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We investigate the effect of long-range pairing interactions on the phase diagram and the quantum transport
properties in a semiconductor-superconductor hybrid nanowire. Both the power-law and exponential decay rates
of long-range pairing are considered for comparison. It is found that a long-range topological phase hosting
massive edge modes is induced when the exponent of the power-law decay is less than one. By diagonalizing
the tight-binding model, we find that near-zero-energy Andreev bound states (ABSs) could be induced in the
topologically trivial phase for slowly decayed long-range pairing interactions. For a one-dimensional long-range
Kitaev chain, the shot noise is suggested to serve as a probe to discriminate Majorana bound states (MBSs) and
topological massive modes. Our numerical results indicate that for realistic device parameters, the Fano factor
of the shot noise is irrelevant to the topological property of the system, and it fails to distinguish the MBSs and
ABSs. However, the noise Fano factor is generally consistent with the variation of the bound state energy, which
can be used to detect the energy splitting of these bound states.
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I. INTRODUCTION

A Majorana fermion is an exotic particle that is its own
antiparticle. In recent years, much interest has been drawn to
looking for Majorana bound states (MBSs) hosted in topo-
logical superconductors. Spatially separated MBSs pairs are
promising candidates for the realization of stable qubits in
fault-tolerant topological quantum computing [1–5]. The Ki-
taev chain is the most well-known prototypical model of a
one-dimensional topological superconductor [6]. This model
is equivalent to the one-dimensional Ising model in a trans-
verse magnetic field, and they can be mapped to each other by
performing the Jordan-Wigner transformation. There are two
gapped phases for the Kitaev chain, a topologically trivial and
a topologically nontrivial phase. A phase transition occurs at
the critical point where the mass gap closes. For a topolog-
ically nontrivial phase, its main point of interest is that two
unpaired real fermionic Majorana modes appear at the end
points of the chain.

To explore possible additional novel phases, the study of
the Kitaev chain is extended to the case of long-range pairing,
hopping, as well as to higher-dimensional cases [7–24]. For
a Kitaev chain with long-range pairing, the pairing between
sites i and j decays as a power-law function �i j = �0|i −
j|−β , where �0 represents the pairing strength between the
nearest-neighboring sites and β measures the decay rate of
the pairing strength. The phases of the Kitaev chain hosting
MBSs appear for β > 1 and are labeled as short-range pairing.
For β < 1, two new phases with noninteger winding numbers
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appear. In long-range topological phases, there exist subgap
massive modes localized at the chain ends [7]. Different from
where Majorana modes are well separated in the infinite chain
limit, the wave-function overlap of the massive end modes
for β < 1 always remains finite. How to discriminate these
two end modes thus becomes an important task. When the
Kitaev chain with long-range pairing is connected to two
normal leads, the transport property is expected to disclose the
phase signal. The noise Fano factor is suggested to probe the
quantum phase transition between the short-range topological
phase and the long-range topological phase [25]. Specifically,
the Fano factor F is zero in the short-range correlated phase,
while F = 1 in the long-range correlated phase.

Experimentally, the most promising candidate to realize
MBSs is based on conventional s-wave superconductors ex-
posed to strong magnetic fields and proximity coupled to a
nanowire with a spin-orbit interaction [26–32]. In the high
magnetic field limit, the spin-orbit-coupled nanowire in prox-
imity with s-wave superconductors resembles the Kitaev chain
model [33]. These devices provided experimental signatures
of MBSs in the form of zero-bias conductance peaks [34–40].
The most recent relevant development has been the observa-
tion of a 2e2/h zero-bias quantized conductance plateau [41].
Although the quantized zero-bias conductance peak has been
almost universally accepted as the decisive signature satisfy-
ing the existence of MBSs, there is no compelling evidence to
rule out the effect of partially separated Andreev bound states
(ABSs) [42–48]. At this stage, distinguishing MBSs from the
trivial ABSs is one of the most urgent goals in Majorana
research [49,50].

In most previous studies, the proximity-induced supercon-
ducting pairing potential along the nanowire is assumed to

2469-9950/2021/103(4)/045428(15) 045428-1 ©2021 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.103.045428&domain=pdf&date_stamp=2021-01-28
https://doi.org/10.1103/PhysRevB.103.045428


REN, KE, GUO, ZHANG, AND LÜ PHYSICAL REVIEW B 103, 045428 (2021)

be approximately equal and only on-site pairing is taken into
account. Recently, long-range pairing and hopping interac-
tions induced by proximity effects have been investigated in
the semiconductor-superconductor heterostructure [51–57]. It
is found that the induced pairing strength is much smaller
than that of the host superconductor [35,36]. The topological
phase diagram is thus considerably modified by long-range
interactions. However, it remains unknown how the quantum
transport properties are affected by long-range pairing inter-
actions.

In this paper, we investigate the effect of long-range pairing
interactions on the topological phase diagrams and quantum
transport properties in a semiconductor-superconductor hy-
brid nanowire. General expressions for the winding numbers
and the formulae about the current and the shot noise are
derived. We separately consider two types of decay rates of
the long-range pairing deformation and show their distinction
in a phase diagram. The Fano factor of the shot noise is also
discussed when the long-range nanowire is connected to two
metallic leads. In realistic device parameters, we find that
although the noise Fano factor is irrelevant to the topological
property of the system, it could serve as a good probe to detect
the energy splitting of the bound states.

The paper is organized as follows. In Sec. II we introduce
the model Hamiltonian for a nanowire system with long-range
pairing terms. The formulae about the winding number and
the transport are presented. In Sec. III we discuss the effect of
long-range pairing on the phase diagrams of the system. For
comparison, we also use the exact diagonalization method to
obtain the low-energy spectra for a lattice model. In Sec. IV,
we present the numerical results of the Fano factor of the
zero-frequency shot noise in both topologically nontrivial and
trivial phases. Finally, a summary is given in Sec. V.

II. MODEL AND FORMALISM

A. Theoretical model

We consider a semiconducting nanowire partially covered
with an epitaxial superconductor shell in contact with two nor-
mal leads. Part of the nanowire is in a superconducting state
with long-range pairing interactions induced by the proximity
effect. A schematic representation of the setup is illustrated
in Fig. 1. The Hamiltonian describing the system has the
following form,

H = HL + HT + HNW + H�. (1)

Here, HL describes the normal metallic leads and HT repre-
sents the couplings between the nanowire and the leads. HNW

is the Hamiltonian of a strongly spin-orbit-coupled nanowire
in the presence of a parallel magnetic field. It can be written in
a more compact form by introducing the Hamiltonian density
HNW,

HNW = 1

2

∫
dxψ†(x)HNWψ (x), (2)

HNW =
(

− h̄2

2m
∂2

x − μ

)
− iα∂xσy + VZσx, (3)

where ψ (x) = [�↑(x), �↓(x)]T is the annihilation operator of
an electron at position x, m is the effective electron mass, μ

FIG. 1. (a) The long-range superconducting nanowire is in the
middle (blue lines and squares). It is in contact with two normal
metallic leads (orange lines and disks) through tunnel couplings
described by 	L and 	R. Each site of the nanowire is coupled with
every other site by a pairing amplitude �(r). (b) Schematic diagram
of the transport setup: A grounded spin-orbit-coupled semiconductor
nanowire coated with an epitaxial superconducting shell in a parallel
magnetic field B is connected to two normal metallic leads NL and
NR. A pair of MBSs (γ1, γ2) appear at both ends of the covered
nanowire segment when the system is in the topological phase. A
bias voltage V is applied across the whole device.

represents the chemical potential in the wire, α is the Rashba
parameter, and VZ = geffμBB/2 gives the Zeeman splitting
induced by the magnetic field B with geff the effective g
factor and μB the Bohr magneton. The Pauli matrices σi with
i = x, y, z act on the spin degree of freedom.

