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Anisotropic elasticity drives negative thermal expansion in monocrystalline SnSe
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Negative thermal expansion (NTE) materials have been at the center of attention for the past few decades as
thermal expansion compensators in the fields of engineering, photonics, electronics, and medicine. Numerous
crystalline materials exhibit NTE, wherein a combination of positive and negative linear thermal expansion
coefficients results from their highly anisotropic elasticity. In this study, we selected SnSe, an anisotropic uniaxial
NTE material as a model system where theoretical studies have linked its NTE along the c direction to transverse
phonons and to positive Grüneisen parameters along all crystallographic axes. However, the fundamental origin
of NTE in SnSe have not been experimentally resolved. Here we performed temperature-dependent resonant
ultrasound spectroscopy (between 295–773 K) on single-crystalline SnSe to experimentally measure all nine
independent elastic constants (C11, C22, C33, C44, C55, C66, C12, C13, C23). Our data revealed a high degree of
anisotropy in the temperature-dependent elastic constants with shear anisotropic factors show a contrasting
pattern with increasing temperature. From this data we also deduced its material compressibility and negative
Poisson’s ratios in the major crystallographic directions that could explain its colossal linear thermal expansion
coefficient along the c direction, reaching ∼–12 × 10−5 K−1 at 773 K as reported in this study. Furthermore,
we confirmed positive Grüneisen parameters along all the crystallographic axes and observe that SnSe behaves
like a semicompressible parallelepiped with elastically coupled a and b axes, with the NTE being driven by the
displacement of Sn atoms in the c direction.

DOI: 10.1103/PhysRevB.103.054108

I. INTRODUCTION

Interest in negative thermal expansion (NTE) materials
dates back several centuries with the discovery of anomalous
expansion of water between 0–4 ◦C. Since then, NTE has been
well studied in a wide range of solid material systems, broadly
classified as conventional and phase-transition-type materials
[1], with the vision of creating zero expansion composite
materials for future applications [2,3]. Of particular interest is
the study of NTE in anisotropic crystalline materials, where a
combination of positive and negative linear thermal expansion
coefficients result from a highly anisotropic elasticity. Single
crystalline SnSe is one such anisotropic chalcogenide, and
has received considerable attention in recent years due to its
surprisingly low thermal conductivity and high thermoelectric
figure of merit [4–12]. The intrinsically low thermal conduc-
tivity is driven by a strong lattice anharmonicity owing to its
unique anisotropic crystal structure. SnSe has a layered or-
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thorhombic (Pnma below transition temperature, Tc ∼ 810 K)
crystal structure at room temperature with each layer com-
posed of strongly bonded two-atom thick Sn-Se [along the bc
plane; Fig. 1(a)] slabs that are stacked along the a direction
(with weaker Sn-Se bonding).

Previous temperature-dependent neutron scattering mea-
surements indicate that SnSe exhibits NTE along one of its
crystallographic directions at T < Tc, viz., the bond length
along its c direction decreases with increasing temperature in
the Pnma phase [9,13]. Theoretical calculations [14,15] sug-
gest the NTE to be driven by bond rotations and the phonon
modes transverse to the c axis. The NTE materials are also
typically associated with negative axial Grüneisen parameters,
γ i= − ∂ ln ω

∂εi
(where εi is the strain along the ith direction),

which is a direct measure of the relationship between the
phonon frequency ω and crystal volume change. However, for
SnSe, discrepancies exist in the literature, with both positive
and negative values reported experimentally [14] and theoret-
ically [7,14,15] for the Grüneisen parameter (γ3) along the c
direction. In this regard, Bansal et al. [14] is the only group
that reported the Grüneisen parameters using a combination
of experimental and computational elastic constants to arrive
at the conclusion that Grüneisen parameter is negative along
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FIG. 1. Sample crystal structure and experimental setup.
(a) Crystal structures of the Pnma and Cmcm phases of SnSe below
and above the phase transition Tc ∼ 810 K. (b) Single crystalline
SnSe bulk sample and (c) RUS experimental setup with (i) direct
contact transducer system for measurements up to 800 K, and (ii)
buffer rod transducer system for measurements up to 1200 K.

the c direction, which contradicts all theoretical calculations
including their own DFT calculation.

