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Machine learning metadynamics simulation of reconstructive phase transition
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Simulating reconstructive phase transition requires an accurate description of potential energy surface (PES).
Density-functional-theory (DFT) based molecular dynamics can achieve the desired accuracy but it is computa-
tionally unfeasible for large systems and/or long simulation times. Here we introduce an approach that combines
the metadynamics simulation and machine learning representation of PES at the accuracy close to the DFT
calculations, but with the computational cost several orders of magnitude less, and scaling with system size
approximately linear. The high accuracy of the method is demonstrated in the simulation of pressure-induced
BA4-B1 phase transition in gallium nitride (GaN). The large-scale simulation using a 4096-atom simulation box
reveals the phase transition with excellent detail, revealing different simulated transition paths under particular
stress conditions. With well-trained machine learning potentials, this method can be easily applied to all types
of systems for accurate scalable simulations of solid-solid reconstructive phase transition.

DOLI: 10.1103/PhysRevB.103.054107

I. INTRODUCTION

Reconstructive phase transition (RPT) [1], in which the
changes of crystalline phase are driven by the breaking and
reconstruction of primary chemical bonds, is of consider-
able importance in both fundamental and applied material
research. It is commonly observed in nature, where matters
change their crystalline states under the change of environ-
ment. In earth science, RPT plays an important role in the
formation of Earth’s inner structure and its accretion. In indus-
try, RPTs are often used to manipulate solid materials under
high pressure and temperature, such as in steel production,
where different forms of ferrites can be grown by a recon-
structive mechanism. Currently, elucidation of the mechanism
of RPT is still a challenge. It usually proceeds in an abrupt
manner with no clearly defined order parameters or group-
subgroup relations between the phases [2]. The existence
of one or more common intermediate phases describing the
transition path complicates the mechanism [3-5]. Direct ex-
perimental observation of RPTs at the atomic level is difficult.

Theoretical simulation provides a complementary ap-
proach to trace the atomic movement during RPT. Owing to
the rapid advancement of computing power, serious attempts
in simulating RPT may now be pursued, but carrying out
such simulation in a realistic length/time scale is still daunt-
ing. As the current state of the art, density functional theory

(DFT)-based simulation is the de facto method of choice, but
computationally it is very demanding for large-scale systems.
Since the computational cost scales as the third power with
respect to the number of Kohn-Sham orbitals, DFT-based
molecular dynamics (MD) simulation is restricted to systems
of a few hundreds of atoms.

An obvious drawback of small-scale simulation is that the
simulated phase transition has to proceed collectively, with
all chemical bonds reconstructed simultaneously across the
simulation box, which increases the activation barrier and
makes the transition rarer [6,7]. To circumvent the high activa-
tion barrier, the metadynamics (MetaD) method was designed
[8,9]. The MetaD method describes the system’s location
and approximate surroundings in free energy landscape by
a number of collective variables (CVs) [10,11]. During the
simulation, the system departs from a predetermined energy
minimum through molecular motions; meanwhile a series of
Gaussian potentials is added to the free energy well to lower
the activation barrier and lead the system out to neighboring
minima, which enables the simulation of RPT including sim-
ulated transition pathways that may proceed via intermediate
states. Colloquially known as “filling the free energy wells
with computational sand,” the MetaD method has been very
successful in determining crystal structures occurring at the
high-pressure regime by reconstructive mechanism [12—18].

Building on the success of DFT-based MetaD, it is obvi-
ously desirable to enhance this method to have the capability
not only to simulate the RPT but also to simulate it with
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solidification [19,20], however, the accuracy and transfer-
ability of the potentials are not always satisfactory. Since
the accuracy of atomistic simulation largely depends on the
interatomic potentials, constructing appropriate potentials to
describe interatomic interactions with the accuracy close to
the DFT but at a lower computational cost is central to the
problem. Recently, powered by the flexibility to represent
arbitrarily complex functions, the machine learning approach
has also been used to reconstruct the PES, which leads to a
different type of interatomic potentials, namely, the machine
learning potential (MLP) [21-27]. They show a satisfactory
compromise between accuracy and efficiency in several large-
scale simulations [28-30].