The last term H� in Eq. (1) is the proximity-induced
s-wave BCS Hamiltonian that couples states with opposite
momenta and spins in the nanowire. The specific form of H�

depends on various details of the system and on the degree
of complexity that we want to incorporate into the model, but
here we assume that the superconducting pairing interaction
between two electrons depends only on their spatial distance,
which takes the generic form

H� = 1

2

∫
dxdx′[�†

↑(x)�|x−x′|�↓(x′) + H.c.]. (4)

Taking into account the long-range pairing terms orig-
inating from the proximity effect, the N-site tight-binding
Hamiltonian for the hybrid semiconductor-superconductor
nanowire reads [58]

HTB = H0 + H�, (5)

H0 =
N∑

j=1

[(2t − μ)c†
j c j + VZc†

jσxc j]

+
N−1∑
j=1

[−tc†
j c j+1 − itSOc†

jσyc j+1 + H.c.], (6)

where H0 discretizes the continuum Hamiltonian of the
nanowire, ci,σ (c†

i,σ ) annihilates (creates) an electron with
spin σ =↑,↓ on lattice site i, t = h̄2/2ma2 represents the
nearest-neighbor hopping amplitude, tSO = α/2a describes
the spin-orbit coupling, and a is the lattice spacing. The
spin indices have been suppressed for brevity. The long-range
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pairing terms in the lattice model are given by

H� =
∑

j,r

�(r)c†
j,↑c†

j+r,↓ + H.c. (7)

In the following discussions, we focus on two specific forms
of �(r),

�a(r) = �0

(r + 1)β
, (8)

�b(�) = �0

kF �
e−�/ξ sin kF �, (9)

where � = ra gives the spatial distance between two sites,
�0 is the on-site superconducting pairing potential, kF is the
Fermi momentum in the nanowire, and ξ characterizes the co-
herence length in the host superconductor. Here, �a specifies
the long-range pairing interactions that decay as a power-
law function of distance with exponent β. This power-law
dependence of the long-range interactions has been inten-
sively investigated in recent literature on Kitaev chains with
extended hopping and pairing terms, which has been proposed
as models for the helical Shiba chains consisting of magnetic
impurities on an s-wave superconductor [59]. In particular,
the long-range pairing terms for helical Shiba states can be
derived explicitly from the effective action of an adatom
system weakly coupled to an s-wave superconductor [53],
here denoted by �b. This type of long-range pairing exhibits
more subtle behavior. It decays slowly as ∼1/� except for a
sinusoidal modulation when � � ξ , while for � � ξ it crosses
over into an exponential decay [60].

B. Topological invariant

We proceed to outline the calculation of the topological
invariants for a nanowire with long-range pairing terms given
in Eqs. (8) and (9). The real-space tight-binding Hamiltonian
HTB of Eq. (5) can be transformed into the Bogoliubov–de
Gennes (BdG) Hamiltonian in momentum space,

H(k) = −(2t cos k − ε + 2tSO sin kσy)τz

+VZσx + �̃(k)τx, (10)

with the Nambu representation [ck↑, ck↓, c†
−k↓,−c†

−k↑]T. Here,
ε = 2t − μ is the on-site energy. The Fourier transformed
long-range pairing terms with power-law and exponential de-
caying are given, respectively, as

�̃a(k) = �0

[
1 +

∞∑
r=1

2 cos kr

(r + 1)β

]
, (11)

�̃b(k) = �0

[
1 +

∞∑
r=1

2 cos kr

kF r
e−r/ξ sin(kF r)

]
. (12)

The one-dimensional system described by H(k) in Eq. (10)
belongs to the class BDI with a Z invariant in the Altland-
Zirnbauer symmetry classification [61,62]. The particle-hole
symmetry � = τyσyK is respected in the presence of long-
range pairing terms, where K stands for complex conjugation.
The BdG Hamiltonian H(k) can be transformed into a block

off-diagonal form by a unitary transformation U as

H′(k) = UH(k)U † =
[

0 A(k)
A(k)† 0

]
, (13)

where the determinant of the antidiagonal block det A(k)
characterizes the eigenenergies of the system. It is given by

A(k) = [�̃(k) + 2i tSO sin k] − i(2t cos k − ε)σy − VZσz.

(14)

For our one-dimensional system, the Berry connection can
be expressed as [61]

Ak = 1

2i
∂k ln(det A). (15)

The winding number is given by the quantized Berry phase in
terms of π over the first Brillouin zone [53],

W = 1

π

∮
dkAk = 1

2π i

∮
dk∂k ln(det A). (16)

We now define Z (k) ≡ detA for compact presentation. It
takes the explicit form as

Z (k) = (2t cos k − ε)2 − V 2
Z + [�̃(k) + 2i tSO sin k]2.

We then decompose Z (k) into its polar form and let ϕ(k) ≡
arg Z (k), and the winding number can be expressed as

W = 1

2π i

∮
dk∂k[ln |Z (k)| + iϕ(k)] = 1

2π

∮
dk∂kϕ(k),

(17)

where the first term vanishes under closed integration since
|Z (k)| is periodic in the first Brillouin zone. Considering that
Z (k) is particle-hole symmetric, we have that the equation
−ϕ(k) = ϕ(−k) mod 2π holds. Finally, we obtain

W = 1

2π

[∫ 0

−π

dk∂kϕ(k) +
∫ π

0
dk∂kϕ(k)

]
= 1

π

∫ π

0
dk∂kϕ(k)

= 1

π
[ϕ(π ) − ϕ(0)], (18)

which is equivalent to another form [53],

W = 1
2 [sgn Z (π ) − sgn Z (0)]. (19)

However, the winding number expression (19) is only ap-
plicable for the exponentially decayed pairing �̃b(k) and the
power-law decay rate �̃a(k) for β > 1. For β � 1, �̃a(k)
becomes divergent at the point k = 0, and the topological
singularity at this point makes the winding vector ill defined
[10]. In this case, band touching is only possible at k = π and
the winding number has a contribution only from the point
k = π [63].

