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Giant magnetocaloric effect driven by first-order magnetostructural transition in cosubstituted
Ni-Mn-Sb Heusler compounds: Predictions from ab initio and Monte Carlo calculations
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Using density functional theory and a thermodynamic model [V. Sokolovskiy et al. Phys. Rev. B 86, 134418
(2012)] in this paper we provide an approach to systematically screen compounds of a given Heusler family to
predict ones that can yield giant magnetocaloric effect driven by a first-order magnetostructural transition. We
apply this approach to two Heusler series Ni2−xFexMn1+z−yCuySb1−z and Ni2−xCoxMn1+z−yCuySb1−z obtained
by cosubstitution at Ni and Mn sites. We predict four new compounds with potentials to achieve the target
properties. Our computations of the thermodynamic parameters relevant for magnetocaloric applications show
that the improvement in the parameters in the predicted cosubstituted compounds can be as large as four times
in comparison to the off-stoichiometric Ni-Mn-Sb and a compound derived by single substitution at the Ni site
where magnetocaloric effects have been observed experimentally. This work establishes a protocol to select new
compounds that can exhibit large magnetocaloric effects and demonstrate cosubstitution as a route for more
flexible tunability to achieve outcomes better than the existing ones.
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I. INTRODUCTION

The development of magnetic refrigeration, a new solid-
state refrigeration technology, based on the magnetocaloric
effect (MCE), continues to attract considerable attention
worldwide due to its environmentally friendly nature, higher
energy efficiency, lower mechanical noise, and simple me-
chanical construction, in comparison with conventional tech-
nology based on gas compression/expansion [1–3]. The
underlying magnetocaloric effect (MCE) is measured in terms
of isothermal magnetic entropy change (�Smag) and/or adia-
batic temperature change (�Tad) that require large variations
in the material’s magnetization with temperatures. In the mag-
netic refrigerators, Gd has been considered as a benchmark
material due to the discovery of significant magnetocaloric
effect in it, an outcome of a second-order ferromagnetic to
paramagnetic transition close to room temperature [4]. How-
ever, giant effect is generally observed in materials which
undergo a first-order magnetostructural transition, i.e., a struc-
tural phase transition, coupled with a magnetic one [5–20].
Magnetic refrigeration near room temperature is of special
interest because of its social and economic benefits. From
this point of view, the continuous search of new solid-state
magnetic refrigerants that could exhibit a giant MCE, in an
appropriate temperature range, as well as the improvement of
the existing ones, have been the focus of research in this area.

Among MCE materials, shape memory Heusler com-
pounds are of great interest as they exhibit large MCE, and
their transition temperatures can be easily tuned. The ori-
gin of their large MCE is the first-order martensitic phase
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transition (MPT) from a high temperature cubic austenite
phase to a low temperature low symmetry phase, a large
magnetization change occurring simultaneously. One of the
compounds in the Heusler family which recently showed
promising MCE is the off-stoichiometric Mn-excess Sb-
deficient Ni-Mn-Sb where magnetostructural transition and
significant magnetocaloric effect were observed near room
temperature [21–23].

With an aim to improve the MCE in this family of com-
pounds, some recent investigations have also been carried
out, by substituting the Fe and Co atoms at Mn and Ni
sites, respectively, resulting in large positive values of �Smag

[23–26]. Though the transition metal substituted Ni-Mn-Sb
Heusler compounds turn out to be useful materials exhibiting
giant MCE, one major disadvantage is that upon substitution,
the working temperature, i.e., the martensitic transformation
temperature (TM), falls below room temperature. This is not
desirable for operational purposes. In some recent studies, the
strategy of substitution of at least two 3d elements simultane-
ously (cosubstitution) has been found to be useful in achieving
the important magnetic and structural properties with better
tuning and adaptability [27–29]. In a recent work [30] we
explored potential room-temperature magnetocaloric materi-
als in two cosubstituted families Ni2−xFexMn1+z−yCuySb1−z

(Fe@Ni-Cu@Mn) and Ni2−xCoxMn1+z−yCuySb1−z (Co@Ni-
Cu@Mn). We found that for a certain range of compositions,
there is no structural transformation down to the low temper-
ature indicating that the MCE is purely due to second-order
magnetic phase transition. We also found that large magnetic
moments and Tc, the Curie temperature, close to room tem-
peratures can be easily achieved by tuning the compositions,
along with a significant MCE. These indicated a delicate
balance of the concentrations of different constituents and
easy tunability of properties in this family. Armed with this
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information, in the present work, we focused on the composi-
tion ranges that were not covered in Ref. [30]. A martensitic
phase transformation (MPT) occurs in cosubstituted Ni-Mn-
Sb compounds with those compositions. We aimed to explore
whether a giant MCE due to magnetostructural coupling can
be predicted in these compositions along with near room tem-
perature TM . Using a thermodynamic model in conjunction
with first-principles electronic structure calculations, we made
comparisons with the systems already explored experimen-
tally and provided predictions of new compounds, yet to be
realized experimentally, that can exhibit significantly large
MCE. This study established a systematic way to use the
information on structural and magnetic properties obtained
from first-principles calculations to screen the materials that
are potential ones with target properties and the robustness of
the formalism to accurate predictions of new compounds.

II. METHOD OF CALCULATION AND
COMPUTATIONAL DETAILS

Most of the literature on MCE, particularly for Heusler
compounds, is experimental in nature. Very few theoretical
studies of MCE in the framework of molecular-field approx-
imation [31–33], bond proportion model [34], and Monte
Carlo simulations [35–39] have been reported. Tackling the
problem using theoretical tools is a difficult one as the task
to obtain all phases in a self-consistent way is quite demand-
ing. This requires the equilibrium, ab initio evaluation of all
magnetic exchange parameters and comparison of free ener-
gies, for each structure (austenite and martensite) at different
temperatures. Avoiding all the above mentioned complex and
time-consuming calculations, a unified description of struc-
tural and associated first-order magnetic phase transition has
been presented in literature, successfully for Ni-Mn based
Heusler compounds, by using a simple model Hamiltonian
consisting of tunable parameters [36–38,40–44]. The Hamil-
tonian allowed one to explore the richness of the phase
diagram. The observed qualitative and quantitative behavior
of MCE quantities turned out to be in very good agree-
ment with experiments. Therefore, we have adopted the same
method in this work.

