
i j = −kt�

(t )
i j t i j − γt

2
v

(t )
i j (3)

where

kn = k′
n

√
�

(n)
i j Ri j , kt = k′

t

√
�

(n)
i j Ri j

γn = γ ′
n

√
�

(n)
i j Ri j , γt = γ ′

t

√
�

(n)
i j Ri j , (4)

with R−1
i j ≡ R−1

i + R−1
j , k′

n and k′
t the normal and tangential

(resp.) spring stiffness, and γ ′
n and γ ′

t the viscoelastic damping
constants. The above expression for the tangential force holds

only so long at it does not exceed the limit set by the Coulomb
limit ∣∣F (t )

i j

∣∣ � μF (n)
i j , (5)

where μ is a material dependent friction coefficient. The at-
tainment of this limit is achieved below in two different ways.
We will refer to the first as model A: When this limit is ex-
ceeded, F (t )

i j is set to ±μF (n)
i j ; the contact slips in a dissipative

fashion. In model B the limit is achieved smoothly, with two
derivatives. Following Refs. [9–11] we choose:

F (t )
i j = −kt

[
�

(n)
i j

]1/2

⎡⎣1 + �
(t )
i j

t∗
i j

−
(

�
(t )
i j

t∗
i j

)2
⎤⎦�

(t )
i j t̂i j

t∗
i j ≡ μ

kn

kt
�

(n)
i j . (6)

Now the derivative of the force with respect to �
(t )
i j vanishes

smoothly at �
(t )
i j = t∗

i j and Eq. (5) is fulfilled. In both models
the limit of frictionless particles is reached when μ = 0.

In the present simulations we use stiffnesses kn = kt = 2 ×
106 N/m in SI units. The mass of each disk is m = 1 in SI
units. The friction coefficient will vary and is reported below
explicitly. Most of our results were obtained for μ = 1, but we
checked that the anomalies discovered below do not depend
on this choice.

Simulations are performed using the open source codes,
LAMMPS [12] and LIGGGHTS [13] to properly keep track
of both the normal and the history-dependent tangential force.
Initially, the grains are placed randomly in a large two-
dimensional box while forbidding the existence of overlaps or
contacts. The system is then isotropically compressed along
the x and y directions while integrating Newton’s second
law with total forces and (scalar) torques on particle i given
by

F i =
∑

j

F (n)
i j + F (t )

i j

τi =
∑

j

τi j (7)

with

τi j ≡ − 1
2

(
ri j × F (t )

i j

) · ez (8)

the torque exerted by j onto i. In one compression step
we reduce the system’s area isotropically, reducing the box
length along the x and the y directions by 0.002%. After
each compression step, the system is allowed to relax until
the force and torque on each disk are smaller than 10−7 in
SI units. We repeat these compression and relaxation steps
until the system attains a jammed (mechanically balanced)
configuration at the chosen pressure. The cell is kept square
throughout the process, and in the simulations reported be-
low Lx = Ly � 106 in SI units. The final pressure is 72
N/m. The results are invariant to choice of final pressure
as long as the system is relaxed to mechanical equilibrium
after every compression step. We also verified that doubling
the system size does not change the conclusions of our
simulations.
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III. THEORY: STRESS CORRELATION IN FRICTIONAL
GRANULAR ASSEMBLIES

A. Stress fields

The coarse-grained stress tensor σ (r) of such a system
reads [14]:

σαβ (r) = −1

2

∑
i, j;i �= j

Fα
i j rβ

i j

∫ 1

0
ds φ(r − ri + sri j ), (9)

where α, β refer to Cartesian coordinates, and φ is the coarse-
graining function, which is spatially isotropic, rapidly decays,
and integrates to unity (as defined in the whole 2D plane).
This expression is nothing but the convolution by φ of Hardy’s
microscopic stress [15] σ δ which, in Fourier space, reads:

σ̂ δ
αβk = 1

2A

∑
i, j,i �= j

Fα
i j rβ

i j

e−ik·ri − e−ik·r j

ik · ri j

. (10)

As usual, we use hats to denote Fourier transforms, with f̂k =∫
dr f (r) e−ik·r for any function f (r). Our cell being periodic,

these Fourier transforms are defined for all kα = 2π
Lα

nα , with
n = (nx, ny) a pair of integers.