In this paper, we demonstrate that, by directly learning the
data obtained from small-scale DFT calculations, the MLP
combined with MetaD can perform a scan of free energy
landscape at large length scale at a computational cost similar
to the usage of empirical potentials. In contrast to empirical
potentials, however, the MLP describes the total energy in
terms of individual atoms in given neighboring environments
through mathematical fitting rather than parametrizing spe-
cific analytical functional forms with physical assumptions.
This naturally allows for the description of bond breaking
and reconstruction, that is, the change of atoms’ local envi-
ronments, which is ideally suited for simulating RPT. As a
proof of principle, we applied the method to a classic example,
the B4-B1 phase transition in GaN, using a large simulation
box (4096 atoms) under general stress conditions (hydrostatic,
uniaxial, and shear). The present simulation clearly reveals the
manner of atom rearrangements during the phase transition
and influence of external conditions on path selection.

II. METHODS

A. Machine learning potential

The MLP is a data-driven interatomic potential for the
representation of potential energy surface (PES) for systems
with high degrees of freedom. The total energy E of a system
containing N atoms is dictated by atomic coordinates R; and
atomic number Z;,

E Zf(Rl,...Ri, ...RN;ZI...,Zi...ZN). (1)

To describe high dimensional PES, Behler and Parrinello
represent the £ as a sum of atomic contributions ¢;, mapped
to each atom by atomic feature vector (descriptor) d; [31],

E =Y &) )

The descriptor d; accounts for the chemical environment
of atom i, which depends on positions and chemical identities
of all neighboring atoms within a given cutoff radius R..
It should retain the symmetries as the atomic energy &; is
invariant under translation and rotation, as well as the permu-
tation among atoms of same chemical element. It also should
be smooth with respect to displacement of atoms to obtain
continuous derivatives. By construction, the atomic energy &;
is short ranged, but standard terms representing long-range
interactions (electrostatic, van der Waals) may be added to
Eq. (2) as needed [32-34].

The atom centered symmetry function (ACSF) [35] pro-
posed by Behler and Parrinello is a well-used descriptor that
models local environment via radial and angular distributions
of atomic neighbor density. However, the downside of tra-
ditional ACSFs is that the number of symmetry functions
increases nonlinearly with the number of species, that is,
the numbers of radial and angular symmetry functions in-
crease with the number of species (N,) by a factor of N, and
%[NC (N. + 1)], respectively. In the present study, to overcome
this undesirable scaling we use the weighted atom-centered
symmetry functions (WACSFs) based on conventional ACSFs,
in which weight parameters are assigned to each atomic
species to distinguish their contributions [36,37]. Therefore,
the number of the symmetry functions remains the same for
systems with different N.s. Specifically, the radial and angular
symmetry functions are written as

G =Y e "R LRy, 3)
J
G =2"¢ Z ;o (1 + A cos B e HRIARL)
Joki
X fe(Rij) fe(Rix) fe (R ). 4)

Here, 0;; denotes the bond angle extended by atoms i, j,
R;-R;
R;Rikk ’
parameters (hyperparameters) that set the position and width
of Gaussian function, and the range and shape of angular
density function, which are parametrized carefully to ensure
the precision of MLP. f, is a cutoff function which ensures
that only the energetically relevant regions close to the atom i
are encoded in wACSFs. By construction, f. decays smoothly
to zero in value and slope at R.. The weight parameters
w; and wy are element specific and are used to distinguish
contributions from different atomic species. They are deter-
mined during the training process using grid search. Details
on setting hyperparameters are provided in the Supplemental
Material [38]. For GaN (N, = 2) with the current settings of
hyperparameters (Table S1 [38]), the number of symmetry
functions is 66 in wACSFs, while it would be 87 in traditional
ACSFs. As the number of species in the system increases, the
advantage of wACSFs would become more obvious.

In MLPs, the total energy as a sum of atomic energies &;
is fitted to the computed reference data using methods such
as neural network (NN) [31,45], Gaussian process regression
(GPR) [46], and linear regression (LR) [47,48]. In the current
implementation, we use GPR as the regression model for
potential fitting with the wACSF as descriptors. The advan-
tages of this combination are (1) the fitting is determined by
simple linear algebra, which is computationally more efficient
than optimizing multimodal functions as in the case of NN,
and (2) both energies and derivatives of energies (interatomic
forces, virial stress) can be treated at equal footing in the
training set. The second point is particularly desirable for
simulating RPTs, where the weight and accuracy of potential
fitting may be biased toward interatomic forces. Detailed im-
plementations of the GPR are similar to those in the Gaussian
approximation potential [21,46].

and k, i.e., cosO;j; =

n, Rs, A, and ¢ are adjustable
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B. Metadynamics