A. First-principles methods and computational details

We have used the first-principles electronic structure cal-
culations to gain information on the phase stability of the
compounds explored and their magnetic properties. The elec-
tronic structure calculations were done with a spin-polarized
density functional theory (DFT) based projector augmented
wave (PAW) method as implemented in the Vienna ab initio
simulation package (VASP) [45–47]. The valence electronic
configurations used for the Mn, Fe, Co, Ni, Cu, and Sb PAW
pseudopotentials are 3d64s, 3d74s, 3d84s, 3d84s2, 3d104s,
and 5s25p3, respectively. For all calculations we used the
Perdew-Burke-Ernzerhof implementation of a generalized
gradient approximation for the exchange-correlation func-
tional [48]. An energy cutoff of 550 eV, and a Monkhorst-Pack
11 × 11 × 11 k mesh, were used for self-consistent calcu-
lations. The convergence criteria for the total energies and

the forces on individual atoms were set to 10−6 eV and
10−2 eV/Å, respectively.

The stabilities of the compounds against decomposition
into its components were checked by computing the formation
energies:

E f = Etot −
∑

i

niEi. (1)

Etot is the total electronic energy of the systems, i repre-
sents the atoms in the unit cell, and ni is the concentration of
the ith atom. Ei is the total energy of the element i in its bulk
ground state.

To compute the Curie temperature Tc of a compound, we
first calculated the magnetic pair exchange parameters using
multiple scattering Green function formalism (KKR) as im-
plemented in SPRKKR code [49]. In here the spin part of the
Hamiltonian was mapped to a Heisenberg model,

H = −
∑
μ,ν

∑
i, j

Jμν
i j eμ

i .eν
j . (2)

μ, ν represent different sublattices, i, j represent atomic posi-
tions, and eμ

i denotes the unit vector along the direction of
magnetic moments at site i belonging to sublattice μ. The
Jμν

i j s were calculated from the energy differences due to in-
finitesimally small orientations of a pair of spins within the
formulation of Liechtenstein et al. [50]. In order to calculate
the energy differences by the SPRKKR code, a full poten-
tial spin-polarized scalar relativistic Hamiltonian with angular
momentum cutoff lmax = 3 was used along with a converged
k mesh for Brillouin zone integrations. The Green’s functions
were calculated for 32 complex energy points distributed on
a semicircular contour. The energy convergence criterion was
set to 10−5 eV for the self-consistent cycles. These exchange
parameters were then used for the calculation of Tc. The Curie
temperatures were estimated with two different approaches:
the mean-field approximation (MFA) [51,52] and the Monte
Carlo simulation (MCS) method [53–55]. Details of the cal-
culations using these methods are given in Ref. [56].

B. Calculation of MCE parameters using thermodynamic model

The Monte Carlo simulation is an appropriate tool to use
the zero-temperature ab initio calculations for computing
properties at finite temperatures. Here we have used Monte
Carlo simulation on a model Hamiltonian to estimate the
MCE parameters, i.e., isothermal change in magnetic entropy
(�Smag) or adiabatic temperature change (�Tad) due to the
application of a magnetic field. The model Hamiltonian was
chosen such that it accommodates, along with magnetic and
structural degrees of freedom, the coupling between the two
[37,38,41,42].

The model Hamiltonian (H) consists of three parts: (a) the
magnetic contribution due to the magnetic degrees of freedom
of the system Hm; (b) the elastic contribution due to the struc-
tural transformation from cubic to tetragonal phases Hels; and
(c) the contribution arising from the coupling of magnetic and
structural interactions Hint:

H = Hm + Hels + Hint. (3)
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The magnetic subsystem is described by a mixed q-states
Potts model [38,40,42,57], which allows for both first- and
second-order phase transitions, where q is the number of spin
states for magnetic atoms:

Hm = −
NN∑
〈i, j〉

Ji jδSi, S j − gμBμ0Hext

N∑
i

δSi, Sg. (4)

Here the first term represents the magnetic interactions at
different lattice sites; Ji, j being the exchange parameters in-
volving sites i and j, Si the spin defined on the lattice site
i = 1, 2, . . . , N , and N the total number of atoms considered
in the simulation cell. The second term represents the coupling
of the spin system to the external magnetic field Hext along the
direction of ghost spin variable Sg. μB is the Bohr magneton,
and g is the Lande factor (here g = 2).

The degenerate Blume-Emery-Griffiths (BEG) model
[58,59], which allows one to describe the interaction between
the elastic variables, was used to address the mutual influence
of magnetic ordering and structural transitions. The energy
of the system undergoing structural transformation can be
represented by

Hels = −J
NN∑
〈i, j〉

σiσ j − K
NN∑
〈i, j〉

(
1 − σ 2

i

)(
1 − σ 2

j

)

− kBT ln(p)
∑

i

(
1 − σ 2

i

)

− K1gμBμ0Hext

NN∑
i

δσgσi

NN∑
〈i, j〉

σiσ j, (5)

where σ is the strain parameter and denotes the structural
state of the lattice site which takes the value 0 for cubic or
undistorted state, and +1 or −1 for the tetragonal or dis-
torted state. J and K are structural exchange constants for
tetragonal and cubic states, respectively, p is the degeneracy
factor characterizing the number of tetragonal states, K1 is
the dimensionless magnetoelastic interaction, and T is the
temperature of the system. The third term accounts for the
higher configurational entropy in the cubic phase. The last
term accounts for the energy contribution due to the changes
in the structural states under the influence of the external
magnetic field. The structural states are coupled to the external
magnetic field through the ghost spin state σg. The sign of the
magnetoelastic parameter K1 indicates the favored structural
state (cubic or tetragonal), in the presence of an external mag-
netic field. For K1 > 0, energy is removed from the system
in a tetragonal state, so that the tetragonal (distorted) state is
favored over cubic state by the external magnetic field, while
for K1 < 0, energy is added to the system in a tetragonal state
so that the cubic state is favored. In essence, K1 > (<)0 if
TM increases (decreases) in the presence of external magnetic
field:

Hint = 2
NN∑
〈i, j〉

Ui jδSi, S j

(
1

2
− σ 2

i

)(
1

2
− σ 2

j

)
− 1

2

NN∑
〈i, j〉

Ui jδSi, S j .