We immediately note that the above-defined stress is not
tensor symmetric. Indeed its antisymmetric component is

σ̂ δ
xyk − σ̂ δ

yxk = 1

A

∑
i, j,i �= j

τi j
e−ik·ri − e−ik·r j

ik · ri j

, (11)

where τi j , the torque exerted by grain j onto grain i, is nonzero
in general. We note that the resulting torque on any grain
τi = ∑

j τi j = 0 at equilibrium, although the above expres-
sion cannot be reorganized to separate the τi’s. This parallels
the fact that stress is nonzero at mechanical equilibrium even
though the resulting force on each grain vanishes.

Let us check that our stress fields are divergence free
in mechanically balanced states. The divergence of stress is
the vector field ikβσ̂ δ

αβk (we use the convention of implicit
summation on repeated indices). From (10), we immediately
obtain:

ikβ σ̂ δ
αβk = 1

A

∑
i

e−ik·ri Fα
i (12)

which shows the desired result since Fα
i = 0.

The key question we address here is what is the nature of
stress correlations in mechanically balanced states when the
antisymmetric part of stress is nonzero. Following Ref. [4],
we introduce a vector representation for stress based on the
notion of spherical tensors. Since here stress is nonsymmetric,
this representation must comprise four spherical components,
which we define as follows:

σ1 = − 1
2 (σxx + σyy)

σ2 = 1
2 (σxx − σyy)

σ3 = 1
2 (σxy + σyx )

σ4 = 1
2 (σxy − σyx ). (13)

It will be useful to treat the set of these four “Cartesian”
components as the vector˜σ = (σ1, σ2, σ3, σ4). Typical values
of our four fields are represented in Fig. 1, as computed

FIG. 1. Coarse-grained fields in real space. From top to bottom
and left to right we show σ1, then σ2, σ3, and σ4, see the definition
in Eq. (13). Note that σ1 and σ4 are isotropic, σ2 displays orientation
along the x and y axes, while σ3 is oriented along the diagonals. Here
and below N = 16 000 and μ = 1.

using the coarse-graining function φ(r) = 1
2πa2 e−r2/(2a2 ) as the

normalized Gaussian, with a width a = 0.2. We see that as in
previous studies the pressure σ1 is isotropic, while the two
deviatoric stresses are clearly anisotropic and present patterns
clearly suggestive of long-range correlations. However, in
contrast with previous works [2,4], the tensor-asymmetry σ4,
although of smaller amplitude than the other fields, is nonzero;
it also does not appear to present any evident anisotropy.

B. Stress autocorrelations

From now on, we will work only with Hardy’s stress and
thus will drop the δ indices to simplify our notation. More-
over, our analysis will proceed in Fourier space, where the
Cartesian components of stress ˜̂σ = (σ̂1, σ̂2, σ̂3, σ̂4) are de-
fined just as in Eq. (13). In our translation-invariant systems,
the autocorrelation matrix of these Cartesian spherical stress
components is:

˜̃̂Ck = 1

A
〈̃σ̂k˜̂σ ∗

k 〉c (14)

with ∗ the complex conjugate. Here, juxtaposition is used
to denote the tensor product and 〈AB〉c = 〈AB〉 − 〈A〉〈B〉 the
second cumulant for the ensemble average.

For the sake of illustration, we report in Fig. 2 the compo-
nents of ˜̃̂Ck as a matrix of fields. Anisotropies are clearly seen,
not only in the autocorrelations Ĉ22, k and Ĉ33, k , where they
are expected, but also in all the rest except in the pressure
(Ĉ11, k) and torque (Ĉ44, k) density autocorrelation and their
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FIG. 2. The real-valued fields Ĉk ab displayed as a (symmetric)
matrix. In each frame, the origin is placed at the center. The order is
such that the first row exhibits the 1,1; 1,2; 1,3; and 1,4 components
of the matrix Eq. (14); the second row starts with 2,1, etc. To be able
to distinguish the features of all fields on the same color scale we
have multiplied σ̂4 by a factor of three.

cross correlations which appear to vanish. The submatrix Ĉab

with a, b = 1, . . . , 3 presents the same symmetries as in pre-
vious works [4], but the existence of anisotropic correlations
between the torque density and other fields is unexpected.