MetaD is an efficient method for simulating pressure-
induced phase transitions. In this method, the free energy
surface is explored on a few carefully constructed CVs. Initial
work by Parrinello and Rahman adopted the lattice matrix h
of the simulation box as CVs [49]. The h matrix contains six
nonzero order parameters (hyy, hyo, h33, hia, hi3, ho3) repre-
senting six independent degrees of freedom, arranged in upper
(or lower) triangular form in order to freeze unphysical box ro-
tations [10]. The atomic degrees of freedom are assumed to be
coupled to the h matrix by molecular dynamics equilibrium.
By this construction, the energy wells are six dimensional,
whose curvatures are determined by second derivatives of the
Gibbs free energy G with respect to the deformation of the
simulation box. Close to a given minimum G(h®), the free
energy well can be approximated harmonically,

G(h) ~ G(h®) + 2(h —h®)"A(h — k"), 5)

where A is the elastic response matrix, or Hessian matrix. At
a local minimum, the A matrix has positive real eigenvalues
(') and can be diagonalized by an orthogonal matrix O. To
treat all degrees of freedom on equal footing, which is crucial
for dramatic structure changes in RPT, it is convenient to
diagonalize the A matrix by expressing h in a set of new
variables s [11],

1
hi_h(]:ZOij_,sj~ (6)
—~ VM

With the new variables, the energy well becomes spherical
which eliminates sampling problems resulting from a highly
anisotropic shape of energy well.

The centerpiece of the metadynamics algorithm is that
the Gibbs potential is continuously modified by a series of
Gaussian potentials until the system is pushed out the local
minimum. The G is therefore history dependent, expressed in
term of s,

G (s) = G(s) + Z We—\s_s/\Z/stz. %
t'<t
Here W and §s are the height and width of the Gaussian,
which are adjusted to reach an optimal speed of energy well
filling. For a given G', the driving force is the negative of its
derivative, F = —9G'/9ds, which guides the evolution of the
simulation box as

3

F
st =¢ + ssﬁ. (8)

For convenience, the driving force is calculated in terms of
matrix h using Eq. (6),

aG" 1 3G
= 0] ——, 9
as; Z]: N Oh; )]
with the derivative of G obtained from [49]
G
Ton; VIh'(p — P)L;i - VO[halﬁhg’lhT]j,.. (10)
ij

Here the V is the volume of the simulation box, i.e.,
V = |deth|. p is the internal stress tensor of the system. To
adopt a general strain condition, the (target) external pressure

is decomposed into hydrostatic (P) and anisotropic (X) com-
ponents, i.e., Pexy = X+ P and P = Tr(Pex)/3.

In practice, for systems at temperatures far below the melt-
ing temperature, the change in enthalpy is a good measure of
the change in free energy for a solid phase transition since the
change in entropy is relatively low. Therefore, in many cases,
the free energy G is replaced by enthalpy H in Egs. (5)—(10).
The MetaD simulation of a RPT will progress in metasteps.
In each metastep, the system is equilibrated in a relatively
short MD simulation, from which the p and H are obtained
by ensemble average. The driving force F’ is calculated using
Egs. (9) and (10), which are then used to update the simulation
box using Eq. (8).

In the present study, the MD simulations and structure
optimizations are carried out using our MLP package inter-
faced with the atomic simulation environment package (ASE)
[50]. Each metastep consists of a MLP-driven MD simulation
employing a canonical ensemble (NVT) using a Berendsen
thermostat with 1000 time steps for a total simulation time
of 1.0 ps. The Hessian matrix is constructed from the finite
differences of the stress tensors at deviated simulation box.
This breaks down to 13 fixed cell optimizations which include
12 distorted boxes (6 +/— symmetrically distorted h) and one
undistorted box hy. The limited-memory BFGS algorithm is
used as an optimizer in fixed cell optimizations in which the
atomic positions are relaxed until the maximum force on the
atom is reduced to below 0.01 eV/A.

III. RESULTS AND DISCUSSION
A. Constructing machine learning potential

Since the objective is to simulate a reconstructive phase
transition, we need to construct the PES taking into account
the structures before and after the phase transition (local min-
ima), as well as the distorted/randomized structures describing
the regions between energy minima. Sampling the PES is a
highly nontrivial task [29,30]; to do it efficiently we designed
five data sets that represent different regions of the PES.
Each data set includes three element groups, i.e., total ener-
gies, interatomic forces, and stress tensors of the cell, which
were constructed by DFT calculation using the Vienna ab
initio simulation Package (VASP) [51]; see the Supplemental
Material [38] for details.