Nonetheless, the origins of NTE in SnSe have yet to
be explored fully experimentally. The inconsistencies in the
reported values of Grüneisen parameter may be attributed
to a lack of understanding of the complex relationship be-
tween the various directional Grüneisen parameters γi and
the anisotropic elastic properties of the SnSe crystal [16].
Hence, a complete knowledge of the temperature-dependent
elastic constants of SnSe is essential to accurately determine
the magnitude and sign of γi. To this end, we measured
the elastic stiffness tensor (Ci j) of single-crystalline SnSe
using the resonant ultrasound spectroscopy (RUS) in the tem-
perature range 300–800 K. Our RUS data revealed a high
degree of anisotropy in the temperature-dependent elastic
constants, confirming a positive γ3 in the temperature range
(∼ 295–725 K) despite its NTE along the c direction, which
is consistent with the reported DFT calculations [15].

II. EXPERIMENTAL METHODS

A. Sample preparation

High-quality single crystalline SnSe samples [Fig. 1(b)]
(packing density >99% of the theoretical density) were syn-
thesized by the Bridgman method at the Institute of Physics,
Academia Sinica, Taiwan [9]. The as-grown SnSe crystals
were cleaved along the a direction and the in-plane orien-
tation of SnSe single crystals were explicitly identified by
x-ray diffraction phi-scans. Subsequently, the crystal was cut
along the three major crystallographic directions to the size of
2.024 × 3.531 × 4.775 mm3 (±0.001 mm) for RUS measure-
ments.

B. High-temperature resonant ultrasound spectroscopy (RUS)

RUS is a precise and efficient method, which uses a
measured resonance spectrum to determine the elastic stiff-
ness tensor of crystalline solids [17–20]. In contrast to other
conventional nondestructive acoustical techniques, RUS is
capable of measuring the elasticity constants at higher tem-
peratures up to ∼ 1200 K depending on the robustness of
its transducers at high temperature [Fig. 1(c)] [21–24]. In
RUS, the resonance spectrum of a polished rectangular par-
allelepiped shaped crystalline sample is measured by exciting
it with a swept-frequency continuous wave (CW) mode over
a fixed frequency range, and the sample response to the exci-
tation is detected by LiNbO3 acoustic transducers, which are
in-contact with the sample [Fig. 1(c-i)]. An iterative procedure
that entails the crystal geometry and density is used to match
the experimental frequencies with the calculated spectrum,
which then allows determination of all elastic constants of
the sample from a single frequency scan [17,19]. However,
for high-temperature RUS measurements above 800 K, the
transducers must be isolated from the sample by acoustic rods
to protect the transducers from deteriorating from exposure to
high temperature [Fig. 1(c-ii)].

In this study, resonance spectra of the sample were mea-
sured at elevated temperatures from 295–773 K using a direct
contact transducer system made with LiNbO3 piezoelectric
transducers, placed inside a sealed glass tube, which is housed
in a tube furnace. Elastic stiffness tensors at different tem-
perature points were computed from the measured resonance
frequencies in the spectra and the sample specification data.
We used the thermal expansion coefficients described in
Fig. 4(a) to calculate the dimensions of sample at the ele-
vated temperatures and those updated dimensions were used
in elastic constants fitting routine. In this nine-elastic constant
optimization algorithm, a guided fitting routine was followed
to prevent weakly coupled elastic constants from varying dra-
matically. The change of a natural frequency with respect to
a change in each of the elastic constants (∂ fk/∂Ci j) varies
significantly. Thus, the nine elastic constants were set into
groups of three to vary (or float) in each fitting routine. The
most significant (largest derivatives) elastic constants C44, C55,
C66 were varied first, followed with varying the next group of
C11, C22, C33, until the final group of C12, C13, C23 was varied.
Then the optimized elastic constants were used as the initial
fit parameters in the fitting routine at next temperature.

Theoretically calculated (DFT) elastic constants by Li et al.
[25] were used as initial parameters in the fitting routine. In a
nonlinear optimization algorithm, it is important to make sure
that it is settled in a global minimum rather than a local min-
imum. To ensure that the results were optimized at a global
minimum, 20 different fittings were performed by using the
randomly varied initial fit parameters such that their standard
deviations were within ±5% of the initial DFT values. In this
way, 20 optimized values for each elastic constant at each
temperature were observed and their averages were taken as
the final temperature-dependent elastic constants as shown in
Figs. 2(a)–2(c). The uncertainty bars represent the standard
deviations of the 20 optimized values of each elastic constant
[26].