Let us now consider the stress vector components in the ba-
sis (ek, eφ ) of cylindrical coordinates for an arbitrary nonzero
wave vector k:

σ̂
k̂
1 k = − 1

2 (σ̂kk k + σ̂φφ k )

σ̂
k̂
2 k = 1

2 (σ̂kk k − σ̂φφ k )

σ̂
k̂
3 k = 1

2 (σ̂kφ k + σ̂φk k )

σ̂
k̂
4 k = 1

2 (σ̂kφ k − σ̂φk k ), (15)

where k̂ ≡ k/k denotes the considered direction in reciprocal
space. As before, these radial components define a vector,

denoted ˜̂σ k̂
k = (σ̂ k̂

1 k, σ̂
k̂
2 k, σ̂

k̂
3 k, σ̂

k̂
4 k ). To understand the role of

material isotropy, we introduce the autocorrelation matrix of

these radial components ˜̃˚̂Ck which, at any k, is:

˜̃˚̂Ck = 1

A

〈̃
σ̂

k̂
k

(̃
σ̂

k̂
k

)∗〉
c
. (16)

We call this object the “radial spherical” autocorrelation ma-
trix.

The advantage of our vector representations of stress is
that it permits us to deal with rotation transforms of stress
using quite simple relations [4]. Indeed, the above defined

Cartesian (˜̂σk) and radial (˜̂σ k̂
k ) vectors are related by the simple

expression:

˜̂σ k̂
k = Dk̂ ·˜̂σk (17)

with

Dk̂ =

⎛⎜⎝1 0 0 0
0 cos 2φ sin 2φ 0
0 − sin 2φ cos 2φ 0
0 0 0 1

⎞⎟⎠. (18)

It follows that the Cartesian spherical and radial spherical
autocorrelation matrices verify:

˜̃˚̂Ck = Dk̂ · ˜̃̂Ck · (Dk̂ )T . (19)

C. Material isotropy

Let us now examine the consequences of material symme-
tries on stress correlations. First, we note that our jammed
ensembles verify by construction spatial inversion symmetry,

which entails that both ˜̃̂Ck and˜̃˚̂Ck are real valued and spatially
symmetric in the senses that the (i,j) and (j,i) components
present the same spatial dependence. They are indeed spatially
symmetric as we observed for ˜̃̂Ck in Fig. 2.

Material isotropy is not expected to hold at all distances
in finite size systems, due to periodic boundary conditions.
But it must arise in the infinite size limit, and should hence
progressively be achieved at any fixed k when L → ∞. To
discuss material isotropy, we are thus led to consider the infi-

nite medium stress autocorrelations˜̃˚̂C∞(k) and ˜̃̂C∞(k), which
are continuous functions of k.

Material isotropy means that the infinite medium ensemble
is invariant under rotations but also under reflections, i.e., un-
der all unitary transformations. It is important to realize that,
in 2D, the point reflection has a determinant =1; therefore,
we do not exhaust all unitary transformations of the medium
by only considering point inversion symmetry (as we have
already done above) and rotations. We will need to explicitly
take into account axial reflection invariance.

Proper rotation invariance amounts to the property that a
radially symmetric stress autocorrelation is independent of
direction k̂, i.e., is a function of the amplitude k only:

˜̃˚̂C∞(k) = ˜̃˚̂C∞(k) = ˜̃̂C∞(kex ), (20)

where the last equality corresponds to the specific case when
k = k ex, i.e., θ = 0. This equation makes it obvious that
the Cartesian symmetric autocorrelation, and hence Cartesian
stress fields, should present spatial anisotropies. Indeed, in-
verting Eq. (19) we now have:

˜̃̂C∞(k) = (Dk̂ )T ·˜̃˚̂C∞(k) · Dk̂ (21)

which demonstrates that, since ˜̃˚̂C∞ is spatially isotropic,

˜̃̂C∞(k) is not but presents trivial anisotropies originating from
the right and left products with rotation matrices.