The first data set consists of 2000 randomized structures
generated using the home-made CALYPSO package [52-55].
These structures were generated randomly from all space
groups which are meant to coarsely sample the PES. The
number of Ga or N atoms in the unit cell was set in [10, 20]
range, and the atomic volume in [8.0, 12.0] A3. Total ener-
gies, interatomic forces, and stress tensors for these structures
were obtained using self-consistent-field (SCF) calculation.
The data were then used as the initial training set, from
which a coarse MLP was trained. The energy and volume
distributions for the first data set are presented in Fig. 1(a)
(black hexagonal dots). As one can see, this set of structures
has a very diverse distribution in the high-energy region of
the PES. The second data set consists of the B4 and Bl
structures optimized at different volumes using VASP, which
are meant to precisely describe the energy minima on the
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FIG. 1. Summary of the training data set and test calculations for the MLP. (a) Left: Distribution of energies and volumes for all structures
in the training sets calculated using VASP. Structures in five data sets are distinguished by different colors and shapes. Right: energy distribution
of randomized (data set 1) and coarse-MLP-relaxed structures (data set 3). (b) Calculated enthalpies for the B4 and B1 phases in the pressure
range 0-80 GPa using MLP (points) and VASP (lines). The enthalpies of the B4 phase calculated by VASP (red line) are taken as the zero-energy
reference. (c) The RDFs of N-N, Ga-N, and Ga-Ga obtained from the NVT simulation of B4 phase at 50 GPa and 300 K using VASP and MLP

respectively.

PES. The energy distribution of this data set is situated at the
low-energy region of the PES [blue diamond dots in Fig. 1(a)],
separated from the first data set by an energy gap of more
than 1.0 eV /atom. To sample the region within the gap, the
third data set was generated with 1000 randomized struc-
tures and subsequently relaxed using the coarse MLP for 60
conjugate-gradient (CG) steps at randomly chosen pressures
between 0 and 100 GPa. After relaxation, the energies, forces,
and stress tensors were obtained using the SCF which covers
the relatively low energy region of PES [red circular dots in
Fig. 1(a)]. Here we emphasize that the number of CG steps
should be set carefully since the coarse MLP is not sufficient
for fine calculations and therefore too many CG steps will
lead to unreasonable configurations. The fourth data set was
constructed by instantaneous structures evenly sampled from
MD trajectories obtained on B4 and Bl structures with a
64-atom simulation cell at 50 GPa and 300 K in the isothermic
isobaric (NPT) ensemble using VASP [green up triangular dots
in Fig. 1(a)]. These structures are included in the training data
set to describe the dynamic part of the PES and account for
the anharmonic effects. Finally, the fifth data set contains 24
distorted structures (64 atoms/cell) of B4 and B1 phases at
50 GPa [dark green down triangular dots in Fig. 1(a)]. These
structures describe the two energy wells and ensure that the
elastic moduli and Hessian matrix are reproduced precisely.
The numbers of structures chosen from the five data sets for

the training set are given in Table S2 [38]. A total 3682 struc-
tures cover a broad range of energies and volumes [Fig. 1(a)].
Learning from a diverse variety of relevant structures is a key
to successful training of the MLP, in particular, for potentials
to have a high degree of predictive power. The weights on the
energies, forces, and stresses of the five training data sets in
Gaussian process regression are provided in Table S3 in the
Supplemental Material [38].

The performance of the trained MLP was tested in to-
tal energy and force calculation, structural optimization, and
MD simulation (the errors and computational costs of the
MLP compared with DFT have been illustrated in Table S3
and Figs. S1 and S2 in the Supplemental Material [38]).
Figure 1(b) shows the enthalpies of B4 and Bl structures
calculated at different pressures using MLP and VASP. The
excellent agreement in the evolution of enthalpy and critical
transition pressure at about 45 GPa reveals a high accuracy
of the MLP. We note here that since we target simulations
at room temperature (far below the melting point), enthalpy
should be a good measure of the change in free energy for a
solid phase transition since the change in entropy is expected
to be low. To examine the reliability of the trained MLP in
dynamic processes, we carried out separate MD simulations
using MLP and VASP, and compared the statistics through
the radial distribution function (RDF) gathered from thermal
trajectory. The B4 structure is used for MD simulation at
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TABLE I. Bulk modulus (B), shear modulus (G), Young’s mod-
ulus (Ym) and Poisson ratios (Pr) of B4 and B1 phases under 50 GPa
obtained from MLP and VASP.