Computed elastic constants were then used to deter-
mine the temperature dependence of the macroscopic elastic
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FIG. 2. Elastic constants and moduli of SnSe. Temperature-dependent (a) extensional, (b) shear, and (c) off-diagonal elastic constants (the
error bars represent the standard deviations of 20 different fitting routines), (d) axial bulk moduli (fitted with the empirical Varshni function
[30] to elicit their temperature dependence, and (e) Young’s modulus, bulk modulus, and shear modulus.

moduli, axial bulk moduli, and shear anisotropic factors. Due
to the limitation of maximum operating temperature of the di-
rect contact transducer system, typically ∼800 K for LiNbO3,
a buffer rod transducer system was used to measure resonance
spectra up to 953 K in order to detect the change in elas-
tic constants across Tc. [27,28] Due to the acoustical losses
through the long buffer rods, all resonance peaks were not
observed in the measured spectra. Therefore, instead of com-
puting elastic constants, trends in the temperature-dependent
resonance frequencies were used as indicators for Tc [26].
It should be mentioned that all high-temperature data were
collected under flowing Ar gas (low oxygen environment) to
protect the samples from oxidation.

III. RESULTS AND DISCUSSION

According to harmonic theory, the potential energy (U ) of
the lattice vibrations is limited to the quadratic term of the
interatomic displacements, and the elastic constants are tem-
perature independent [29]. However, for crystal lattices that
exhibit temperature-dependent elastic constants, the higher-
order cubic and quartic terms in U corresponding to the
anharmonic three- and four-phonon decay processes, respec-
tively, must also be taken into account [29,30]. Elasticity, a
measure of material response to applied stress or strain fields,
is often used to determine the properties of lattice vibrations,

thermal transport mechanisms, and structural arrangements
within crystal structures. The relation between the stress
tensor σi j and strain tensor εkl is given by the generalized
Hooke’s law as, σi j = ci jklεkl [31–33]. The proportionality
parameter ci jkl is referred to the fourth rank elastic stiffness
tensor with 81 elements. The symmetry of the stress and strain
tensors reduces the indices i jkl into a two-index form of i j
using the Voigt convention, such that ci jkl simplifies to Ci j

a second rank 6 × 6 matrix with 36 elements. The number
of independent elements, called elastic constants, are reduced
into 21 (for triclinic symmetry) due to the symmetry relation
Ci j = Cji. The number of nonzero independent elastic con-
stants are further reduced by the crystallographic symmetries
of the crystalline materials [21]. For example, there are nine
independent elastic constants of SnSe owing to its orthorhom-
bic crystal symmetry, and its elastic tensor can be written as
follows,

Ci j =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (1)

054108-3



ASHOKA KARUNARATHNE et al. PHYSICAL REVIEW B 103, 054108 (2021)

The elastic potential energy density (U ) can be expanded
in terms of strain tensor as [34,35]

U = 1

2!

∑
i jkl

Ci jklεi jεkl + 1

3!

∑
i jklmn

Ci jklmnεi jεklεmn + · · · .

(2)
Within the harmonic approximation, the higher-order terms in
U can be neglected and represented by only the quadratic part
in Eq. (2).

The variations of the measured elastic constants with
increasing temperature from 295–773 K are illustrated in
Figs. 2(a)–2(c), grouping them into extensional, shear, and
off-diagonal terms. According to the statics of the elastic
constant fitting procedure, the average of the uncertainties
of the extensional constants (C11, C22, C33) was found to be
∼1.5% at room temperature and it has increased to ∼3.7%
at 773 K. Similarly, the uncertainty of shear constants (C44,
C55, C66) has increased from ∼1.8–2.8% and that of weakly
coupled off-diagonal constants (C12, C13, C23) has increased
from ∼6.4–10.7% at the elevated temperature. The observed
increase of uncertainties is possibly due to the uncertainties
associated with resonance frequency measurements at higher
temperatures. The accuracy of resonance frequency measure-
ments is mainly reduced by the low Q factor. For example,
single crystalline SnSe exhibits an intrinsic acoustical en-
ergy loss due to its strong lattice anharmonicity, which leads
to a low Q factor (∼500 at T = 295 K) in the resonance
spectrum and it is further reduced by the thermoelastic en-
ergy loss mechanism at the elevated temperatures (∼250 at
T = 773 K).