To guarantee material isotropy, we are now left with requir-
ing reflection symmetry about one chosen axis. The invariance

of˜̃˚̂C∞ about axis k̂ is equivalent to that of ˜̃̂C∞ about the x axis,
i.e., under the y → −y transformation, which acts on stress as:

˜σ → D−1 ·˜σ (22)

054110-4



STRESS CORRELATIONS IN FRICTIONAL GRANULAR … PHYSICAL REVIEW B 103, 054110 (2021)

with

D−1 =

⎛⎜⎝1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞⎟⎠. (23)

It follows that reflection-invariance amounts to requiring that
the radially symmetric autocorrelations satisfy:

˜̃˚̂C∞ = D−1 ·˜̃˚̂C∞ · DT
−1. (24)

Group theory (Schur’s first lemma) then demonstrates that˜̃˚̂C∞
verifies this property iff it is of the block form:

˜̃˚̂C∞ =

⎛⎜⎜⎜⎜⎝
˚̂C1

˚̂C2 0 0
˚̂C2

˚̂C3 0 0

0 0 ˚̂C4
˚̂C5

0 0 ˚̂C5
˚̂C6

⎞⎟⎟⎟⎟⎠ (25)

since we already know that ˜̃˚̂C∞ is a symmetric matrix. The
above expression only involves six spatially isotropic func-

tions ˚̂Ca(k), with a = 1, . . . , 6. Note that the arguments we
have developed here in Fourier space can be carried out iden-
tically in real space and entail that the radially symmetric
autocorrelations ˜̃C̊∞ present the same form, fully determined

by six spatially isotropic functions C̊a(r), a = 1, . . . , 6.

D. Mechanical balance

We checked in Sec. III A that coarse-grained Hardy’s stress
fields are, as expected, strictly divergence free in mechanically
balanced (jammed) states. Mechanical balance thus reads

ikβ σ̂αβk = 0 (26)

which is easily recast in the radial frame as:

∀k �= 0 , σ̂kk = σ̂φk = 0. (27)

In terms of vector components, in view of Eq. (15), it be-
comes:

∀k �= 0 , σ̂
k̂
1 k = σ̂

k̂
2 k and σ̂

k̂
3 k = σ̂

k̂
4 k . (28)

We are interested in systems that are both mechanically
balanced and materially isotropic. Plugging Eq. (28) into (25),
we now see that the radially symmetric autocorrelation matrix
must then be of the form:

˜̃˚̂C∞ =

⎛⎜⎜⎜⎜⎝
˚̂C ˚̂C 0 0
˚̂C ˚̂C 0 0

0 0 ˚̂C′ ˚̂C′

0 0 ˚̂C′ ˚̂C′

⎞⎟⎟⎟⎟⎠ (29)

which now involve just two spatially isotropic functions ˚̂C(k)

and ˚̂C′(k) which we will identify shortly. The matrix structure
we have obtained here differs from that found in previous
works [2,4], which only involved the pressure autocorrelation
˚̂C since stress was symmetric and hence ˚̂C′ ≡ 0.

The relative simplicity of the above expression permits us
to use (21) and obtain a general expression for the Cartesian
symmetric autocorrelations:

˜̃̂C∞ =

⎛⎜⎜⎜⎜⎝
˚̂C cos 2φ ˚̂C sin 2φ ˚̂C 0

cos 2φ ˚̂C 1
2 ( ˚̂C + ˚̂C′) + 1

2 cos 4φ( ˚̂C − ˚̂C′) 1
2 sin 4φ( ˚̂C − ˚̂C′) − sin 2φ ˚̂C′

sin 2φ ˚̂C 1
2 sin 4φ( ˚̂C − ˚̂C′) 1

2 ( ˚̂C + ˚̂C′) − 1
2 cos 4φ( ˚̂C − ˚̂C′) cos 2φ ˚̂C′

0 − sin 2φ ˚̂C′ cos 2φ ˚̂C′ ˚̂C′

⎞⎟⎟⎟⎟⎠. (30)

Having in mind Eqs. (11) and (13) we see very clearly that the functions ˚̂C and ˚̂C′ are, respectively, the autocorrelations of local
pressure and local torque density.