In the case of β � 1, the real part of Z (k) is only zero for

k = π , leaving the lines μ = 4t ±
√

V 2
Z − �̃2

a(π ) gapped. At
point k = 0, the real part of Z (k) and the dispersion diverge,

where the lines μ = ±
√

V 2
Z − �̃2

a(0) become gapless. Conse-
quently, in the case of a Majorana nanowire with power-law
decaying long-range pairings, there are only two different
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sectors in the phase diagram below the line β = 1. To deter-
mine the winding number in this case, we note that W has
a contribution only from the point k = π . By linearizing the
real and imaginary parts of Z (k) at the point k = π , it can be
deduced that

Re[Z (k)] ∼ (4t − μ)2 − V 2
Z + �2

0[1 − (2 − 22−β )ζ (β )]2,

Im[Z (k)] ∼ 4tSO�0[1 − (2 − 22−β )ζ (β )](k − π ),

where ζ (β ) is the Riemann zeta function, and the winding
number for the case of β � 1 can then be given by [63]

W = 1

2π

∫ ∞

−∞
dk∂kϕ(k)

=
⎧⎨⎩− 1

2 , for |μ − 4t | <

√
V 2

Z − �̃2
a(π ),

+ 1
2 , for |μ − 4t | >

√
V 2

Z − �̃2
a(π ).

(20)

C. Transport properties via nonequilibrium
Green’s function method

To demonstrate how the transport properties are modified
by long-range pairing terms, we employ the nonequilibrium
Green’s function (NEGF) method. Following the Keldysh for-
malism, the retarded Green’s function of the system in the
Nambu-spinor representation can be calculated by

Gr = (
ε − HNW − �r

L − �r
R

)−1
. (21)

In the wideband limit, the retarded self-energy due to the γ

lead is given by �r
γ = −i	̂γ /2 and 	̂γ describes the coupling

between the wire and the γ lead, which takes the form

	̂L = 	Ldiag(1̂, 0̂, 0̂, . . . , 0̂)N , (22)

	̂R = 	Rdiag(0̂, 0̂, 0̂ . . . , 1̂)N , (23)

where 1̂ and 0̂ are the 4 × 4 identity and zero matrices. The
energy-independent lead-wire couplings are denoted by 	γ =
2πργ |tγ |2 with ργ the density of states of the γ lead and
tγ the coupling constant [64]. The lesser self-energies that
characterize the particle injection from the leads are given by

�<
L = diag(�̂<

L , 0̂, 0̂, . . . , 0̂)N , (24)

�<
R = diag(0̂, 0̂, 0̂, . . . , �̂<

R )N . (25)

The nonzero entry �̂<
γ reads

�̂<
γ = i	γ diag

(
f e
γ , f e

γ , f h
γ , f h

γ

)
. (26)

Here, f e(h)
γ (ω) = 1/(1 + e(ω∓μγ )/kBT ) is the Fermi-Dirac dis-

tribution function of the electrons (holes) in the γ lead, and
μL(R) = ±eV/2 is the chemical potential for the left (right)
lead under an applied bias V .

Once the Green’s functions and self-energies are obtained,
the current flowing from the γ lead into the wire can be
formulated as

Iγ = e

h

∫
dω

[
TD

(
f e
γ − f e

γ̄

) + TA
(

f e
γ − f h

γ

)
+TCA

(
f e
γ − f h

γ̄

)]
, (27)

where γ = L, R and γ̄ = R, L. Here, TD = Tr[	̂e
γ Gr	̂e

γ̄ Ga],
TA = Tr[	̂e

γ Gr	̂h
γ Ga], and TCA = Tr[	̂e

γ Gr	̂h
γ̄ Ga] are the

transmission functions contributed by the direct transmission
process, the local Andreev reflection, and the crossed Andreev
reflection, respectively. The trace is taken over the Nambu-
spin space. Ga = (Gr )† is the advanced Green’s function, and
	̂e(h)

γ are 4N × 4N matrices that keep only the electron (hole)
contributions of Eqs. (22) and (23). More additional details of
the derivation on the current are included in the Appendix.

The differential tunneling conductance can then be calcu-
lated by G = dIγ /dV and the shot noise can be derived from
the Fourier transformed current-current correlation function
[65–67]

Sγ γ ′ (ω) =
∫

dteiω(t−t ′ )〈{δÎγ (t ), δÎγ ′ (t ′)}〉, (28)

where δÎγ (t ) = Îγ (t ) − Iγ (t ). The Fano factor of the shot
noise is defined as F = S/2eI with S = 2SLL(ω → 0) to mea-
sure the deviation from the uncorrelated Poissonian noise
for which F = 1. The noise Fano factor can be enhanced or
suppressed because the current fluctuations in the device are
highly susceptible to different interactions in the system.

Throughout this work we set the lattice constant a =
10 nm and restrict our discussion to the zero-temperature
limit. A small applied voltage eV < � is taken to ensure that
only the near-zero-energy MBSs and the trivial ABSs of the
total quasiparticles in the superconductor are important. In the
absence of near-zero-energy bound states, the transmission of
Cooper pairs through the device is dominated and the noise
Fano factor at a low-bias voltage approaches 2 [68].

III. PHASE DIAGRAMS

We first consider the effect of the long-range pairing inter-
action with a power-law decay rate on the phase diagram of a
nanowire system. Different quantum phases could be tuned by
varying the chemical potential, Zeeman splitting energy, or the
decay rate that characterizes the long-range pairing. The effect
of long-range pairing on the phase diagram is illustrated in
Fig. 2 as functions of the Zeeman field VZ and on-site energy
ε. For the limit β → ∞, the long-range pairing interaction
is not considered and the system is mapped to an ordinary
Majorana nanowire. In this case, the threshold Zeeman field
that supports the existence of MBSs is determined by V C

Z =√
μ2 + �2

0 . The topological phases show a mirror symmetry
with respect to the zero on-site energy, while with opposite
winding numbers W = −1 and W = +1.

When modulating β to a finite value, the long-range pairing
interactions between different sites are gradually turned on.
The symmetry of the phase diagram about the zero on-site
energy is broken, as a result of the broken lattice translational
symmetry. As shown in Fig. 2, the topological region corre-
sponding to W = +1 drastically shrinks to a small region with
the decrease of β, and eventually vanishes for β � 1. The
topological region of the branch with W = −1 is converted
into a topological phases with W = −1/2 after entering the
long-range sector, which is similar to a long-range Kitaev
chain. For a Kitaev chain with long-range pairing interactions,
it is found in previous studies that an unconventional topolog-
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FIG. 2. Phase diagrams shown as a function of on-site energy ε and Zeeman splitting energy VZ with power-law decaying long-range
pairing interactions. (a)–(e) β = ∞, 1.5, 1.0, 0.5, and 0 correspond to the short-range limit, weak short-range regime, critical line, strong long-
range regime, and the long-range limit, respectively. The yellow, blue, and red colored regions highlight the trivial and different topological
phases indicated by the integer winding numbers W = 0, W = +1, and W = −1 in the short-range sector (β > 1). The topologically trivial
and nontrivial phases in the long-range sector (β � 1) labeled by noninteger winding numbers are colored green and orange, respectively. The
topological phases in the absence of any long-range pairing interactions are shown as regions bounded by the cyan solid line (W = +1) and
red solid line (W = −1). Here, we take t = tSO = �0 = 1.0 meV for a clear view.

ical phase with a half-integer winding number appears due
to the energy spectrum divergence of the system Hamiltonian
[7–13]. In this unconventional topological phase, the system
hosts a topological massive Dirac fermion at the chain ends.
For a nanowire with long-range rate β � 1, the long-range
topological phase with a half-integer winding number W =
−1/2 and a trivial phase with W = 1/2 are divided by a
boundary where (μ − 4t )2 = V 2

Z − �̃2
a(π ), as shown in Fig. 2.