Notably, the elastic constants C44, C55, C66, which repre-
sent the shear modes, exhibit a dramatic reduction down to
∼35–70% of their room temperature values. The off-diagonal
elastic constants C23, and C13 has followed a slow reduction
down to 1–10%, while C12 follows a rapid increase up to
55% from the room temperature values. The extensional mode
constants C11 and C22 except C33 reduce between 19–27%
of their room temperature values, indicating the softening of
the extensional modes along the a- and b-crystallographic
directions near the critical temperature. When compared to the
variations of other elastic constants, C33 exhibits an increase
of ∼16% near the phase transition temperature, indicating the
stiffening of the extensional mode along the c direction. This
observed deviation of C33 from the other extensional elastic
constants can be rationalized from the calculated temperature-
dependent axial bulk moduli Ba, Bb, Bc along a, b, and c
direction respectively [Fig. 2(d)], where Bi is defined as the in-

verse of the linear compressibility, which provides the rigidity
of the material extension (or compression) along the ith direc-
tion due the applied volumetric stress (or pressure) [36,37]. In
contrast, the extensional elastic constant Cii (i = 1, 2, 3) rep-
resents the rigidity of the material extension (or compression)
along ith direction due to the applied stress along the same ith

direction. The axial bulk moduli were calculated according to
the following:

Ba = χ

1 + α + β
, Bb = Ba

α
, Bc = Ba

β
, (3)

where,

χ = C11 + 2C12α + C22α
2 + 2C13β + C33β

2 + 2C23αβ (4)

α = (C11 − C12)(C33 − C13) − (C23 − C13)(C11 − C13)

(C33 − C13)(C22 − C12) − (C13 − C23)(C12 − C23)
(5)

β = (C22 − C12)(C11 − C13) − (C11 − C12)(C23 − C12)

(C22 − C12)(C33 − C13) − (C12 − C23)(C13 − C23)
. (6)

It is clear from Fig. 2(d) that the calculated bulk mod-
ulus along the c direction, Bc increases near Tc, while Ba

and Bb decrease with temperature. This variation of the axial
bulk moduli illustrates the softening of the extensional modes
along the a and b directions and stiffening along the c direc-
tion as the temperature increases towards Tc. The observed
higher value of Bb in the low temperature is due to the high
stiffness along the b direction, which is also confirmed by
the higher value of C22 than the other extensional elastic
constants. The above observations can be related to the change
of the crystal structure and lattice constants between the room
temperature Pnma phase to the high-temperature Cmcm phase
[13]. At Tc, the weak Sn-Se bond along the c direction in
the Pnma phase [Figs. 1(a) and 3(b)] becomes stronger due
to the displacive phase transition to Cmcm phase, resulting
a reduction of the lattice constant from 4.439–4.293 Å. This
bond reinforcement is consequently observed as an increase
of both C33 and Bc with increasing temperature [Figs. 2(a) and
2(d)] [13,15].

Due the elastic anisotropic behavior of SnSe, the Voigt-
Reuss-Hill (VRH) approximation was used to convert the
anisotropic elastic constants to the macroscopic elastic mod-
uli, which represent the average (effective) elasticity of the
crystalline material [12,36,37]. According to the Voigt as-
sumption the bulk (BV) and the shear moduli (GV) are
expressed as:

BV = 1
9 (C11 + C22 + C33 + 2C12 + 2C13 + 2C23) (7)

GV = 1
15 (C11 + C22 + C33 − C12 − C13 − C23 + 3C44 + 3C55 + 3C66). (8)

From the Reuss approximation these moduli can be expressed as,

BR = 1

(S11 + S22 + S33) + 2(S12 + S13 + S23)
(9)

GR = 15

4(S11 + S22 + S33) − 4(S12 + S13 + S23) + 3(S44 + S55 + S66)
, (10)
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FIG. 3. Elastic anisotropy in SnSe. Temperature-dependent (a) shear isotropic factors, (b) a schematic of crystallographic planes of SnSe
as the crystal transitions from the Pnma to the Cmcm phase, (c)–(e) elastic compliance constants, and (d) Poisson’s ratio.

where, [Si j] = [Ci j]−1 where Si j represents the components
of elastic compliance tensor. The Voigt equations represent
the upper limit of the polycrystalline constants while Reuss
equations represent the lower limit. Therefore, the elastic
moduli can be approximated by Hill’s average and hence
the bulk modulus, shear modulus, and Young’s modulus can
be expressed as B = (BV +BR )

2 , G = (GV +GR )
2 , and E = 9BG

3B+G ,
respectively. The calculated elastic moduli decrease with in-
creasing temperature, showing an overall material softening
with increasing temperature before the phase transition point
[Fig. 2(e)].