The real-space stress autocorrelation in the inverse Fourier transform of this expression:

˜̃C∞(r) = 1

(2π )2

∫
dk eik·r ˜̃̂C∞(k). (31)

To perform its calculation explicitly, we use:

∫
dk eik·r f̂ (k) cos(mφ) = 2π im cos(mθ )

∫ ∞

0
dk k f̂ (k)Jm(kr)∫

dk eik·r f̂ (k) sin(mφ) = 2π im sin(mθ )
∫ ∞

0
dk k f̂ (k)Jm(kr) (32)
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with Jm the Bessel function of the first kind of order m. It then immediately appears that the real-space stress autocorrelation is
of the form:

˜̃C∞(r) =

⎛⎜⎜⎜⎜⎝
˚̂C(0) − cos 2θ ˚̂C(2) − sin 2θ ˚̂C(2) 0

− cos 2θ ˚̂C(2) ˚̂C(0)+ ˚̂C′(0)

2 + cos 4θ
˚̂C(4)− ˚̂C′(4)

2 sin 4θ
˚̂C(4)− ˚̂C′(4)

2 sin 2θ ˚̂C′(2)

− sin 2θ ˚̂C(2) sin 4θ
˚̂C(4)− ˚̂C′(4)

2

˚̂C(0)+ ˚̂C′(0)

2 − cos 4θ
˚̂C(4)− ˚̂C′(4)

2 − cos 2θ ˚̂C′(2)

0 sin 2θ ˚̂C′(2) − cos 2θ ˚̂C′(2) ˚̂C′(0)

⎞⎟⎟⎟⎟⎠, (33)

where for any spatially isotropic function f̂ (k):

f̂ (m)(r) ≡ 1

2π

∫ ∞

0
dk k f̂ (k) Jm(kr) . (34)

This expression defines, for each m, a scalar function f̂ (m)(r)
as a functional transform of the scalar function f̂ (k). To assess
that these transforms are well defined, note, following [5], that
any scalar function of k or r (resp.) can be seen as defining
a spatially isotropic function in Fourier or real (resp.) space.
Moreover, in an arbitrary dimension d the inverse Fourier
transform of any spatially isotropic function f̂ (k) is:

f (r) = (2π )−d/2
∫ ∞

0
dk

kd/2

rd/2−1
f̂ (k) J d

2 −1(kr). (35)

We thus recognize in the rhs of Eq. (34), up to a k-independent
prefactor, the inverse Fourier transform F−1

2m+2 of the spa-

tially isotropic function f̂ (k)/km in dimension 2m + 2. So, the
above transform can be recast as:

f̂ (m)(r) = (2π )m rm F−1
2m+2

[
f̂ (k)

km

]
. (36)

This relation guarantees that the above-defined inverse trans-
forms are well defined at least in the sense of distributions.
Note that the m = 0 transforms are just the inverse 2D Fourier

transforms, as expected, since ˚̂C(0), the pressure autocorre-

lation, is just the inverse Fourier transform of ˚̂C. Likewise
˚̂C′(0) is the real space autocorrelation of the local torque
density.

The associated radially symmetric form is:

˜̃C∞(r) =

⎛⎜⎜⎜⎜⎝
˚̂C(0) − ˚̂C(2) 0 0

− ˚̂C(2) 1
2 ( ˚̂C(0) + ˚̂C(4) + ˚̂C′(0) − ˚̂C′(4) ) 0 0

0 0 1
2 ( ˚̂C(0) − ˚̂C(4) + ˚̂C′(0) + ˚̂C′(4) ) − ˚̂C′(2)

0 0 − ˚̂C′(2) ˚̂C′(0)

⎞⎟⎟⎟⎟⎠. (37)

This expression establishes that the r dependence of the real-
space autocorrelation is entirely determined by the transforms
˚̂C(m) and ˚̂C′(m) with m = 0, 2, 4. It thus opens the way towards

a rational understanding of how the low k behavior of ˜̃˚̂C∞,

i.e., of the two functions ˚̂C and ˚̂C′ determine the decay with
distance in real space.

If a function f̂ is regular at the origin then its inverse
Fourier transform is a rapidly (i.e., essentially exponentially)
decaying function. In other cases, let us recall that, in dimen-
sion d , for any s > −d , provided s �= 0, 2, 4, . . ., the inverse
Fourier transform of ks, which is rigorously defined in the
sense of tempered distributions [16,17], is:

F−1
d [ks] = cd,s

rd+s
(38)

with the constant

cd,s = 2s

π
d
2


(

d+s
2

)


( − s
2

) . (39)

This relation applies, in particular, to all values of s on the
interval 0 > s > −d .