(6)

In the magnetoelastic part [Eq. (6)] of the Hamiltonian,
the first term describes the effective coupling of magnetic
sublattice to the modulation of the lattice, while the last term
renormalizes the spin-spin interaction. Ui j is the magnetoelas-
tic interaction parameter.

This Hamiltonian [Eq. (3)] was used for Monte Carlo cal-
culations using the following procedure:

1. For all the magnetic and lattice sites in the supercell,
values of initial spin (Si) and strain (σi) were chosen as 1.

2. First, one arbitrary lattice site was chosen, and the initial
elastic energy contribution (H initial

els ) from that site was calcu-
lated using Eq. (5). For σi = 0, the site’s energy contribution
was calculated on a cubic lattice, while for σi = +1 or σi =
−1, the energy was calculated on a tetragonal lattice. This
was also done while calculating the magnetic and coupled
contributions of the Hamiltonian.

3. For the same site i, the strain parameter σi was changed
randomly. The elastic energy of the new configuration Hfinal

els
was calculated. The change in the elastic energy of the system
(Hfinal

els − H initial
els ) was then computed.

4. The new system configuration, i.e., the lattice with a
new strain parameter on that particular site, was accepted
or rejected based on the Metropolis algorithm [53,54,60]. If
Hfinal

els � H initial
els , the new system configuration was accepted;

else a ratio R is calculated:

R = exp
[ − (

Hfinal
els − H initial

els

)
/kBT

]
. (7)

A random number (r; 0 < r < 1) is generated, and if R >

r, the new configuration was accepted.
5. The next step was to find the new spin state for site i. The

total energy of the system H initial was calculated using Eq. (3).
The spin state of site i was then changed randomly, and the
energy of the new configuration Hfinal was calculated. The
new system configuration (site i with new spin parameter) was
then accepted or rejected based on the Metropolis algorithm,
as described in the previous step.

6. Steps 2–5 were then repeated by moving through the
lattice sites. Once all the lattice sites were swept, one Monte
Carlo step (MCS) was completed.

At a given temperature, the system was first equilibrated
by repeating the above Monte Carlo steps. Then the average
magnetization (m) and strain order parameter (ε) of the equi-
librated system for a given temperature were calculated as

m = 1

N

n∑
i

(
qiNmax

i − Ni
)

qi − 1
, (8)

ε = 1

N

∑
i

σi, (9)

where i in Eq. (8) denotes a magnetic atom type, n is the total
number of magnetic atom types, qi is the total number of spin
states of the atom of type i, Nmax

i is the maximum number
of atoms of type i with the same spin state, Ni is the total
number of atoms of type i, and N is the total number of atoms
in the system. The magnetic specific heat (Cmag), the magnetic
entropy (Smag), and total specific heat C = Clat + Cmag with
lattice and magnetic contributions were then calculated. We
have neglected the electronic part of the specific heat. For the
lattice heat, we have used the standard Debye approximation.
Finally, the magnetocaloric parameters, i.e., the isothermal
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changes in magnetic entropy (�Smag) and the adiabatic tem-
perature change (�Tad) due to the application of an external
field, were calculated by Eqs. (13) and (14), respectively:

Cmag(T, Hext ) = 1

N

N∑
i

〈H2〉 − 〈H〉2

kBT 2
, (10)

Smag(T, Hext ) = 1

N

∫ T

0
dT

Cmag(T, Hext )

T
, (11)

Clat (T,�D) = 9RNi

{
4

(
T

�D

)3 ∫ �D/T

0
dx

x3

ex − 1

−
(

�D

T

)
1

e(�D/T ) − 1

}
, (12)

�Smag(T, Hext ) = Smag(T, Hext ) − Smag(T, 0), (13)

�Tad(T, Hext ) = −T
�Smag(T, Hext )

C(T, Hext )
. (14)

An important approximation has been made in this ap-
proach of computing the �S: the contributions from the lattice
vibrations is neglected altogether. However, this is justified
due to following: the isothermal entropy change because of
lattice vibration (�Svib) due to a change in the magnetic field,
across the magnetostructural transitions, is not significant as
long as the Debye temperature does not depend strongly
on the magnetization and magnetic field, i.e., Svib(T, Hext ) ∼
Svib(T, 0). Experiments on Ni-Mn Heusler compounds have
shown negligible contribution of the external magnetic field
on the phonon dispersion [61]. Hence, as was done in exist-
ing literature [38,40], neglect of the contributions of lattice
vibrations to entropy change is a valid approximation for the
systems considered.

III. RESULTS AND DISCUSSIONS

In this work we investigated the two cosubstituted
Mn-excess, Sb-deficient Ni-Mn-Sb families: (i) Ni2−xFex

Mn1+z−yCuySb1−z (denoted as Fe@Ni-Cu@Mn) and (ii)
Ni2−xCoxMn1+z−yCuySb1−z (denoted as Co@Ni-Cu@Mn).
As mentioned in Sec. I, our motivation was to find compounds
that give rise to large MCE driven by first-order magne-
tostructural transition. In order to model the compounds that
have multisublattice chemical disorder, we have considered a
16 atom conventional cubic unit cell. This unit cell mimics the
high temperature austenite (L21 Heusler) phase of the systems
(space group 225). The consequence of the cell size is the
inability to model compositions with arbitrary x, y, or z. Each
one of the three variables can be changed by an amount of
0.25 only. The choice of the composition range to achieve
ones with the target properties is crucial. For this we took
recourse to our previous works on the same system [30,62].
Based upon the findings there, we restricted the value of x to
0.25, and the range of z between 0.50 and 0.75. The variable
y is constrained to be less than or equal to the value of z. The
compounds with these compositions are expected to exhibit a
martensitic phase transformation.