For β > 1, long-range interactions can significantly lower the
threshold magnetic field for the emergence of MBSs [53].
In contrast, a long-range topological phase with W = −1/2
appearing at β � 1 indicates a nonmonotonic dependence
as a function of decay rate β. The threshold Zeeman field
supporting massive edge modes is significantly lowered with
a decrease of β. With a further decrease of β, the threshold
Zeeman field increases and approaches the value in the short-
range pairing limit.

Figure 3 demonstrates the nonmonotonic dependence
of the threshold Zeeman field on the decay rates of the
long-range pairing more concisely. The enlargement of the
topologically nontrivial region and the reduction of the thresh-
old magnetic field induced by long-range interactions have
been also demonstrated in several works [53–55]. Differently,
it is shown in Fig. 3 that the threshold Zeeman field begins
to increase as the decay rate β decreases for relatively small
β. For β = 0 since the pairing strength between different sites
is distance irrelevant, the threshold Zeeman field equals the
value in the absence of a long-range pairing interaction. In
this case, the lattice translational symmetry is restored again,
leading to the symmetric phase diagram about the on-site
energy ε = −2 meV.

For comparison, the phase diagrams in the presence of
an exponential decay of long-range pairing are illustrated in
Fig. 4. The decay rate of the long-range pairing in this case
is determined by the coherence length in the host supercon-
ductor. With the increase of the coherent length, the pairing
strength between distant sites is considerably enhanced. It
is shown in Fig. 4 that the effect of the exponential decay
rate of long-range pairing on the phase diagram is qualita-

tively similar to the case of a power-law-type decay with
β > 1. Long-range pairing with an exponential decay form
can be derived from the weak coupling between the parent
superconductor and the nanowire [53], which has the same
long-range pairing form as that induced by magnetic impu-
rities in helical Shiba chains. Different from the power-law
decay pairing �̃a(k) with β � 1, it can be deduced that the
long-range pairing �̃b(k) is always convergent. Therefore,
there is no long-range topological phase in the presence of
long-range pairing with an exponential decay rate. In this case,
the threshold Zeeman field shows a monotonic dependence on

FIG. 3. Phase diagram as a function of the decay rate β and the
Zeeman splitting energy VZ at the low-field regime with on-site en-
ergy fixed at ε = −2 meV. The critical line formed by the boundary
between the unconventional topological phase (orange region) and
the trivial phase (green region) indicates a nonmonotonic critical
Zeeman splitting energy V C

Z as β decreases from 1 towards 0. Other
parameters are the same as in Fig. 2.
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FIG. 4. Phase diagrams on the ε-VZ plane of the nanowire with
exponentially decaying long-range pairing interactions. (a)–(d) ξ =
0.1a, a, 5a, and ξ > L correspond to a short coherence length, a
coherence length comparable with the lattice spacing, a coherence
length larger than several lattice spacings, and the limit of long
coherence length, respectively. Here, we set the Fermi momentum
kF = π/2 (half filling) and other parameters are the same as in Fig. 2.

the coherence length, different from the results of the power-
law decay case.

We now turn to discuss the phase diagrams of the nanowire
as functions of the chemical potential μ and the decay rate
β of the long-range pairing. The results are shown in Fig. 5.
For the long-range decay rate β > 1, two topological branches
with opposite integer winding numbers W = 1 and W = −1

FIG. 5. Phase diagrams on the β-μ plane with power-law decay-
ing long-range pairing exhibit a dependence on the on-site pairing
potential. (a) �0 = 0.25 meV, (b) �0 = 0.025 meV. With chemical
potential fixed at μ = 0 (ε = 2t), the topological phase transition oc-
curs at β = βC . The other parameters are t = tSO = VZ = 1.0 meV.

are asymmetrically distributed in the regimes of μ. The topo-
logical region with W = 1 vanishes for small decay rates.
The critical decay rate approaches 1 for weak on-site pairing
strength. The phase boundary with a winding number W = 1
depends on the value of on-site pairing �0. Actually, it could
be derived that Z (π ) > 0 always holds for |μ| < 2t . The
expression for the winding number is thus simplified as

W = 1
2

{
1 − sgn

[
μ2 + �̃2

a(0) − V 2
Z

]}
. (29)

The condition for a nontrivial winding number is VZ >√
μ2 + �̃2

a(0). For μ = 0, the condition is further simplified
as

VZ > �0

[
1 + 2

Lc∑
r=1

(r + 1)−βC

]
, (30)

where βC represents the decay rate at the topological phase
transition point. It is deduced that the critical decay rate βC

decreases with a decrease of �0 for a fixed Zeeman field VZ .
Below the critical line β = 1 and in the thermodynamic limit
(Lc → ∞), the effective long-range pairing strength �̃a(0)
becomes divergent and the system is driven into two new
phases, corresponding to the half-integer winding numbers
W = ±1/2. As illustrated in Fig. 5, the long-range topological
phase with a half-integer winding number W = −1/2 appears
in the region where (μ − 4t )2 < V 2

Z − �̃2
a(π ).

For a realistic nanowire, finite-size effects play an im-
portant role and a finite energy splitting could be gener-
ated by the hybridization between two well-localized edge
states. Majorana energy splitting in a hybrid semiconductor-
superconductor nanowire device has been demonstrated in
several experiments [40]. In the Kitaev chain, a pair of mas-
sive edge modes could be induced for small decay rates of
long-range pairing [7–11]. In the following, we resort to the
exact diagonalization method for a lattice model and provide
further insights into the effect of the long-range pairing inter-
action.

The full energy spectrum can be obtained by exactly diago-
nalizing the tight-binding Hamiltonian in Eq. (5). The energy
spectra for a finite nanowire with long-range pairing terms are
depicted in Fig. 6 as a function of the chemical potential μ.
For β > βC , it is demonstrated that MBSs appear in the region
μ2 < V 2

Z − �̃2
a(0) and (μ − 4t )2 < V 2

Z − �̃2
a(π ), correspond-

ing to topological phases with integer winding numbers W =
±1, respectively. With a decrease of β, MBSs appear only
in the region of (μ − 4t )2 < V 2

Z − �̃2
a(π ) for 1 < β < βC ,

while for another original topological region with W = 1, a
finite energy gap is induced by the long-range pairing in the
spectrum and the system is driven into a topological trivial
phase. In this region, the energy gap becomes larger with the
decreasing of β. In the long-range case β � 1, there is no
essential difference in the energy spectra compared to the case
of β > 1. However, in the region (μ − 4t )2 < V 2

Z − �̃2
a(π ),

the near-zero-energy modes are the massive edge modes in
the long-range topological phase, while not the MBSs. With
a further decrease of β, it is noted that the energy gap in
the spectrum is considerably suppressed within the nontopo-
logical region μ2 < V 2

Z − �2
0. As illustrated in Fig. 6(f), the

near-zero-energy ABSs in the topologically trivial phase are
generated for sufficiently small decay rates. In particular, the
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FIG. 6. The energy spectra for a finite Majorana nanowire with
power-law decaying long-range pairing terms as a function of the
chemical potential μ at various decay rates (a)–(f) β = 2, 1.2, 0.5,
0.1, 0.05, and 0.02. The energies for the lowest-lying states are
colored red. We choose L = 10 μm and other parameters are the
same as in Fig. 5(a).

massive edge modes in the topological phase with W = −1/2
and the ABSs in the trivial phase with W = 1/2 exhibit sim-
ilar oscillatory energy-splitting behaviors, as a result of the
finite-size effect.