B (GPa) G (GPa) Ym (GPa) Pr
B4 MLP 364 86 238 0.39
VASP 379 89 247 0.39
Bl MLP 373 214 539 0.26
VASP 365 208 525 0.26

300 K and 50 GPa, with a 16 x 8 x 4 simulation cell for MLP
(4096 atoms) and a 4 x 2 x 2 simulation cell for VASP (128
atoms). The RDFs obtained in the two simulations [Fig. 1(c)]
reveal that the MLP is very accurate in reproducing the MD
statistics, in that both the position and shape of RDF peaks
are reproduced. To test the ability of the MLP in reproducing
the elastic properties, we calculated the bulk (B), shear (G),
and Young’s (Ym) moduli and estimated the Poisson ratio
(Pr) using Voigt-Reuss-Hill (VRH) approximation [56], i.e.,
Pr = [(3B — 2G)/2(3B + G)], for B4 and BI1 structures at 50
GPa (Table I). The MLP shows a very good accuracy repro-
ducing the elastic moduli with the largest deviation less than
4% from the VASP values.

To further assess the performance of the current MLP for
more strange configurations, we further performed NVE MD
simulations using VASP and MLP at ~4500 K and ~60 GPa
where GaN is melted. Configurations sampled from the tra-
jectory of VASP MD are used as testing data set. The results
for RDFs, energies, forces, and stresses are shown in Table S3
and Fig. S1 in the Supplemental Material [38]. It is seen that
the RDFs obtained from the two simulations agree well with
each other, and the errors of MLP compared with VASP for the
liquid configurations is also moderate.

B. MetaD simulations of B4-B1 transition in GaN

In this section, we use a classical example of RPT, the
B4-B1 transition in GaN, to demonstrate the MLP enhanced
large-scale MetaD simulation. With this method, we are able
to elucidate the details of atom rearrangements during the
transition. We start this section by explaining the significance
of this phase transition and questions to address.

GaN is a wide band-gap semiconductor with a four-
coordinated wurtzite structure (B4, space group P63mc).
Under pressure, the wurtzite structure transforms to a six-
coordinated rocksalt structure (B1, space group Fm-3 m) with
a large hysteresis (37-54 GPa). The B4-B1 transition is rather
common in nitrides, such as GaN, AIN, and InN, etc., but
the mechanism is yet to be elucidated. Since the B4 and B1
structures do not comply to the group-subgroup relation, there
are multiple possible reconstructive paths, each represented by
a common subgroup. This transition has three variables: (1)
the relative spacing u between Ga and N sublattices changes
from 0.38 to 0.5; (2) the angle y extended by the cell basal
axes decreases from 120° to 90°; and (3) the c/a ratio reduces
from 1.633 to 1.414. Different paths are envisioned upon
switching the orders of the transition steps, among which the
two major ones are “tetragonal path (i7)” [57] and “hexag-

120°]

90°

0.38 0.5

FIG. 2. The “tetragonal” and “hexagonal” transition paths. Both
paths consist of two steps, closure of angle y and increase of the rela-
tive spacing u, but have opposite sequences. The Ga and N atoms are
represented by green (larger) and blue (smaller) balls, respectively.

onal path (iH)” [58] (Fig. 2). In the iT path, the angle y
changes first bypassing a five-coordinated tetragonal interme-
diate (space group /4mm), and then u increases along with the
change of c/a ratio. The iH path has reversed orders where u
changes before the closure of the angle y, bypassing a five-
coordinated hexagonal intermediate (space group P63/mmc).
In finding the true transition path, many methods have been
used including static modeling [59], classical and ab initio
MD [60,61], transition path sampling [62], and DFT-MetaD
[63]. While the results obtained from different methods do not
have fundamental discrepancy, the limitations such as a small
simulation box in DFT or inadequate description of the PES
by classical potentials, confine the simulations to restricted
models. Consequently, we choose to simulate this phase tran-
sition using a large-scale simulation box (4096 atoms) at an
accuracy comparable to DFT to examine the MLP-MetaD
method and reveal in-depth details.

1. Small-scale benchmark simulations

Before the large-scale simulation, a benchmark test was
performed using a 64-atom simulation box. This box has a
tetragonal dimension with h;; = 6.03 A, hy = 10.44 10\, and
h3z = 9.85 A. The B4 structure is situated in a tetragonal set-
ting in the simulation box, i.e., hy; would follow the hexagon
edge, hy is perpendicular to it, and /33 is normal the hexago-
nal plane. In this simulation, the Gaussian parameters were set
as s = 50 (kbar A3)1/ 2 and W = 2500 kbar A3 , respectively,
which are found suitable for simulation at room temperature.
The hydrostatic pressure P was set to 50 GPa and for the
nonhydrostatic case, the anisotropic component was loaded
along the [001] direction with the magnitude set as 10% of
the P, i.e., X33 = —2%1; = =239 = 6.67% P, and zero for
all off-diagonal elements. The eigenvalues and corresponding
eigenvectors of the Hessian matrix of the B4 phase calculated
by MLP and VASP at 50 GPa are shown in Table S4 [38].
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FIG. 3. Evolution of the enthalpy in 64-atom MetaD simulation
using MLP under isotropic and uniaxial pressures starting from the
B4 structure at 300 K and 50 GPa.