Since site occupancies in the compounds do not always fol-
low a regular pattern (the excess atoms occupying the sites of
deficient atoms in the reference system) [55,63–67] affecting
the MCE properties as a consequence, we first found out the

minimum energy configuration for each composition by com-
paring the total energies of configurations with different site
occupancy patterns and magnetic configurations. We found
that the substituting Fe/Co atoms prefer to occupy the Ni
sites, whereas the Cu atoms prefer to occupy the Sb sites, the
same as found out in Ref. [30]. We also found that depending
upon the composition, two types of magnetic configurations
are found leading to minimum total energy; FM, where the
two types of Mn can align parallel, and FIM, where the two
types of Mn can align antiparallel.

After fixing the lowest energy configurations, we first
calculated the formation energies for all the compounds.
Negative values of the formation energy for each of the
composition (Table I) indicated their stability against de-
composition into its constituent elements. Subsequently, the
following criteria were used to screen materials further to nar-
row down the ones which are potential large MCE materials:

(i) The materials should possess a high magnetic moment
in their austenite phases.

(ii) The martensitic transformation temperature (TM)
should be near room temperature or higher than that.

(iii) The MPT should be associated with a substantial
change in magnetization. In other words, a magnetic structure
in the martensite phase different than that in the austenite
phase would be advantageous.

(iv) The second-order magnetic transition temperature, i.e.,
the Curie temperature (T A

c ) in the austenite phase, should
be close to the martensitic transformation temperature (TM).
This would lead to a large change in entropy due to near
simultaneous magnetic and structural transition. Otherwise,
T A

c should be higher than TM so that the MPT can occur in
a magnetically ordered phase.

In what follows, we present and analyze the results on the
variations in the magnetic moments in the austenite phases,
the relative stabilities of the structural phases, and variations
in the TM and the variations in T A

c with changes in the com-
positions by systematic variations in x, y, and z. The analysis
helps us in the prediction of new compounds that have po-
tentials to exhibit large MCE. In here we first understand
the trends in the physical quantities due to cases with single
substitution. For that, we extended the range of x up to 0.75 in
all substituted compounds. The outcome of the cosubstituted
cases can be understood in the light of the results for single
substituted compounds.

A. Magnetic moment in austenite phase

A correlation between enhancement of magnetization in
the austenite phase and a large MCE for Ni-Mn-Sb sys-
tem could be observed in the experiments [23,24]. For
Ni1.8Co0.2Mn1.52Sb0.48 [23], an enhanced magnetic moment
in the austenite phase has been observed due to the Co sub-
stitution at Ni site. Subsequently, a large positive MCE was
observed in the system, presumably an artifact of magne-
toelastic coupling. In general, a significant enhancement of
magnetic moment in the austenite phase leads to a possi-
bility of large �M, the difference in magnetization between
austenite and martensitic phases, the key to a first-order mag-
netostructural transition. We therefore focus on finding the
possibility of enhancement of magnetic moment in austenite

054101-4



GIANT MAGNETOCALORIC EFFECT DRIVEN BY … PHYSICAL REVIEW B 103, 054101 (2021)

TABLE I. Calculated values of equilibrium lattice constant (a0), formation energies (Ef ), and total magnetic moment (MA) of the systems
under considerations in their austenite phases. The corresponding ground state magnetic configurations are shown. The total energy difference
(�E ) between the austenite(L21) and the martensite(tetragonal) phases, the equilibrium value of tetragonal distortion (c/a), the differences
in magnetic moments between the austenite and martensite phases (�M), the mean-field approximated (T A(MFA)

c ), and Monte Carlo simulated
(T A(MCS)

c ) Curie temperatures in the austenite phases are also shown. Boldface indicates the reference compositions around which experimental
studies [22,23,69] are available. The compositions shown within the borders are found to satisfy the criteria for considering them as efficient
giant magnetocaloric materials with improved MCE properties than the reference ones.

Ni2−xAxMn1.50−yCuySb0.50 (z = 0.50)
Composition Mag. a0 Ef MA �E c/a | �M | T A(MFA)

c T A(MCS)
c

x y Config. (Å) (eV/f.u.) (μB/f.u.) (meV/atom) (μB/f.u.) (K) (K)

0.00 0.00 FIM 5.94 −0.552 1.71 27.64 1.34 0.16 397 422

A = Fe
0.25 0.00 FIM 5.92 −0.450 2.09 10.68 1.29 0.18 351 370
0.25 0.25 FIM 5.91 −0.386 3.29 4.45 1.24 0.08 297 340
0.25 0.50 FM 5.90 −0.317 4.44 No MPT – – 327 300

A = Co
0.25 0.00 FIM 5.93 −0.670 1.99 20.97 1.30 0.04 392 410
0.25 0.25 FIM 5.91 −0.620 3.22 16.91 1.28 0.23 333 401
0.25 0.50 FM 5.90 −0.567 4.42 10.93 1.25 0.19 355 399

Ni2−xAxMn1.75−yCuySb0.25(z = 0.75)
Composition Mag. a0 Ef MA �E c/a | �M | T A(MFA)

c T A(MCS)
c

x y Config. (Å) (eV/f.u.) (μB/f.u.) (meV/atom) (μB/f.u.) (K) (K)