Figure 7 illustrates the dependence of the lowest positive
energy on the chemical potential and the decay rate of the
long-range pairing interaction. To suppress the finite-size ef-
fect, a relatively long nanowire is chosen to weaken the energy
splitting induced by the hybridization of two edge states at
the wire ends. It is shown in Fig. 7 that in most regions, the
distribution of the lowest positive energy is consistent with the
phase diagram presented in Fig. 5(a). For instance, the near-
zero-energy bound states always appear in the topological
regions with W = ±1 and W = −1/2. The lowest-energy dis-
tribution contains more abundant information than the phase
diagram. An important difference between them is that when
the decay rate of the long-range pairing interaction is weak
enough, the near-zero-energy ABSs emerge in the topolog-
ically trivial regime with W = 1/2. As shown in Fig. 7(b),
these trivial bound states exist only in a very narrow region,
where the strength of long-range pairing almost does not
decay along the nanowire.

The energy of these trivial bound states does not strictly
equal zero, and it fluctuates around the zero energy as a
function of the chemical potential. Figure 7(c) illustrates that
the topological massive edge modes in the W = −1/2 phase
also exhibit similar oscillatory behavior. Figures 7(d) and 7(e)
further demonstrate the similarity of the wave function for
these two types of bound states. Different from the MBSs
in the short-range regime β > 1, the wave functions of these
near-zero-energy bound states are not well localized at the

FIG. 7. The lowest-energy spectrum on a β-μ plane with power-
law decaying long-range pairing. (a) Zeeman field fixed at VZ =
1.0 meV and wire length L = 4 μm. (b) Details of the region
bounded by the red box in (a) with a longer wire L = 10 μm. The
cyan dashed line indicates where the cut in (c) is taken. (c) The
energy of the lowest-lying state E0 (red solid line) and the first few
excited states En (gray solid line) vs the chemical potential μ at
β = 0.01. (d), (e) The spatial profiles of the lowest-energy states
marked by the triangle and diamond symbols in (c). Other parameters
are the same as in Fig. 5.

wire ends. For MBSs, the spatial distribution of the wave
function is exponentially suppressed along the nanowire. On
the contrary, the wave functions of these near-zero-energy
bound states appearing in the long-range regime decay rather
slowly, leading to a finite energy splitting even for a relatively
long nanowire.

IV. TRANSPORT PROPERTIES

For the Kitaev chain, the long-range pairing interaction
could induce a topological phase with a half-integer winding
number, manifesting itself as a pair of massive edge modes
whose finite overlapping survives even in the thermodynamic
limit [7–13]. It is an important issue to distinguish Majorana
zero modes from the massive edge modes. It is a natural
choice to detect the inner physics through the transport mea-
surement in a junction consisting of a long-range Kitaev chain
contacting two normal metal leads. It was suggested by Giu-
liano et al. that the Fano factor of the shot noise could serve as
a probe to discriminate these two bound states [25]. When the
leads are biased at a voltage with respect to the superconduct-
ing chain, a nonzero noise Fano factor is induced by the mas-
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FIG. 8. Differential conductance as a function of the bias volt-
age V and Zeeman splitting energy VZ for a Majorana nanowire
with power-law decaying long-range pairing at (a) β = 0.5 and (b)
β = 1.5. (c), (d) GD and GA are the conductances associated with
the direct tunneling process and the local Andreev reflection, respec-
tively. The extent of VZ is indicated by the red box in (a). (e), (f) The
same quantities plotted within the range of VZ specified by the red
box of (b). G0 = 2e2/h is the quantized conductance. The system
parameters are taken as L = 2 μm, t = 3 meV, �0 = 0.25 meV,
α = 0.1 eV Å, μ = 0, and 	L = 	R = 0.05 meV.

sive edge modes in the long-range topological phase, while
for a Majorana zero mode, the Fano factor approaches zero.

It is shown in Fig. 7 that the ABSs and the massive edge
modes with rather small energy splitting could be induced
by the long-range pairing interaction in the trivial regime
and the long-range topological phase, corresponding to the
half-integer winding numbers W = 1/2 and W = −1/2,
respectively. Different from an ideal long-range Kitaev chain
that supports exact Majorana zero modes, there exists a finite
energy splitting for both the MBSs and ABSs due to the finite-
size effect in a realistic nanowire. It is questionable whether
the transport measurement in a realistic nanowire device
can provide useful information to distinguish the MBSs and
ABSs. We consider a transport setup where a nanowire with
a long-range pairing interaction is weakly coupled to two
normal metal leads. The device parameters are chosen as
t = 3 meV, �0 = 0.25 meV, α = 0.1 eV Å, μ = 0, and
	L = 	R = 0.05 meV, which are based on the typical values
reported by relevant experiments [34,40,41,69,70]. It is noted
that for a realistic nanowire, t � �0, and the long-range
topological phase is difficult to realize for β � 1 in real
nanowire devices.

First, we investigate the influence of long-range pairings on
the differential conductance in both the topological and trivial
cases. For comparison, we separately consider the contribu-
tion of different tunneling processes. Because the symmetric
bias voltage VL = −VR = V/2 is applied, the current com-
ponent ICA contributed by the crossed Andreev reflection
vanishes in this case, which can be deduced from Eq. (27).
Figures 8(a) and 8(b) show the oscillatory energy splitting
for the trivial ABS in the long-range regime (β = 0.5) and
the MBSs in the short-range regime (β = 1.5), respectively.
The corresponding conductance components GD and GA are
illustrated in Figs. 8(c)–8(f), which are contributed by the

direct tunneling and local Andreev reflection processes, re-
spectively. It is demonstrated in Fig. 8 that the conductance
components GD and GA are irrelevant to the types of bound
states, but are sensitive to the energy splitting. The conduc-
tance peaks appear when the bias voltage equals the energy
splitting, and indicate a similar oscillation as the energy
splitting. When the energy splitting approaches zero, it is
demonstrated in Fig. 8 that the conductance peak of GD is
considerably suppressed, while the peak of GA is enhanced.
In this case, the direct transport of electrons via the ABSs or
MBSs is suppressed and the local Andreev reflection domi-
nates the tunneling process.

The relationship between the lowest positive energy levels
and the noise Fano factor of the system is demonstrated in
Fig. 9 as a function of the Zeeman field. Both the MBSs
and ABSs appearing in the topological nontrivial and trivial
regimes are considered, respectively. Figure 9(a) indicates the
dependence of the phase diagram on the Zeeman field and
the decay rates of the long-range pairing. It is shown that
the topological phase hosting MBSs is absent for weak decay
rates β < 1 of the long-range pairing. To investigate the shot
noise signature in different regimes, we separately consider
three long-range decay rates of β = 1.5, 1.0, and 0.5. For the
relatively strong decay rate β = 1.5, the topological property
of the system is similar to an ordinary nanowire without a
long-range pairing interaction. In this short-range case, the
nanowire experiences a topological phase transition for a crit-
ical Zeeman field, and a pair of MBSs appear in two wire ends
for VZ > V C

Z . In the opposite case where β = 0.5, the topolog-
ical phase is considerably suppressed by the strong long-range
effect and is absent in a wide range of the Zeeman field. There
are no topological bound states existing in this case.