The two methods yield the same set of eigenvectors and very
similar eigenvalues. This reveals that the MLP can reproduce
the energy well as accurately as the DFT calculation. Note
that for most eigenvectors the MLP and VASP values have
opposite signs; this means that the energy well is depicted
from opposite sides by the two methods, which should not
affect the simulation since the energy well is symmetric by
construction.

Figure 3 shows the time evolution of the enthalpy during
the 64-atom MetaD simulation using MLP under isotropic
and uniaxial pressures at 300 K and 50 GPa. Under both
stress conditions, the phase transition from B4 to Bl is
recovered, identified by an abrupt, large drop of enthalpy. No-
tably, the phase transition under uniaxial compression appears
quicker (at step 76) but it is associated with a higher barrier
(~0.18 eV /atom). In hydrostatic compression, the phase tran-
sition occurs at step 229 and the energy barrier is about
0.14 eV /atom. The slow increase of the enthalpy before the
phase transition shows the gradual filling of the free en-
ergy well with Gaussian potentials. In either case, the energy
barrier is far beyond the reach of an atom’s kinetic energy
(~0.03 eV/atom at 300 K), which manifests the capability
of the MetaD method. Once the initial energy well is filled,
the configuration is pushed into a neighboring minimum that
causes a sudden drop of energy. The simulated transition path
is found to be dependent on the stress conditions. In the
hydrostatic case, the transition undergoes the tetragonal path
[Fig. S3(a) [38]]. At step 229, the angle y has changed to
90° while the spacing u has increased slightly to 0.41, which
converts the six rings to four rings on the sy, (001) layers
and yields a tetragonal intermediate. Afterward, the u has a
quick increase to 0.5 and completes the transition at step 233.
In contrast, under uniaxial compression, u increases to 0.46
at step 76 while the hj1hy, (001) layer maintains its six-ring
configurations, resulting in a hexagonal intermediate [Fig.
S3(b) [38]]. From step 76 to step 82, the angle y closes and
convert the six rings to four rings. We emphasize that because
of the thermal fluctuations, the system does not pass exactly
through the saddle point, or transition state, but will cross the

TABLE II. Eigenvalues (in unit of kbar A) and corresponding
eigenvectors of the Hessian matrix for B4 phase consisting of 4,096
atoms at P = 50 GPa calculated using MLP.

Eigenvalues
S1 V) S3 84 S5 S6
72,981 73,212 18,662 30,712 94,405 641,778
Eigenvectors
hyy 0.0 0.0 0.0 0.796 0.563 —0.225
hy 0.0 0.0 0.0 —0.606 0.751 —0.263
h33 0.0 0.0 0.0 —0.021 —-0.346 —0.938
hy, 0.0 0.0 1.0 0.0 0.0 0.0
hys 0.0 1.0 0.0 0.0 0.0 0.0
ho3 —-1.0 0.0 0.0 0.0 0.0 0.0

free energy barrier somewhere nearby. This explains why the
simulated transition path always has a small degree of mix-
ing. Overall, the transition paths and their stress dependence
obtained here using MLP are in very good agreement with the
previous simulation carried out using DFT with the same-size
simulation box, in which the tetragonal path is activated under
isotropic compression but the hexagonal path is achieved un-
der the uniaxial stress conditions [63]. At this point, the MLP
combined with MetaD is proven to be a reliable method for
simulating RPT.