0.00 0.00 FIM 5.86 -0.470 0.69 55.32 1.36 0.15 348 290

A = Fe
0.25 0.00 FM 5.89 −0.352 7.71 41.22 1.38 6.27 498 406
0.25 0.25 FIM 5.84 −0.312 2.17 35.30 1.35 0.19 241 120

0.25 0.50 FM 5.83 −0.240 5.54 23.58 1.33 3.33 448 362

0.25 0.75 FM 5.81 −0.167 4.43 24.22 1.32 1.22 408 320

A = Co
0.25 0.00 FM 5.90 −0.615 7.75 37.25 1.34 6.78 519 450

0.25 ˙ 0.25 FM 5.87 −0.576 6.66 31.87 1.32 4.66 489 460
0.25 0.50 FM 5.84 −0.525 5.62 12.20 1.28 2.53 464 450
0.25 0.75 FM 5.81 −0.468 4.53 4.40 1.24 0.27 431 425

phases of Ni-Mn-Sb compounds upon substitution by 3d el-
ements at different sites. We present the results on total and
atomic magnetic moments in Figs. 1 and 2. The panels (a)–(c)
in each of the two figures show results for single substitution
while (d) and (e) show results for cosubstitution. All results in
Fig. 1 are for compounds with z = 0.5 that is with 50% excess
Mn (with respect to stoichiometric Ni2MnSb) while those in
Fig. 2 are with z = 0.75. If we first look at the compounds
with single substitution (Table 1, Ref. [56]), we find that
irrespective of z, Cu substitution at the Mn site allows the
total moment to increase linearly with the Cu content y. This
is due to the fact that the atomic moments of both Mn atoms
stay nearly the same and that the gradual replacement of Mn2
atoms by Cu reinforces the moment since Mn2, being aligned
antiparallel to Mn1, was reducing the total moment. When Fe
or Co substitutes Ni, irrespective of the value of z, the behavior
of magnetic moment with the concentration of Fe or Co, x, is
qualitatively identical in the sense that a monotonic variation
with x is either preceded or followed by a discontinuous jump
at a critical value of x; the difference being in the critical value.
Such a discontinuous jump with at least twofold increase in

the total moment occurs due to the change in the magnetic
structure from FIM to FM, driven by the orientations of the
Mn atoms. The variations in the moments for cosubstitution
with x fixed at 0.25, turn out to be the combined behavior
of the two single-substituted cases, Fe or Co substituting
Ni and Cu substituting Mn. Due to the presence of higher
concentration of Mn2 atoms in compounds with z = 0.75,
in comparison to those with z = 0.5, the overall moments
in the former cosubstituted compounds are higher than that
in the later (Table I). The inference from these results is that
the compositions with z = 0.75 may provide higher values of
�M and thus better MCE than compounds with composition
having z = 0.5, closest to the one on which experiments have
been performed.

B. Martensitic transformation and magnetic structures
across structural phases

Next, we investigate whether MPT occurs in our systems of
investigation. To this end, we distort the austenite L21 struc-
ture along the z axis by keeping the volume at the equilibrium

054101-5



SHEULY GHOSH AND SUBHRADIP GHOSH PHYSICAL REVIEW B 103, 054101 (2021)

0 0.25 0.5 0.75

Total
Mn2
Mn1

0 0.25 0.5 0.750 0.25 0.5
-4

0

4

8

0 0.25 0.5
-4

0

4

8

0 0.25 0.5

Ni
Fe/Co

M
ag

ne
tic

 m
om

en
t (

μ B
/f.

u.
)

Concentration (y) Concentration (y)

Concentration (y)

Cu@Mn

Fe@Ni-Cu@Mn

(a) (b) (c)

(d) (e)

Concentration (x) Concentration (x)

M
ag

ne
tic

 m
om

en
t (

μ B
/f.

u.
)

Fe@Ni Co@Ni

Co@Ni-Cu@Mn

FIG. 1. Variations in the calculated total and atomic magnetic
moments (in μB/f.u.) with (a) y (x = 0), (b) and (c) x (y = 0),
and (d) and (e) y (x = 0.25) for Ni2−xFexMn1+z−yCuySb1−z (Fe@Ni-
Cu@Mn) and Ni2−xCoxMn1+z−yCuySb1−z (Co@Ni-Cu@Mn) sys-
tems in their austenite phases. z value is kept at 0.5 throughout. Mn1
and Mn2 denote Mn atoms at its own site and at other sites in L21

structure, respectively.

value of the austenite phase and compute the total energy of
the system as a function of the tetragonal distortion given
by (c/a). Typical profiles of compounds undergoing MPT
will have their minima at (c/a) �= 1. For all compositions
we calculated the energy profiles as a function of tetragonal
distortion. The results are shown in Fig. 3. The results suggest
that all the considered compounds undergo MPT, a require-
ment for further consideration. However, for compounds with
higher Mn content (z = 0.75), the magnetic ground states of
the austenite phases are different than those in the martensitic
phases except at the compound where y = 0.75. In all such
cases, the austenite phase has FM magnetic structure (Table I),
while the martensitic phase has FIM magnetic structure. The
results in Figs. 3(c) and 3(d) corroborate this. A consequence
of this is a large value of �M (Table I) for the compounds with
z = 0.75 as compared to those with z = 0.5. This makes the
compounds with z = 0.75 potentially better to realize large
MCE.

In order to make sure that this is indeed so, we looked at the
variations in �E , the energy difference between the austen-
ite and martensite phases in their respective ground states.
The results for single-substituted compounds are shown in
Figs. 4(a)–4(c) while those for cosubstituted ones are shown in
Figs. 4(d) and 4(e). The �E values are also listed in Table I.
In literature, �E is routinely used to predict the martensitic
transformation temperature (TM) [55,62,65,67,68]. Here we
have used it first to understand the trends in the TM so that
compositions with higher TM can be screened. From Fig. 4 we
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FIG. 2. Variations in the calculated total and atomic magnetic
moments (in μB/f.u.) with (a) y (x = 0), (b) and (c) x (y = 0),
and (d) and (e) y (x = 0.25) for Ni2−xFexMn1+z−yCuySb1−z (Fe@Ni-
Cu@Mn) and Ni2−xCoxMn1+z−yCuySb1−z (Co@Ni-Cu@Mn) sys-
tems in their austenite phases. z is kept at 0.75 throughout. Mn1
and Mn2 denote Mn atoms at its own site and at other sites in L21

structure, respectively.

find that the trends in variations of �E with compositions in
cases of the cosubstituted compounds can be correlated with
the trends in case of single-substituted ones. A general trend
of z = 0.75 compounds having higher �E and thus higher TM

can be immediately inferred. Therefore, in both the counts of
larger �M and higher TM , the compounds with Mn content
as high as 1.75 can be considered promising to obtain large
MCE.