Because the near-zero-energy bound states appearing in the
topological trivial phase are not reflected in the phase diagram,
the energy spectra are plotted as a function of the Zeeman
field for different long-range pairing regimes. It is illustrated
in Fig. 9 that the oscillation of the low-energy bound states
could be induced both in the topological nontrivial and trivial
phases. It is deduced from the phase diagram that only the
low-energy spectrum shown in Fig. 9 is MBSs, while the near-
zero-energy states appearing for β = 1.0 and 0.5 are trivial
ABSs. Compared with trivial ABSs shown in Fig. 9, the MBSs
indicate more stable periodicity and increase gradually as a
function of the Zeeman field.

The noise Fano factor as a function of the Zeeman field are
presented in Figs. 9(e)–9(g), corresponding to the decay expo-
nents at β = 1.5, 1, and 0.5, respectively. It is clearly shown
that the behavior of the Fano factor is closely related to the
energy spectrum of the bound states. When the Zeeman field
varies, the noise Fano factor indicates a similar oscillation as
the energy spectrum. As the bound state energy approaches
zero, the Fano factor at the same VZ drops to zero value. The
Fano factor indicates a synchronic dependence on the bound
state energy. As illustrated in Fig. 9, there is no difference
in the Fano factor behavior between the transport properties
of the topological MBSs and the trivial ABSs. It is difficult
to distinguish MBSs and ABSs in a realistic nanowire by
measuring the shot noise properties.

The irrelevance between the shot noise and the topological
property of the system does not contradict the previous results
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FIG. 9. Dependence of the shot noise Fano factors and low-energy spectrum on the Zeeman field in the presence of power-law decaying
long-range pairing. (a) The phase diagram on the β-VZ plane. The colored dashed lines correspond to the cuts where (b)–(d) are taken.
(b)–(d) The low-energy spectrum as a function of Zeeman splitting energy VZ for β = 1.5, β = 1.0, and β = 0.5, respectively. (e)–(g) The
noise Fano factor as a function of VZ and (h)–(j) the lowest energy vs VZ in the ranges denoted by I, II, and III in the upper panels (bounded in
red boxes). The system parameters are taken as those in Fig. 8 and the wire length is taken as L = 4 μm.

in a long-range Kitaev chain. In previous studies, an extended
Kitaev chain with a long enough length was considered [25].
In this case, the hybridization of the MBSs localized in two
wire ends is ignorable and the energy splitting approaches
zero, resulting in a zero Fano factor. For the phase with a
one-half winding number, there always exists a finite energy
for the massive edge states, which corresponds to a nonzero
Fano factor. The values of the noise Fano factor and the bound
state energy are mainly determined by the hybridization of the
edge states. Regardless of MBSs or trivial ABSs, the exact
zero-energy modes facilitate the local Andreev reflection in
the transport. Due to the absence of hybridization between
two edge states, an injecting electron from one lead transfers
2e into the scattering region and a reflecting hole in the same
lead. The exact zero-energy mode leads to the full suppression
of the shot noise. However, the partial overlap between the
edge modes allows a crossed Andreev reflection, in which the
incoming electron from one lead turns into an outgoing hole in
the other lead. Therefore, a finite energy splitting corresponds
to a nonzero noise Fano factor, and the shot noise is not related
to the topological property of the system.

Finally, we discuss the effect of the long-range pairing
with an exponential decay form on the Fano factor of the
shot noise. In Fig. 10 we present the energy spectrum and
the noise Fano factor as a function of the Zeeman field in
the presence of an exponentially decayed long-range pairing
term. The results in the topological nontrivial phase and trivial
phase are illustrated in Figs. 10(a) and 10(b) and Figs. 10(c)
and 10(d), respectively. As shown in Fig. 10, the noise Fano
factor behaves similarly to that in the case of a power-law

decay. The negligible hybridizations between two edge modes
result in zero Fano factors, while a finite energy splitting
by the hybridization always leads to a nonzero Fano factor.
The noise Fano factor and the lowest positive energy splitting
directly manifest the hybridization strength. In the topologi-
cal trivial regime, no near-zero-energy ABSs are induced in
this case and the Fano factor F approaches 2, reflecting the
transmission of Cooper pairs through the device [68]. The
results shown in Fig. 10 are qualitatively consistent with those
of a power-law-type decay. Although the noise Fano factor is
irrelevant to the topological property of the system, it could
serve as a good probe to detect the energy splitting of the
low-energy bound states in the superconducting gap.

V. CONCLUSIONS

In conclusion, we investigate the phase diagram and
the quantum transport properties in a semiconductor-
superconductor hybrid nanowire by taking into account the
long-range pairing interactions. We separately consider two
cases where the long-range pairing is the power law and
exponentially decayed with the distance. Although long-range
pairing with an exponential decay rate could be derived in a re-
alistic device, the power-law decayed form is widely adopted
and investigated in the extended Kitaev chain models. The
general expressions for the winding number and the transport
quantities including the current and shot noise are derived.
For a long-range pairing with a power-law decay rate, it is
found that the threshold magnetic field for the emergence of
MBSs indicates a nonmonotonic dependence on the decay
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FIG. 10. The phase diagram, the lowest energy, and shot noise
Fano factor as a function of Zeeman splitting energy VZ and coher-
ence length ξ in the presence of exponentially decaying long-range
pairing interactions. (a), (b) The phase diagram and the lowest-
energy spectrum on the ξ -VZ plane. The dashed lines indicate where
the cuts in the lower panels are taken. (c) and (d) illustrate the orange
line cut of (b) and the corresponding shot noise Fano factor against
VZ at ξ = 10a. Similarly, (e), (f) and (g), (h) plot the pink and red
line cuts and the corresponding Fano factors as functions of VZ for
ξ = 5a and ξ = 0.5a, respectively. Other parameters are the same as
in Fig. 9.

rates. The threshold Zeeman field is significantly lowered for
a moderate decay rate. As the exponent of the power-law
decay in the long-range pairing is less than one, a long-range
topological phase hosting massive edge modes is induced.
For a weak enough decay rate, the threshold Zeeman field
increases and is restored to the value in the short-range pairing
limit. Differently, for the exponential decay form, the thresh-
old magnetic field becomes weaker when long-range pairing
decays more slowly. Because the low-energy bound states

cannot be captured in the phase diagram, we also perform
the exact diagonalization calculations for the tight-binding
Hamiltonian to obtain the energy spectrum of the system.
It is found that near-zero-energy ABSs could be induced in
a topologically trivial phase for slowly decayed long-range
pairing interactions.