An important special case is when pressure presents
normal fluctuations, that is when the fluctuations of the

local, domain-averaged, pressure decay normally as the in-
verse averaging domain volume. In that case, indeed, the

pressure autocorrelation ˚̂C converges in the k → 0 limit
[5]. It then appears from Eqs. (36) and (38) that: (i) the

real space pressure autocorrelation, ˚̂C(0), decays exponen-
tially; (ii) meanwhile, m = 2 and 4 transforms present 1/r2

power law decay since: ˚̂C(m)(r) = (2π )m rm F−1
2m+2[

˚̂C(k)
km ] ∼

(2π )m rm F−1
2m+2[

˚̂C(0)
km ] ∝ 1/r2.

The above arguments, however, are far more general and
permit us to deduce the long-range spatial decay in cases when
the pressure autocorrelation does not converge in the k → 0

limit but scales with k to a negative power. If ˚̂C ∼ k−ν at low

k, with ν < d , we then find for all m = 0, 2, 4: ˚̂C(m) ∼ 1/r2−ν ,
which decays more slowly than 1/r2.

IV. COMPARISON OF THEORY AND SIMULATIONS

A. Visual confirmation of Eq. (29)

In Fig. 3 we plot ˚̂C∼∼ kab
of Eq. (29) vs k for all a, b ∈

1, 2, 3, 4 for the frictional system. Here we show model A,
but model B results in essentially the same images. It is
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FIG. 3. Real part of different components of ˚̂C∼∼ k
. The origin is

placed at the center of each plot. The white speckles in the off
diagonal fields indicate fluctuations around zero, cf. Fig. 4 for further
evidence.

clear from this plot that all the fields are spatially isotropic.
However we note that the off-diagonal fields which should
vanish exactly exhibit large remnant fluctuations which we
will show hereafter result from numerical inaccuracies. As
predicted by Eq. (29) all four fields in each diagonal block are
identical. In order to show that all the fields that are expected
to vanish by symmetry are indeed zero up to numerical errors,
we plot in Fig. 4 the angle averaged correlations of the off-
diagonal fields. Indeed, angle averaging strongly reduces the
fluctuations, showing their random character. Consequently
we can safely conclude that the whole stress autocorrelation
matrix is determined solely by the pressure and torque density
autocorrelation functions which are spatially isotropic.

FIG. 4. Angle averaged off-diagonal correlations ˚̂C∼∼ 13k
. This fig-

ure demonstrates that the structures seen in the off-diagonal fields
in Fig. 3 are due to random numerical inaccuracies. Such random
fluctuations decrease with the system size.

FIG. 5. (a) Plot of the pressure autocorrelation function ˚̂Ck11 vs
k. Here we show results for μ = 1 for both model A (squares) and
model B (circles), and for μ = 0 (triangles). The dashed line repre-
sents the power law k−1. (b) Plot of the torque density autocorrelation

function ˚̂Ck33 vs k. Results are shown for Model A, but model B
provides essentially identical results.

B. Long distance decay of the stress, pressure, and torque
autocorrelation functions

The pressure and the torque angle-averaged autocorrelation
functions are shown in Fig. 5. Regarding the long-distance
decay, the results of our numerical simulations are quite inter-
esting, indicating that our frictional granular matter exhibits
unusual properties, very different from the frictionless coun-
terpart. An unexpected interesting result is observed for the
pressure autocorrelation function, showing a divergence at
small k. In Fig. 5(a) we show the results for three different
models. One is the frictional model A, where the attainment
of the Coulomb law is abrupt, and another is model B where
we smooth out the approach to the Coulomb law [cf. the dis-
cussion after Eq. (5)]. In both cases the systems are size N =
16 000 and μ = 1. Both models exhibit a similar strong diver-
gence at k → 0. For comparison, we show in the same figure
the corresponding results for μ = 0, the frictionless case. As
expected, the frictionless case exhibits normal correlations
that approach a constant value as k → 0. We estimate the
exponent associated with the divergence exhibited by model
A by averaging over all the components ab = 11, 12, 21, 22.
The result is that the data indicates a power-law divergence
like k−ν with ν about unity. On the other hand, the compo-
nents ab = 13, 14, 23, 24, 31, 32, 41, 42 are zero up to some
randomness as seen in Fig. 4. Model B is in agreement with
model A.
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FIG. 6. The variance of pressures computed on circles of radius
R as a function of R. The data are shown as circles; the line is the
best linear fit which agrees with Eq. (40) with η about unity.