C. Curie temperature in austenite phase

In Fig. 5 we present the calculated Curie temperature (T A
c )

in the austenite phase for all the compositions, using both
the mean-field approximation and the more accurate Monte
Carlo simulation method. The results for single-substituted
compounds are presented in Figs. 5(a)–5(c), and those for
the cosubstituted compounds are presented in Fig. 5(d) and
5(e). The T A

c values for all the cosubstituted compositions are
listed in Table I. Here, too, the trends of variations in T A

c for
cosubstituted compounds can be correlated to the trends in
cases of single substitutions. Overall it can be concluded that
for cosubstituted systems, the T A

c values are higher for com-
pounds with z = 0.75. This is more prominent for Co and Cu
cosubstituted systems (Co@Ni-Cu@Mn). Thus cosubstituted
Co@Ni-Cu@Mn family with z = 0.75 have more possibility
of fulfilling the target properties of a giant magnetocaloric
material.
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FIG. 3. The variations of total energy difference (�E ) between the austenite(L21) and the martensite(tetragonal) phases as a function
of tetragonal distortion, i.e., c/a ratio in Ni2−x(Fe/Co)xMn1+z−yCuySb1−z [(Fe/Co)@Ni-Cu@Mn] compounds for different y with (a) and
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and provide minimum total energies.
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D. Prediction of new compounds

Based upon the results presented in the previous three
subsections, we are now in a position to predict new
compounds which can exhibit better MCE properties than that
observed in the experimentally synthesized compounds. To
this end we first consider the compounds Ni2Mn1.5Sb0.5 (i.e.,
x = 0.00, y = 0.00, z = 0.50) and Ni1.75Co0.25Mn1.5Sb0.5

(i.e., x = 0.25, y = 0.00, z = 0.50) (boldfaced in Table I)
as the reference ones with respect to which we assess the
improvement in properties. These compounds are chosen as
the compositions in these compounds are very close to the
experimentally investigated ones [22–25,69–71]. Comparing
all the quantities, we predict four compositions (bold bordered
in Table I), two in the Fe@Ni-Cu@Mn family, and the other
two in the Co@Ni-Cu@Mn family. In all the cases, z = 0.75
that is the Mn atom is in excess by 75% in comparison
to perfectly ordered Ni2MnSb, the parent compound. For
all the predicted compositions, the ground state magnetic
configuration in the austenite phase is the FM one, where
the two types of Mn atoms are aligned parallel, leading
to larger magnetic moments compared to the reference
systems. For these compounds, large values of change in
magnetization (�M), compared to the reference compounds,
are observed during the martensitic phase transformation.
Finally, the conditions that the martensitic transformation
temperature (TM) and Curie temperature (T A

c ) either should
nearly coincide or T A

c should be higher than TM , are satisfied
for the predicted compounds. In order to establish this, we
have made an estimation of TM the following way: the value of
�E corresponding to Ni1.75Co0.25Mn1.50Sb0.50 composition
is mapped to the experimental martensitic transformation
temperature (TM) value of 262 K, found for a compound with
almost same composition Ni1.8Co0.2Mn1.5Sb0.5 [23]. Using
this mapping we found that approximate values of TM are
294, 302, 465, and 398 K for Ni1.75Fe0.25Mn1.25Cu0.5Sb0.25,
Ni1.75Fe0.25MnCu0.75Sb0.25, Ni1.75Co0.25Mn1.75Sb0.25, and
Ni1.75Co0.25Mn1.50Cu0.25Sb0.25, respectively. A look at
Table I, along with these mapped values, shows that the above
mentioned conditions are satisfied for all four.

E. Computation of the MCE parameters

After screening the compounds, most suitable to ex-
hibit giant MCE, we aimed at the calculations of the
MCE parameters �Smag and �Tad to establish our pre-
dictions. Since there is no experimental result to com-
pare in cases of the new cosubstituted compounds, it
is imperative that our approach of using the DFT, in
conjunction with the proposed model Hamiltonian, is val-
idated. To this end we used our approach to compute
the MCE parameters for two compounds: Ni2Mn1.52Sb0.48

and Ni1.8Co0.2Mn1.52Sb0.48 where experimental results are
available [22,23]. After validation we computed the MCE
parameters for Ni1.75Co0.25Mn1.50Cu0.25Sb0.25, one of the
compounds predicted. Due to the huge computational cost
involved in cosubstituted compounds with multisublattice dis-
order, we restricted ourselves to only one out of the four new
predicted compounds.

The compound Ni2Mn1.52Sb0.48 was considered first. The
Monte Carlo calculations were done using a simulation

domain consisting of 8192 atoms obtained by replicating the
unit cell, containing 16 atoms, eight times in each direction.
The Mn2 atoms are randomly distributed on the Sb sublat-
tices. The final simulation domain contains 983 Sb, 1065
Mn2, 2048 Mn1, and 4096 Ni atoms.

The magnetic exchange parameters Ji j in Eq. (4) were
obtained from Figs. 1(a) and 1(b), Ref. [56]. The magnetic
spin states (q) for Ni, Mn2, and Mn1 atoms were taken as
3, 6, and 6, respectively, in accordance with the studies on
other Heusler systems [41,42]. The spin state of each mag-
netic atom site (Si) were chosen randomly by generating a
random number between 0 and 1 (0 � r � 1) and selecting
the state as: if 0 � r � l/3, then qNi = l , l = 1, 2, 3, and if
0 � r � k/6, then qMn1(Mn2) = k, k = 1, 2, 3,...,6. We con-
sidered lattice sites up to the third coordination shells for
Mn1-Mn1, Mn2-Mn2, and Mn1-Mn2 pairs, and up to the
first-coordination shell for Mn1(Mn2)-Ni and Ni-Ni atom
pairs in the summation. For elastic part of the Hamiltonian
[Eq. (5)], the summation was taken over the pairs up to the
second-coordination shell. A similar procedure, as for choos-
ing Si values, had been used to assign the σi values randomly.
Values of structural constants J and K were chosen such
that the martensitic transformation temperature (TM) could be
adjusted around the experimental TM , which is around room
temperature (≈300 K) [22,70]. The constraint of K/J � 0.5
was imposed to get rid of any premartensitic phase. Although
J and K could be obtained from ab initio calculations, we
used a simple procedure of tuning to reduce the complexity as
well as computational cost. This had been followed in other
investigations [38,40] too. The degeneracy factor (p) for the
cubic phase was taken as 2, since the cubic phase can distort
along one of the three directions (here along the z direction).
The K1 was chosen to be negative since it was experimentally
observed that TM decreased under application of external mag-
netic field. The negative K1 fixed the ghost deformation state
σg to −1. The value of K1 was chosen such that the maximum
magnetic entropy change is obtained around the experimental
martensitic transformation temperature. In the magnetoelastic
interaction part [Eq. (6)], the interaction parameters Ui j in
cubic (Uc) and tetragonal (Ut ) phases were tuned in such a way
that the Curie temperature in the austenite phase is obtained
around the experimental Curie temperature (350 K for the
compound considered).