For a one-dimensional Kitaev chain with long-range pair-
ing, the Fano factor of the shot noise is suggested to serve
as a probe to discriminate the topological property of the
system. Our numerical results indicate that regardless of the
MBSs and the trivial ABSs, the noise Fano factor is gener-
ally consistent with the variation of the bound state energy.
However, the noise Fano factor is irrelevant to the topological
property of the system and fails to distinguish these two bound
states. It is noted that this irrelevance does not contradict
the previous studies, in which a Kitaev chain with a long
enough length is considered. In this case, the Majorana energy
splitting approaches zero and crossed Andreev reflection is
fully suppressed, corresponding to a zero Fano factor. For
the massive edge states appearing in the phase with one-half
winding number, there always exists a finite energy splitting,
leading to a nonzero Fano factor. The values of the noise Fano
factor and the bound state energy are mainly determined by
the hybridization of the edge states. Therefore, although the
noise Fano factor cannot be used to distinguish the MBSs and
ABSs, it is a sensitive probe to detect the energy splitting of
these bound states.
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APPENDIX: DERIVATION OF
THE TUNNELING CURRENT

In this Appendix, we start by first considering the tunnel-
ing current of a spinless model without any superconducting
pairings and then deduce the current formula for the Majo-
rana nanowire case. The average current Iγ flowing from the
γ = L, R lead into the wire is defined as

Iγ (t ) = 〈−eṄγ 〉 = ie

h̄
〈[Nγ , H]〉, (A1)

where Nγ = ∑
k d†

kγ
dkγ is the number operator for the γ lead

and dkγ (d†
kγ

) annihilates (creates) an electron of state k in
the normal lead. The total Hamiltonian of the system can be
decomposed into three components,

HL =
∑
kγ

εkγ d†
kγ

dkγ , (A2)

HT =
∑
kγ ,n

tkγ ,nd†
kγ

cn + H.c., (A3)

HC =
∑

i j

hi jc
†
i c j + H.c. (A4)
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Here, HL, HT , and HC describe the leads, the lead-wire
couplings, and the central region, respectively. ci is the anni-
hilation operator on site i of the nanowire wire. cn annihilates
electrons at the two ends of wire, i.e., n = 1, N for γ = L, R
and N is the site numbers. The lead-wire coupling between
the γ lead and the site n is denoted by tkγ ,n. hi j captures the
generic hopping terms between site i and j in the wire. Since
Nγ commutes with HL and HC , combining with [d†

k dk, d†
k′ci] =

d†
k ciδkk′ and [d†

k dk, c†
i d ′

k] = −c†
i dkδkk′ , Eq. (A1) can be further

expressed as

Iγ (t ) = ie

h̄
〈[Nγ , HT ]〉

= ie

h̄

∑
k;k′γ ′

tk′γ ′,n〈[d†
kγ

dkγ , d†
k′γ ′cn]〉

+ t∗
k′γ ′,n〈[d†

kγ
dkγ , c†

ndk′γ ′]〉

= ie

h̄

∑
k

tkγ ,n〈d†
kγ

cn〉 − t∗
kγ ,n〈c†

ndkγ 〉. (A5)

Note that in the Keldysh formalism, the lesser Green’s func-
tion is defined as the following correlation functions,

G<
n,kγ (t, t ′) ≡ i〈d†

kγ
(t ′)cn(t )〉, (A6)

G<
kγ ,n(t, t ′) ≡ i〈c†

n(t ′)dkγ (t )〉. (A7)

Insert back into Eq. (A5) and use the relation G<
n,kγ (t, t ′) =

−G<
kγ ,n(t, t ′)�, we have

Iγ (t ) = e

h̄

∑
k

tkγ ,nG<
n,kγ (t, t ′) − t∗

kγ ,nG<
kγ ,n(t, t ′)

= 2e

h̄
Re

∑
k

tkγ ,nG<
n,kγ (t, t ′). (A8)

To obtain the expression of G<
kγ ,γ (t, t ′), we apply the Langreth

analytic continuation rules on the Keldysh contour,

G<
n,kγ (t, t ′) =

∑
m

∫
dt1t�

kγ ,m

[
Gr

nm(t, t1)g<
kγ (t1, t ′)

+G<
nm(t, t1)ga

kγ (t1, t ′)
]
, (A9)

where Gr
nm is the retarded Green’s function for the wire and

g<(r,a) are the Green’s functions accounting for the leads:

g<
kγ (t, t ′) ≡ i〈d†

kγ
(t ′)dkγ (t )〉, (A10)

gr,a
kγ

(t, t ′) ≡ ∓iθ (±t ∓ t ′)〈{dkγ (t ), d†
kγ

(t ′)}〉. (A11)

Then we can Fourier transform Eq. (A9) into the energy do-
main as

G<
n,kγ (ω) = ∑

m t�
kγ ,m

[
Gr

nm(ω)g<
kγ (ω) + G<

nm(ω)ga
kγ (ω)

]
. (A12)

By substituting Eq. (A12) into Eq. (A8) we have

Iγ =2e

h̄

∫
dω

2π
Re

∑
k,nm

tkγ ,nt∗
kγ ,m

[
Gr

nm(ω)g<
kγ (ω) + G<

nm(ω)ga
kγ (ω)

]
=2e

h̄

∫
dω

2π
Re

∑
nm

Gr
nm(ω)

[∑
k

tkγ ,ng<
kγ (ω)t∗

kγ ,m

]
+ G<

nm(ω)

[∑
k

tkγ ,nga
kγ (ω)t∗

kγ ,m

]

=2e

h

∫
dω Re

∑
nm

Gr
nm(ω)�<

γ ,mn(ω) + G<
nm(ω)�a

γ ,mn(ω), (A13)

where we use the definitions of self-energies for lead γ ,

�<
γ ,mn(ω) ≡

∑
k

tkγ ,ng<
kγ (ω)t∗

kγ ,m, (A14)

�a
γ ,mn(ω) ≡

∑
k

tkγ ,nga
kγ (ω)t∗

kγ ,m. (A15)

Note that the current density in Eq. (A13) can be expanded as

Iγ (ω) = e

h

∑
nm

[
Gr

nm(ω)�<
γ ,mn(ω) − �<

γ ,nm(ω)Ga
mn(ω)

+ G<
nm(ω)�a

γ ,mn(ω) − �r
γ ,nm(ω)G<

mn(ω)
]
. (A16)

This result can be further expressed in matrix form where we
drop the subscripts to denote matrices,

Iγ (ω) = e

h
Tr

[
Gr (ω)�<

γ (ω) − �<
γ (ω)Ga(ω)

+G<(ω)�a
γ (ω) − �r

γ (ω)G<(ω)
]

= e

h
Tr

[−i�<
γ (ω)i[Gr (ω) − Ga(ω)]

+i
[
�a

γ (ω) − �r
γ (ω)

]
[−iG<(ω)]

]
= e

h
Tr

[
�in

γ (ω)A(ω) − 	γ (ω)Gn(ω)
]
, (A17)

where the second equality holds since Tr[AB] = Tr[BA]. For
a more compact expression we introduce the following nota-
tions,

Gn ≡ −iG<, (A18)

�in
γ ≡ −i�<

γ , (A19)

A ≡ i[Gr − Ga], (A20)

	γ ≡ i
[
�a

γ − �r
γ

]
. (A21)
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By the Dyson equation and definitions of retarded and ad-
vanced Green’s function of the central region,

Gr = [ε − HC − �r]−1,

Ga = (Gr )†,

we have

(Gr )−1 − (Ga)−1 = �r − �a = i	, A ≡ i[Gr − Ga]

= iGr[(Ga)−1 − (Gr )−1]Ga = Gr	Ga,

where �r(a) = �
r(a)
L + �

r(a)
R , 	 = 	L + 	R. Combining with

the relations

Gn = Gr�inGa,

�in(ω) =
∑

γ

�in
γ (ω) =

∑
γ

	γ (ω) fγ (ω),

where fγ (ω) denotes the Fermi-Dirac distribution for lead γ .
We can further express Eq. (A17) as

Iγ (ω) = e

h
Tr

[
�in

γ (ω)A(ω) − 	γ (ω)Gn(ω)
]

= e

h
Tr[	γ (ω) fγ (ω)Gr (ω)[	L(ω) + 	R(ω)]Ga(ω)

−	γ (ω)Gr (ω)[	L(ω) fL(ω) + 	R(ω) fR(ω)]Ga(ω)]

= e

h
Tr[	L(ω)Gr (ω)	R(ω)Ga(ω)][ fL(ω) − fR(ω)].