C. The source of divergence

To understand the nature of the divergence we recall that
the theory guarantees that if the pressure fluctuations are
normal and the torque hyperuniform, then the asymptotics
of the stress or pressure correlation as k → 0 should be fi-
nite. Accordingly we can ask which of the two, pressure or
torque, is responsible for the divergences. A very interesting
and important result is in Fig. 5(b) which shows the torque
autocorrelation function. The zero limit of this function as
k → 0 shows that the torque fluctuations are hyperuniform. In
fact this is quite intuitive: Contrary to pressure, the torque has
to vanish on every disk, forcing the autocorrelation to decay
faster than normal. Since the torque fluctuations are hyperuni-
form, the decay of the stress autocorrelation function at large
distances is determined by the pressure statistics. We therefore
measure the pressure P(R) averaged on circles of radius R
and compute the variance VP(R) due to circle-to-circle and
sample-to-sample fluctuations:

VP(R) ≡ 〈P(R)2〉 − 〈P(R)〉2 ∼ 1

Rη
. (40)

When the pressure has normal fluctuations this variance is
expected to decay like 1/R2. In fact we find, cf. Fig. 6, that
VP(R) decays slower, as the power law Eq. (40) with η about
unity. Dimensional consideration indicates that

ν = 2 − η , (41)

which appears consistent.
To increase our confidence in the anomalies discovered in

the frictional ensembles, we repeated the very same protocols
with the very same disks but using the friction coefficient
μ = 0. In this case we find that the pressure fluctuations are
normal, and accordingly, as the theorem proved above states,
the stress autocorrelation functions decay at large distance as
expected, i.e., like 1/R2. The R dependence of the variance
of pressure computed on circles of radius R is shown in
Fig. 7. The corresponding pressure autocorrelation function
as a function of k is presented in the upper panel of Fig. 5.

We should note that the results shown in this section are at
variance with the claims of Refs. [18,19]. The first reference

R
10 -1 10 0 10 1 10 2

V
P
(R

)

10 -2

10 0

10 2

10 4

FIG. 7. The variance of pressures computed on circles of radius
R as a function of R for the system without friction. The linear fit
agrees with Eq. (40) with η ≈ 2.

reported divergences in the k → 0 limit of the pressure au-
tocorrelation function in frictionless samples, and these were
theoretically “explained” in Ref. [19]. Our results show that
the divergence in the frictionless case is as spurious as the
corresponding theoretical explanation.

D. Explanation of the anomalies

At this point it is interesting to seek the physical reason
for the anomalies in the pressure variance and the consequent
divergences in the autocorrelation functions. To this aim we
explored the force chains in the samples produced with and
without friction. To present the force chains we compute the
average magnitude of the forces fi j , which is denoted as 〈 fi j〉,
and then plot all the forces whose magnitude exceeds this
average (i.e., fi j � 〈 fi j〉). Two typical real space maps of these
force chains are shown for two configurations compressed
with the very same protocol, in Fig. 8(a) with friction, μ = 1,
and in Fig. 8(b) without friction. The difference is glaring: In
the frictionless sample the force chains are homogeneous and
isotropic, but in the frictional sample there are clear inhomo-
geneities which translate to anomalous correlation functions
as observed.

A natural question then arises: When do the anomalous
structures of force chains get generated? Is it in the com-
pression stage before jamming, or in the further compression
after jamming? To answer this question we switched off the
friction (i.e., set μ = 0) in the first compression protocol
before jamming and switched back the friction to μ = 1 from
the point of jamming to the final attainment of the target
pressure. Interestingly enough, the anomalies disappeared.
The resulting force chains and autocorrelation function are
shown in Figs. 9(a) and 9(b), respectively. We can therefore
conclude that the anomalous correlations in force chains are
created already in the dilute regime before jamming. Once the
frictional system jams, these correlations cannot be removed
during the additional compression to the target pressure.