Thus, with an initial guess of J and K values, we adjusted
the TM to bring it closer to the experimental value. Once a
reasonable TM is obtained, we tuned the parameter Ui j in both
structural phases to obtain the experimental Curie tempera-
ture. These are done by adjusting the coordination shells over
which summations are done. These were done in the absence
of an external magnetic field, i.e., Hext = 0. Then we applied
an external field of 5 T and tuned the K1 parameter so that
TM shifts in the direction observed in the experiment. This
ensured a correct behavior of magnetic entropy change �Smag

as a function of temperature and �Smax
mag is achieved around the

experimental TM . Here, depending on the sign of K1, ghost
deformation state σg was chosen. The simulation started with
the initial values of σi as 1 for all the lattice sites and Si,
Sg as 1 for the magnetic atoms. The final values of all the
parameters are presented in Table II. For each temperature
step, 2 × 105 MC steps were performed. The system was
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TABLE II. Values of structural, magnetoelastic, and cou-
pling parameters that are used in the present study for
Ni2−xCoxMn1+z−yCuySb1−z compounds.

Concentrations Parameters

J K Uc Ut

x y z (meV) (meV) (meV) (meV) K1

0.00 0.00 0.52 1.67 0.25 1.36 3.54 −0.25
0.20 0.00 0.52 1.67 0.42 7.56 14.24 −0.8
0.25 0.25 0.75 2.00 0.32 7.56 14.24 −0.4

equilibrated for 1 × 105 MC steps, and the data, then, were
collected for 105 steps. For each temperature step, energy of
the system (H), magnetization (m), and structural distortion
(ε) were averaged over 1000 data points collected after every
100 MC steps. These averaged quantities were then used to
calculate the various thermodynamic quantities using equa-
tions, given in Sec. II B.

Under zero field, the strain order parameter (ε) shows the
structural transformation from austenite (undistorted phase
with ε = 0) to martensite phases (distorted phase with ε = 1)
with decreasing temperature [Fig. 6(a)]. The transformation
occurs around 300 K, which is in good agreement with the
experimental TM . The magnetic order parameter (m) is almost
zero at high temperatures indicating a paramagnetic phase.
With a decrease in temperature, the magnetic order param-
eter increases gradually, indicating the transformation from
the paramagnetic to a ferromagnetic phase around 350 K.
Thus, the magnetic transition temperature (T A

c ) in the austen-
ite phase also matches very well with the experimental value.
With a further decrease in temperature, near the TM , a small

kink, indicating a weak magnetoelastic coupling, is observed
in the magnetic order parameter (m). With an applied external
magnetic field of 5 T, TM decreases, and the T A

c increases in
agreement with the experimental trend.

The calculated magnetic specific heat (Cmag) [Eq. (10)] is
shown in Fig. 6(b). The total specific heat is also calculated
as a function of temperature by calculating the lattice spe-
cific heat (Clat) [Eq. (12)]. In the absence of experimental
result on this compound, the Debye temperature �D was
taken as 222 K, the experimental �D of Ni2MnSb [72]. Here
we assumed that the lattice specific heat does not contribute
significantly to the isothermal entropy change, i.e., there is
no significant impact of the application of magnetic field on
Clat . The isothermal entropy change, from lattice contribu-
tions across the magnetostructural transition, is not significant
as long as the Debye temperature does not depend strongly
on the magnetization and magnetic field. Two peaks can be
observed in the specific heat curves, one at higher tempera-
ture corresponds to the second-order magnetic transition from
paramagnetic to ferromagnetic phase, while the other at lower
temperature corresponds to the structural transformation from
austenite to martensite phases.

The magnetic entropy curve [in Fig. 6(d)] has been ob-
tained by integrating the magnetic specific heat curves using
Eq. (11) both at zero field and a field of 5 T. At very
low temperatures, the calculated entropy has lower values,
as expected, and increases with an increase in temperature,
saturating at high temperatures beyond the magnetic trans-
formation in the austenite phase. Upon application of the
external magnetic field, the entropy of the system decreases as
the system undergoes the magnetic transformation, while the
entropy increases at the structural transformation. The insets
of Fig. 6(d) show the changes in the entropy of the system
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FIG. 6. The calculated temperature dependence of (a) magnetic (m) and strain (ε) order parameters, (b) and (c) normalized magnetic and
total specific heat (Cmag and C, respectively), (d) normalized magnetic entropy (Smag) in an external field of 0 and 5 T, and the temperature
dependence of (e) the isothermal magnetic entropy change (�Smag) and (f) adiabatic temperature change (�Tad) due to change in the magnetic
field from 0 to 5 T are shown. The results are for Ni2−x(Fe/Co)xMn1+z−yCuySb1−z, with z = 0.52, x = 0.00, y = 0.00.
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when the structural (inset with lower temperature range) and
magnetic (inset with higher temperature range) transforma-
tions take place.