The macroscopic elastic anisotropy of SnSe is more clearly
demonstrated by the shear anisotropic factors (Ai ), which
illustrate the anisotropy in the bond dynamics between atoms
at the nanoscale in the different planes of the SnSe [Fig. 3(a)].
The shear anisotropic factors are defined as follows: (i) A1 =
4C44/(C11 + C33 − 2C13) for the {100} plane between 〈011〉
and 〈010〉 directions, (ii) A2 = 4C55/(C22 + C33 − 2C23) for
the {010} plane between 〈101〉 and 〈001〉 directions, and (iii)
A3 = 4C66/(C11 + C22 − 2C12) for the {001} plane between
〈110〉 and 〈010〉 directions [36]. The crystal planes become
elastically isotropic when the Ai = 1, and any departure from
unity is an indicator of elastic anisotropy in the planes. Inter-
estingly, the shear anisotropic factor A2, which corresponds
to the ac plane reaches 1 at 773 K from 2.3 at 300 K, indi-
cating an increasing elastic isotropy in the ac plane up to Tc

[Fig. 3(a)]. This shift in A2 can be clearly understood from

the different crystallographic planes as SnSe transitions from
the Pnma to the Cmcm phase. These differences are shown
schematically in Fig. 3(b). Indeed, the ac plane below Tc is
clearly the most distorted plane compared to the other planes
of SnSe within which the Sn atom (initially bonded to the
Se atom only along one direction) develops a new Sn-Se
bond that leads to more isotropic bonding characteristics in
the Cmcm phase. This anisotropic-to-isotropic shift in the ac
plane is reflected by the most prominent change in the value
of A2. In contrast, relatively subtle transitions in the bonding
characteristics of the bc and ab planes are observed across Tc

that are reflected by the subtle shifts in the values of A1 and
A3, respectively.

Recently, based on DFT calculations, Hong and Delaire
deduced that the strong anharmonicity of SnSe originates
from the chemical instability of the in-plane resonant bonding
through a spontaneous Jahn-Teller-like distortion [38]. Based
on prior neutron diffraction experiments by Chattopadhyay
et al. [13], it is well known that SnSe exhibits a second-order
displacive phase transition where a continuous movement of
Sn atoms along the c direction is the order parameter of the
phase transition. This relative movement of Sn atoms partially
utilizes the thermal energy provided to the crystal, which
in turn proportionally deprives the crystal from expanding
along the c direction. This movement of the Sn atoms with
increasing temperature also leads to the elastic anisotropy
along different crystallographic directions [as revealed by the
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FIG. 4. Temperature-dependent crystal expansion. Temperature-dependent (a) thermal expansion coefficients obtained from the
temperature-dependent XRD reported in a previous study [9], and (b) the axial Grüneisen parameters of SnSe from the thermal expansion
coefficients and RUS data [see Eqs. (13)–(15)].

elasticity constants in Figs. 2(a)–2(c)] and at the same time,
acts as the source of the nonlinear force constant along c axis
[38].

The elastic anisotropy in SnSe is further illustrated by
plotting the elastic compliance constants, which are shown in
Figs. 3(c)–3(e). The elastic compliance constants (Si j = ∂εi

∂σ j
)

are defined as the amount of strain developed in the ith di-
rection due to a unit stress in the jth direction [29]. Equation
(11) describes how SnSe behaves when stress is applied along
different directions to the crystal, where the “<” or “>” rela-
tionships reflect the trends shown in Figs. 3(c)–3(e).

⎡
⎢⎢⎣

S11 = ∂ε1
∂σ1

> 0 S12 = ∂ε1
∂σ2

> 0 S13 = ∂ε1
∂σ3

< 0

S21 = ∂ε2
∂σ1

> 0 S22 = ∂ε2
∂σ2

> 0 S23 = ∂ε2
∂σ3

< 0

S31 = ∂ε3
∂σ1

< 0 S32 = ∂ε3
∂σ2

< 0 S33 = ∂ε3
∂σ3

> 0

⎤
⎥⎥⎦. (11)

The Si j relationships shown in Eq. (11) clearly show
that the SnSe crystal behaves like a semicompressible par-
allelepiped with two coupled ac and bc planes (coupled a
and b axes). For example, looking at the first column in
Eq. (11), if SnSe is compressed along the a direction, it will
expand along the c direction and shrink along the a and b
directions. This behavior arises from the anisotropy in the
bond elasticity between atoms along different crystallographic
directions [Figs. 3(c)–3(e)], which is further supported by
the temperature-dependent directional Poisson’s ratios. The
directional Poisson’s ratios νi j = − Si j

Sii
, defined as the ra-

tio of lateral contraction along jth direction to longitudinal
extension along ith direction, are derived from the elastic
compliance constants and their temperature dependencies are
shown in Fig. 3(f). The negative values of νab (and νba) imply
expansion of the lattice along b (a) direction due the applied
strain along a (b) direction. The lattice compresses along the
c direction with the applied strain along a (or b) direction
consistent with the above explanation.