It is interesting to note that the inverse experiment, in
which the compression until jamming is done with friction
on, switching off the friction for the further compression to
the target pressure is not a useful exercise. The reason is that
jamming in frictional matter occurs at a lower area fraction
than in frictionless samples. Therefore once friction is put
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FIG. 8. Force chains in compressed samples. (a) The frictional
case, N = 16 000, μ = 1. (b) Frictionless case, N = 16 000, μ = 0.

to zero upon jamming, the system gets unjammed, and there
is a stage of further compression until frictionless jamming.
In this stage all the anomalous correlations built during the
frictional compression disappear, leading to normal pressure
fluctuations in the compressed sample.

V. SUMMARY AND CONCLUSIONS

Frictional granular matter is all around us, and the ten-
dency over the years was to assume that granular samples
exhibit “normal” elastic behavior typical to amorphous solids.
In this paper we focused on the long-distance decay of au-
tocorrelation functions of various components of the stress
tensor. The presence of friction was shown to distinguish
these materials from amorphous solids in which the micro-
scopic interaction are Hamiltonian and the constituents do not
experience torques. In the frictionless case granular systems
are expected to exhibit normal decay at long distances, with
a tail that is typical to the elastic Green’s function. In fact,
it was proven that it is sufficient that the pressure exhibits
normal fluctuations to guarantee normal decay. Once friction
is added, normal pressure fluctuations are not sufficient, in
addition one needs to guarantee that the torque fluctuations
are hyperuniform. We have shown in this paper that with these
two conditions satisfied, the long distance decay of stress
correlation function conforms with elastic Green’s functions.
To test the predictions of the theory we set up numerical
simulations of frictional granular matter using the standard
Kundall-Strack model of normal and tangential forces. The

 40
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FIG. 9. (a) Force chains in a frictional compressed sample pre-
pared by switching off the friction in the dilute stage before jamming.
Friction was switched back on for the final compression to the target

pressure. (b) The correlation function ˚̂Ck11 vs k in this same sample.

tangential forces are limited as usual by the Coulomb law
Eq. (5). We examined two models of the approach to the
Coulomb limit, one abrupt (model A) and one smooth with
two derivatives (model B). All our simulation results agreed
for the two models.

The most striking result of our simulations was that the
compressed frictional granular matter exhibited divergences
in the k → 0 limit of the relevant stress autocorrelation func-
tions. Normal behavior like the elastic Green’s function is
consistent with these functions going to a constant in this
limit. In light of the theory presented above, the failure to
conform with elasticity theory must be related to either the
pressure or the torque having unusual properties. The numer-
ical simulations confirmed that the torque is hyperuniform
as expected. The culprit had to be the pressure, and indeed
testing the fluctuations of the pressure we discovered that its
variance decays anomalously slowly with the area, busting
one of the conditions for normal decay. Having discovered
this, it became important to find when and how anomalous
pressure correlations were produced in the materials. The
protocol of compression started with a dilute system of zero
pressure that was compressed isotropically until the system
jammed, and then further compression brought it to a target
pressure. We have discovered that the anomalous correlations
form in the dilute phase, while the pressure was still zero.
Once the system jammed these anomalous correlations were
already imprinted in the material and could not be released.
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The signature is seen in the force chains that remain inhomo-
geneous while compressing after jamming.

Switching friction off in the dilute phase removes the
anomalies, even when we switch the friction back on after
jamming, in the final compression. Of course, this is a nu-
merical trick that cannot be done in a physical system of
frictional granules. The crucial question that this study un-
derlines is therefore “Is this anomalous behavior generic to
frictional granular matter or is it a consequence of the class of
models employed?” The answer to this exciting question must
await similar physical experiments and/or simulations with
fundamentally different models of frictional granular matter.
Both of these are tasks for the future.

Note added. Recently, it was discovered that the same
anomalies appear in experiments. Experimental data and com-

parisons to the simulations can be found in Ref. [20]. This
evidence increases the belief that the anomalies are generic
and not dependent on the particular model employed in the
simulations.
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