The magnetic field induced isothermal entropy change
�Smag [Eq. (13)] and the adiabatic temperature change �Tad

[Eq. (14)] are shown in Figs. 6(e) and 6(f), respectively.
The maximum change in entropy is positive for structural
transformation and negative for the magnetic transformation.
Hence, we have an inverse magnetocaloric effect (cooling
of the material in the presence of magnetic field) during
structural transformation, while regular magnetocaloric effect
(heating of the material in the presence of magnetic field) as
the magnetic transformation takes place. A maximum value
of isothermal entropy change of 9.8 J kg−1 K−1 is obtained at
the first-order magnetostructural transition, in good agreement
with the experimental observation [22,23]. Our calculations
predict a large value of nearly 5 K of �Tad which, however,
could not be compared with experiments due to the unavail-
ability.

We next applied the same formalism to the Co substituted
compound Ni1.8Co0.2Mn1.52Sb0.48. Due to the availability of
experimental results [23], we could make a direct compari-
son. The results are shown in Fig. 7. The ab initio magnetic
exchange parameters used here are shown in Figs. 1(c) and
1(d), Ref. [56]. In here, the number of spin states for Co was
taken to be qCo = 4. The parameters in the Hamiltonian were
adjusted, such that the experimental value of TM (≈260 K)
and T A

c (≈330 K) could be reproduced. This is evident from
the curves of m and ε in Fig. 7(a).
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FIG. 8. The calculated temperature dependence of (a) magnetic
(m) and strain (ε) order parameter in the absence of an exter-
nal field, (b) the isothermal magnetic entropy change (�Smag),
and (c) adiabatic temperature change (�Tad) due to change in the
magnetic field from 0 to 5 T in Ni2−xCoxMn1+z−yCuySb1−z; z =
0.75, x = 0.25, y = 0.25. Results for the reference compositions
Ni2Mn1.52Sb0.48 and Ni1.8Co0.2Mn1.52Sb0.48 have also been included
for comparison.

The parameters used for this calculation are listed in
Table II. The directions of shifts in TM and T A

c under appli-
cation of an external magnetic field of 5 T are in agreement
with the experimental trends. One noteworthy point is that
in contrast to the Ni2Mn1.52Sb0.48, magnetization changes
sharply at the structural transition in this case. This is im-
portant to obtain a giant MCE. This significant change in
magnetization can be understood by analyzing the magnetic
exchange interactions between different atom pairs in both
structural phases (Figs. 1(c) and 1(d), Ref. [56]). While for
both Ni2Mn1.52Sb0.48 and Ni1.8Co0.2Mn1.52Sb0.48, the dom-
inant antiferromagnetic interaction between Mn atoms are
four times larger in the tetragonal phase, in comparison to
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that in the austenite phase, larger ferromagnetic interactions
due to the Mn1(Mn2)-Co atom pairs in the austenite phase
appears for the later compound. This can be correlated to
the larger change in the magnetization for Co substituted
compound. The MCE quantities �Smag and �Tad, calculated
as a function of temperature, as shown in Fig. 7(b) and the
maximum �Smag of nearly 40 J kg−1 K−1, much larger than
the Ni2Mn1.52Sb0.48, is obtained due to the magnetostructural
transition near TM in an applied field of 5 T. This is in excellent
agreement with the experimental value [23] of 35 J kg−1 K−1.
We also obtained a large value of �Tad that could not be
verified in the absence of experimental results.

The excellent agreement of the results obtained for the
two compounds with the experimental observations validates
the approach adopted here for computing the variables quan-
tifying MCE. Therefore, we apply the same formalism for
the cosubstituted compound Ni1.75Co0.25Mn1.50Cu0.25Sb0.25.
The results are presented in Fig. 8. The ab initio calculated
exchange interactions used are shown in Figs. 1(e) and 1(f),
Ref. [56]. The values of elastic and magnetoelastic parameters
were tuned (Table II) to fix the TM at 398 K, as predicted in
Sec. III D, and T A

c at 460 K as calculated through MCS in
Table I. For the purpose of comparison, we have included
the results for Ni2Mn1.52Sb0.48 and Ni1.8Co0.2Mn1.52Sb0.48.
We find that cosubstitution leads to an increase in the work-
ing temperature (TM). Also, the change in magnetization
near MPT is larger [Fig. 8(a)]. Both these characteristics
were desired for a larger MCE in cosubstituted compounds.
The calculated MCE quantities [Figs. 8(b) and 8(c)] meet
this expectation. The results demonstrate that �Smag, four
times higher than Ni2Mn1.52Sb0.48 and two times higher than
Ni1.8Co0.2Mn1.52Sb0.48, are obtained. Stronger ferromagnetic
interactions in the austenite phase of cosubstituted compound
(Figs. 1(e) and 1(f), Ref. [56]), in comparison with the other
two compounds, can be correlated to this amplified effect.

IV. CONCLUSIONS

Using first-principles electronic structure calculations,
we provide a protocol to systematically screen materials,
potential to exhibit giant MCE driven by a first-order magne-
tostructural transition at temperatures near room temperature
or above, among given Heusler family of compounds. We
apply this approach to find target compounds in the cosubsti-
tuted Ni-Mn-Sb family; the cosubstitution done at Ni and Mn
sites. Our approach predicted four new compounds in the two
cosubstituted families. In order to validate our predictions,
we took recourse to a thermodynamic model to compute the
MCE properties in one of these predicted compounds. The
robustness and accuracy of the computational approach using
the thermodynamic model that takes into account magnetic,
elastic, and magnetoelastic effects in equal footing, is demon-
strated by computing the MCE parameters in Ni2Mn1.52Sb0.48

and Co substituted Ni1.8Co0.2Mn1.52Sb0.48 compounds where
experimental results are available. Further computation of
MCE parameters for one of the predicted compounds yields
magnetic entropy change as large as four times in compar-
ison to that observed experimentally. Thus, this established
the protocol for screening materials from a large database
adopted in this work. This work, apart from demonstrating the
power of ab initio based approaches for computations of MCE
parameters, offers experimentalists a broader scope to explore
new materials where giant MCE, driven by first-order magne-
toelastic transition, can be realized through cosubstitution in
Heusler compounds.
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