The components of the elastic compliance tensor Si j are
also related to the thermal expansion coefficients (TECs) αl

of the anisotropic SnSe crystal within the quasiharmonic

approximation as follows: [15]

αl = CV

V0

∑
k

Slkγk, (12)

where, γk are the Grüneisen parameters that provide a quan-
titative link between the thermal and mechanical parameters
of solids [39]. Figure 4(a) shows the temperature dependence
of the TECs along the three crystallographic directions calcu-
lated using the temperature-dependent lattice constants from
a prior study, [9] where the volumetric TEC, αV can be ob-
tained by αV = α1 + α2 + α3. The TECs along the a and b
directions (α1, α2) are positive and increase with temperature
while the TEC along the c direction (α3) is negative across
the entire temperature range, reaching a very high value of
∼ − 12 × 105 K−1 at 773 K.

The thermal expansion of a solid is mainly determined
by two factors: a strain-dependent entropy producing thermal
pressure quantified by the Grüneisen parameter γk , and the
elastic response to that thermal pressure measured by the
material compressibility, K defined by Ki = ∑3

k=1 Sik [40,41].
When considering the thermodynamics and structural change
of the SnSe crystal, γk is often used to estimate the strength
of the lattice anharmonicity as it is a direct measure of the re-
lationship between the phonon frequency and crystal volume
change. Using these experimentally determined αl values [9]
[Fig. 4(a)], we obtained the temperature-dependent γk using
the relation γk = V0

CV

∑
l Cklαl , and the results are plotted in

Fig. 4(b). Contrary to the expectation of negative Grüneisen
parameters, we see that γ1 and γ2 are positive from room
temperature until the phase transition, while γ3 is positive
between 295–725 K and becomes negative close to the phase
transition. The crossover of γ3 from a positive value to a
negative value above 725 K is attributed to (i) the fact that
quasiharmonic approximation (because of a lack of anhar-
monic model) is involved in Eqs. (12)–(15) while the actual
crystal system becomes strongly anharmonic at temperatures
nearing Tc, and to some extent (ii) the uncertainty involved in
the measurement of elastic constants at higher temperatures.
A slight decrease in γ2 can also be seen above 650 K, and
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can be attributed to the two shortcomings described above.
Equation (12) can be expanded as:

α1 = CV

V0
[S11γ1 + S12γ2 + S13γ3] > 0 (13)

α2 = CV

V0
[S12γ1 + S22γ2 + S23γ3] > 0 (14)

α3 = CV

V0
[S13γ1 + S23γ2 + S33γ3] < 0. (15)

It is noteworthy that both Eqs. (13) and (14) both contain
one negative term (i.e., S13 and S23, respectively) whereas
Eq. (15) contains both S13 and S23. The negative values of S13

and S23 directly result in the large negative TEC along the c di-
rection, and consequently observed NTE along the c direction.
The NTE brings the Sn and Se atoms closer together, which
leads to a stiffening of the bonds between the Sn and Se atoms.
Thus, bond stiffening along the c direction explains both the
unusual increase in C33 (which is defined as the amount of
stress developed along the c direction due to a unit strain along
the c direction, i.e., C33 = ∂σ3

∂ε3
) and the axial bulk modulus

Bc with increasing temperature. This result confirms that the
negative thermal expansion can be achieved even with positive
Grüneisen parameters, which has been reported in previous
theoretical studies [15,16].

IV. CONCLUSIONS

The nine independent elastic constants of SnSe, a low
symmetry crystal structure, were measured using RUS in the
temperature range ∼300–800 K. The anisotropy in the elastic
properties is clearly evident in the marked decrease of the
shear constants with increasing temperature as well as the
increase of the axial bulk modulus along the c axis. These ef-
fects also result in negative Poisson’s ratios and a large linear
negative thermal expansion coefficient along the c direction
of the SnSe crystal. Furthermore, the temperature-dependent
Grüneisen parameters were found to be positive along all crys-
tal directions. Taken together, our RUS measurements explain
the origin of NTE in SnSe and emphasize the role of elastic
anisotropy in the properties of this unique material.
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