2. Large-scale simulations with 4096 atoms

After establishing the method, we expand the simulation
to a 4096-atom box. Apart from testing the scalability of the
MLP method, we wish to reveal microscopic events that are
critical to RPT but are not accessible in a small simulation
box, such as the homogeneous process of the formation of
the new phase. The 4096-atom simulation box is constructed
from an 8§ x 4 x 2 expansion of the 64-atom simulation
box (Fig. S4 [38]). This box has a tetragonal dimension
with hy = 48.27A, hy, = 41.78 A, and h3; = 19.70 A. The
calculated eigenvalues and corresponding eigenvectors of the
Hessian matrix for the 4096 atom simulation box are shown
in Table II. The geometry of the initial energy well is char-
acterized by collective variables s. s; and s, describe the
shearing of two tetragonal planes, one extended by h;, and
h33 and the other extended by h;; and h33 (Fig. S4 [38]), with
similar eigenvalues (72,981 and 73,212 kbar A). s3 describes
the shearing of the hexagonal plane extended by %1 and hy;.
This mode is much softer compared to s; and s,, shown by a
smaller eigenvalue 18,662 kbar A. s, describes a rectangular
distortion by simultaneous elongation of %;; and shortening
of hy,. s5 describes a simultaneous increment of Ay and h,,,
and shortening of h33. s¢ describes a simultaneous reduction
of hy1, hoo, and hsz. For an efficient simulation in this model,
Gaussian parameters were scaled up to 8s = 500 (kbar A3)!/2
and W = 250, 000 kbar A3, respectively.

Figure 4 shows the snapshots of the 4096-atom sim-
ulation box selected at different times from the MetaD
trajectory under hydrostatic compression at 50 GPa (fig-
ures are generated using OVITO [64]). A phase transition is
clearly revealed by the change of atoms’ coordination num-
bers. The evolution of the CVs shows that this transition
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FIG. 4. Snapshots of the 4096-atom simulation box of the B4 phase in MetaD simulation using MLP at 50 GPa under hydrostatic
conditions. In (a)—(f), Ga and N atoms are not distinguished but colored by coordination numbers (CN) determined by a cutoff radius 2.3 A.
Blue, grey, and red represents atoms with CN = 4, 5, and 6, respectively. For clarity, a nucleation center is enlarged from the snapshot at
metastep 33. In (g), only Ga atoms are shown and colored by their atomic energy obtained from MLP and the lowest atomic energy is taken
as the reference. The shearing caused by soft s; mode and the direction of atomic realignment along the face diagonal are highlighted. Figures

are generated using OVITO [64].

follows the iT path, activated by modes s3 and s¢ [Fig.
S5(a) [38]]. s3 becomes negative and decreases dramat-
ically from metastep 29 to metastep 39 (29-39 ps),
causing the hjihy (001) plane to shear [Figs. 4(b)—4(f)].
During the same time, s¢ becomes positive and increases dra-
matically, resulting in the reduction of /33 and a sudden drop
of the volume, which is the manifesto of a first-order phase
transition. A significant finding is the formation and growth
of centers for the tetragonal intermediate phase (grey atoms)
in the B4 matrix [Figs. 4(b)—4(d)]. Once the intermediate
phase is fully established, new centers of the B1 phase (red
atoms) start to form randomly and quickly grow throughout
the crystal [Figs. 4(e) and 4(f)]. In this step, the major change
is in the spacing u, which does not change the geometry of the
hy1hy (001) plane but brings neighboring planes together and
increases the coordination number to 6.

The simulation above reveals details on the manner of
atom rearrangements during the phase transition, from which
some points can be made. The B4 and tetragonal interme-
diate phases are shown as six rings and four rings on the
hi1thy (001) plane, respectively. Under thermal fluctuation,
four rings (nucleation centers) may form randomly on the
plane, but most of them will go back to six rings under the
large strain induced by the phase mismatch. From a metastep
around 30, the s3 shearing mode is activated, which obviously
cause the angle y to change promoting the formation of nu-
cleation centers. As the shearing progresses, more and more
adjacent six rings are converted to four rings around nucle-
ation centers. However, this growth is not random, but follows
a direction with the lowest interfacial energy. Because of the
anisotropy of crystalline phases, the interfacial energy at a
solid-solid phase boundary can vary from low values for fully
coherent interfaces to high values for incoherent interfaces.
For the said transition, the soft s3 mode causes the atoms
to realign along the face diagonal direction, which results in

a fully coherent two phase interface without any dislocation
[Fig. 4(g)]. As such, the atoms at the phase boundary have low
energies that facilitate continuous growth. Along the vertical
h33 [001] direction, the neighboring planes have essentially
the same geometry so that the whole crystal is viewed as
a two-phase inhomogeneous mixture propagating along the
hs33 [001] direction. Once the regions occupied by four rings
reach the critical value, they will no longer convert back to
six rings but will continue to grow throughout the crystal. To
verify this process, we performed another simulation using the
same simulation box but with additional shear stress added
along the s3 direction. The magnitude of additional stress is
about 2 GPa, i.e., ¥,; = 4% P, which is designed to aggravate
the s3 mode and bias the structure toward its shallow energy
valley. The MetaD trajectory for this simulation is shown in
Fig. S7 [38]. As expected, the transition path is essentially
unchanged under additional shear but the transition speed
is notably higher—the whole transition completes in 29 ps.
Clearly, the formation of centers for tetragonal intermediate
phase is resonant to the enforced shearing, and the growth
pattern is better structured and aligned. The two phases form
alternating 2D slabs according to the shearing [Fig. S7(d)
[38]]. This observation confirms that the s3 shearing mode
activates the iT transition path and progresses through the
nucleation and growth.