(A22)

Now we calculate the tunneling current for the Ma-
jorana nanowire case. With the Nambu spinor ψ

†
k =

[c†
k↑, c†

k↓, c−k↑, c−k↓], the number operator of lead γ now
reads

Nγ ≡
∑

k

d†
k↑,γ

dk↑,γ + d†
k↓,γ

dk↓,γ

=1

2

∑
k

[d†
k↑,γ

dk↑,γ + d†
k↓,γ

dk↓,γ

− d−k↑,γ d†
−k↑,γ

− d−k↓,γ d†
−k↓,γ

]. (A23)

Following Eq. (A1), the total current from lead γ can then be
calculated,

Iγ (t ) = ie

h
〈[Nγ , H]〉

= ie

2h

[〈[d†
k↑,γ

dk↑,γ , H]〉 + 〈[d†
k↓,γ

dk↓,γ , H]〉

− 〈[d−k↑,γ d†
−k↑,γ

, H]〉 − 〈[d−k↓,γ d†
−k↓,γ

, H]〉]

= 1

2

[
Ie↑
γ + Ie↓

γ − Ih↑
γ − Ih↓

γ

]
= 1

2
Tr[̃τzIγ ], (A24)

where the trace is taken over the Nambu space and τ̃z ≡
12N×2N ⊗ τz accounts for the different charges carried by elec-
trons and holes. The current operator in matrix form Iγ reads

Iγ = e

h

[
Gr�<

γ − �<
γ Ga + G<�a

γ − �r
γ G<

]
. (A25)

Here, G<(r/a) and �<(r/a)
γ denote the matrix forms of the

Green’s functions and self-energies with the Nambu spinor
chosen to be ψ† = [c†

1↑, . . . , c†
N↓, c1↑, . . . , cN↓]. They are

given respectively as block matrices,

G<(r/a) ≡
[

G<(r/a)
ee G<(r/a)

eh

G<(r/a)
he G<(r/a)

hh

]
, (A26)

�<(r/a)
γ ≡

[
�<(r/a)

γ ,ee �
<(r/a)
γ ,eh

�
<(r/a)
γ ,he �

<(r/a)
γ ,hh

]
. (A27)

Note that for a normal metallic lead, we have diagonal
self-energies, namely, �

<(r/a)
γ ,he = �

<(r/a)
γ ,eh = 0 holds. This ob-

servation further simplifies the matrix product terms in
Eq. (A25) to

G� =
[

Gee�ee + Geh�he Gee�eh + Geh�hh

Ghe�ee + Ghh�he Ghe�eh + Ghh�hh

]
=

[
Gee�ee Geh�hh

Ghe�ee Ghh�hh

]
, (A28)

where we leave out other indices for brevity. Substituting this
result into Eq. (A24), the total current from γ lead can be
formulated as

Iγ = e

2h
Tr

[(
Gr�<

γ − �<
γ Ga + G<�a

γ − �r
γ G<

)
ee

−(
Gr�<

γ − �<
γ Ga + G<�a

γ − �r
γ G<

)
hh

]
≡ e

2h
Tr

[
Iee
γ − Ihh

γ

]
, (A29)

where we use the notation (AB)ee(hh) ≡ Aee(hh)Bee(hh). Fol-
lowing a similar derivation developed in Eq. (A17), we can
rewrite the total current for the Majorana nanowire in terms of
notations given in Eq. (A18). In the Nambu space we have

	γ ,ee(hh) ≡ 	e(h)
γ , (A30)

�in
γ ,ee(hh) ≡ 	e(h)

γ f e(h)
γ , (A31)

where f e(h)
γ (ω) = 1/(1 + e(ω∓μL )/kBT ) are the Fermi distri-

bution functions of an electron and hole in the γ lead,
respectively. The terms Iee

γ and Ihh
γ in Eq. (A29) take the forms

Iee
γ = (

Gr�<
γ − �<

γ Ga + G<�a
γ − �r

γ G<
)

ee

= [−i�<
γ i(Gr − Ga) + i

(
�a

γ − �r
γ

)
(−iG<)

]
ee

= 	e
γ f e

γ

[
Gr

(
	e

L + 	h
L + 	e

R + 	h
R

)
Ga

]
ee

− 	e
γ

[
Gr

(
	e

L f e
L + 	h

L f h
L + 	e

R f e
R + 	h

R f h
R

)
Ga

]
ee

= 	e
γ

(
Gr	e

γ̄ Ga
)

ee

(
f e
γ − f e

γ̄

) + 	e
γ

(
Gr	h

γ Ga
)

ee

(
f e
γ − f h

γ

) + 	e
γ

(
Gr	h

γ̄ Ga
)

ee

(
f e
γ − f h

γ̄

)
, (A32)
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Ihh
γ = (

Gr�<
γ − �<

γ Ga + G<�a
γ − �r

γ G<
)

hh

= 	h
γ f h

γ

[
Gr

(
	e

L + 	h
L + 	e

R + 	h
R

)
Ga

]
hh − 	h

γ

[
Gr

(
	e

L f e
L + 	h

L f h
L + 	e

R f e
R + 	h

R f h
R

)
Ga

]
hh

= 	h
γ

(
Gr	h

γ̄ Ga
)

hh

(
f h
γ − f h

γ̄

) + 	h
γ

(
Gr	e

γ Ga
)

hh

(
f h
γ − f e

γ

) + 	h
γ

(
Gr	e

γ̄ Ga
)

hh

(
f h
γ − f e

γ̄

)
, (A33)

where γ = L, R and γ̄ = R, L. Inserting Eqs. (A32) and (A33)
back into Eq. (A29), we obtain the expression of current Iγ in
the Nambu-spinor space as

Iγ = e

h

∫
dω

[
TD

(
f e
γ − f e

γ̄

) + TA
(

f e
γ − f h

γ

)
+TCA

(
f e
γ − f h

γ̄

)]
, (A34)

where the transmission functions contributed by the direct
tunneling process, the local Andreev reflection, and crossed

Andreev reflection are given, respectively,

TD ≡ Tr
[
	e

γ Gr	e
γ̄ Ga

]
,

TA ≡ Tr
[
	e

γ Gr	h
γ Ga

]
,

TCA ≡ Tr
[
	e

γ Gr	h
γ̄ Ga

]
. (A35)

This result is equivalent to Eq. (27) in Sec. II.
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