Next we carry out a large-scale simulation under the uni-
axial stress condition at P = 50 GPa to examine the effects
of uniaxial stress on the transition path. Additional uniax-
ial stress of 5 GPa was loaded on the /33 [001] direction,
i.e., X33 = —2%|] = —2% = 6.67% P. The snapshots of
the MetaD trajectory selected at different times for this sim-
ulation is shown in Fig. 5. This time the transition path is
changed to the iH path via five-coordinated hexagonal inter-
mediate (P63/mmc). The evolution of CVs shows that the
uniaxial stress blocks the s3 mode but activates the s5 mode,
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FIG. 5. Snapshots of the 4096-atom simulation box of the B4 phase in MetaD simulation using MLP at 50 GPa under uniaxial stress
conditions. Additional uniaxial stress of 5 GPa is loaded in k33 [001] direction. Ga and N atoms are not distinguished but colored by
coordination numbers (CN) determined by a cutoff radius 2.3 A. Blue, grey, and red represents atoms with CN = 4, 5, and 6, respectively.

which, along with the s mode, drives the phase transition
[Fig. S5(b)]. The s5 becomes positive and increases dramat-
ically from metastep 6 to metastep 13 (6—13 ps). This causes
the hy1h2 (001) plane to expand with slight rectangular dis-
tortion (due to a faster increase of &y, than ki) and the
distance between neighboring planes to decrease. Under this
distortion, the six rings on the hj1hy (001) plane maintain
a basic hexagonal shape but the spacing u increases and the
c/a ratio reduces which altogether brings neighboring planes
close and increases the CN to 5 [Fig. 5(b)]. Clearly, the initial
change of u and c/a results from a greater pressure load on
the K33 axis, which pushes the configuration toward hexagonal
intermediate. Afterward, the six rings located on the A hy;
(001) plane convert to four rings [Figs. 5(c)-5(e)] similar to
the first transition stage under hydrostatic stress. During the
transition, the s becomes positive and increases rapidly, re-
sulting in a large volume drop which significates a first-order
phase transition.

These simulations demonstrate the capability of the MLP-
based MetaD method in simulating RPT at a large scale not
possible for DFT-based methods but at an accuracy close to
that of DFT. The simulated B4-B1 phase transition in GaN
reveals the manner of atom rearrangements with unprece-
dented quality and details, which provides insight into this
well-known phase transition. In particular, the microscopic
transition path may be manipulated using shear and uniaxial
stress to reach different intermediate phases, which helps us
to reconcile the experimental and theoretical uncertainty re-
garding the transition path for the B4-B1 transition [57,65,66].
The unique combination of machine learning potential and
metadynamics method will certainly lead to significant im-
provement of the simulation of phase transitions. The method
can be easily expanded and transferred to other systems with
well-constructed potentials.

IV. CONCLUSION

In this study, we demonstrate that well-trained machine
learning potentials combined with metadynamics method can

provide a highly accurate survey of potential energy surface
required for large-scale atomistic simulation of reconstructive
phase transitions. The machine learning potential is con-
structed by learning directly from the data consisting of
energies, interatomic forces, and unit cell stresses experienced
by structures in a well-designed structures set, as obtained
by density functional calculations. The potential is fitted in
terms of individual atoms in given neighboring environments
and therefore is capable of expanding to an arbitrary system
size and to complex potential energy surface. As a test case,
we apply the method to simulate the pressure induced B4-B1
phase transition in gallium nitride using a 4096 atom simula-
tion box under general stress conditions including hydrostatic,
uniaxial, and shear stress. The simulation reveals the transi-
tion path with excellent quality. Microscopic events that are
critical to reconstructive phase transition but not possible with
small-scale DFT simulation, and their responses to changing
stress conditions, are clearly reproduced in our simulation.
This provides a different dimension for the understanding
of reconstructive phase transition. It should point out that
the manner of atom rearrangements revealed by the current
approach should not be the exact mechanism of real-world
RPT but offer an important insight for understanding it.
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