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Band alignment of transition metal dichalcogenide heterostructures
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Two-dimensional heterostructures and superlattices consisting of transition metal dichalcogenides offer huge
potential in the next generation of optoelectronic devices. For such transition metal dichalcogenides, a predictive
theory of their properties, based upon in-depth understanding of the interlayer interactions, is desirable due to
the huge potential number of combinations. These weakly interacting heterobilayers provide an excellent case
study to understand how interlayer interactions interfere with the Anderson/Schottky picture of band alignment
at interfaces. We demonstrate here, using a combination of first principles and tight-binding methods, how the
band alignment can be predicted in terms of a modified form of Anderson’s rule. We explain how two physically
based corrections to Anderson’s rule, �E� and �EIF, are necessary for accurate band alignment prediction. We
identify the interlayer interactions that affect band alignment prediction and show how these take the form of long
range interactions between the dz2 and/or pz orbitals and induced fields between layers. Finally, we apply this
theorem to Moiré and strained structures to predict these structures band alignment and provide a comprehensive
guide to accurately predict the resultant band gap of the various transition metal dichalcogenide heterostructures.

DOI: 10.1103/PhysRevB.103.045417

I. INTRODUCTION

Two-dimensional (2D), or atomically thin, materials offer
a high degree of customizability through their arrangement
into van der Waals heterostructures. This is desirable because
it allows a wide range of fixed material parameters to be
tailored by the interface physics. This in turn leads to new
properties [1], which are a result of the combined heterostruc-
ture. These van der Waals heterostructures are breaking new
ground in applications such as high ZT thermoelectrics [2,3],
highly efficient photodetectors [4], and photovoltaic cells [5].
A further unique feature of heterostructures that has caught
considerable attention are interlayer excitons, particularly in
transition metal dichalcogenide (TMDC) heterostructures for
optoelectronics [6–10]. This is in part due to the spatial sep-
aration of electron-hole pairs [11]. The fundamental physics
driving these applications would benefit from having a pre-
dictive approach allowing one to estimate the key properties
of the heterostructure such as the band gap, and a more de-
tailed understanding of the interface physics is determined
by the band alignment and interactions of the constituents.
The interface physics of these 2D heterostructures has been
of intense focus, with several measurements [5–8,11–20] and
theoretical calculations [10,21,22]. However, given the greater
than 5000 2D materials and hence 16 million combinations
[23], a predictive approach made using only the properties of
the constituents is vital.

Fundamentally, the band alignment of two-dimensional
heterostructures is of great interest. However, different ap-
proaches have been adopted to explain band alignment in
these systems. Many use Anderson’s rule, despite it being
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a macroscale approach, directly or implicitly for TMDCs to
determine the band alignments [5,11,13,14,20,21,24], and it
has even been reported that Anderson’s rule is exact for these
systems [14]. Conversely, those working with 3D materials,
or conventional heterostructures, have long cited that Ander-
son’s rule fails for these systems [25–27]. The origin of this
contradiction provides an opportunity to develop a fuller un-
derstanding of band alignment in all these structures. Unlike
in macroscale interfaces, where the materials can be expected
to adopt their bulk properties far from the interface, these 2D
materials are typically one nanometer in thickness meaning
such bulk methodologies would be expected to fail.

Anderson suggested (as well as Schottky Mott) that
band alignment depended purely on the relative work-
function/affinities of the two constituents. However, relatively
few experimental systems have validated this approach. This
model was expanded [28] upon thereafter to include the effect
of charge states at the interface. These states are a result
of (a) the formation of new states due to chemical bonding
between the two systems and (b) a requirement for charge
neutrality caused by the induced field created from the resul-
tant electron affinities of the two systems [29]. These charge
states include interface (or metal) induced gap states, IIGS (or
MIGS) [30,31]. Predicting the energies of these states, and the
shape of the electrostatic field induced across the interface, is
nontrivial due to the atomic bonding and system geometry.
The recent exploration [5,11,13,14,20,21] of weakly interact-
ing two-dimensional materials offers a chance to revisit the
understanding of band alignment in these systems, as unlike
in the 3D case, dangling bonds are not present at the sur-
face and new bonds are not formed between the layers, nor
is substantial reconstruction present [32]. Effectively, these
TMDC heterostructures are the closest real world likenesses
to Anderson’s original thought experiment, where the band
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alignment results from bringing two separate systems close
together from infinity with minimal interaction [25]. These
interactions (such as IIGS) should be more clearly identifiable
in such systems and thus provides a window to enhancing our
understanding of how the band alignment is governed.

In this paper we explain how band alignment in TMDC
heterostructures is governed, providing insight into why An-
derson’s rule appears exact in some cases and fails in others.
We determine how these differences arise based on the inter-
actions of the atomic wave functions and the induced electric
field due to the difference in the hole affinities of the con-
stituents. From this, we derive analytical expressions that can
be applied to predict the band gap in TMDC van der Waals
heterostructures. Our methodology comes from a combination
of first principles density functional theory and analytical
modeling based upon tight binding. The final expression
given provides a method to estimate the band alignment of
these heterostructures, alleviating the necessity of large scale
numerical simulations. Finally, we discuss how the theory
accounts for strain and Moiré systems and how such a theory
could be extended to all 2D heterostructures.

II. METHODOLOGY

To investigate 2D TMDC heterostructures and their in-
teractions, we employ an analytical model developed using
tight-binding and ab initio methods. This model utilizes den-
sity functional theory to calibrate and validate it. For our
ab initio calculations, we use the PBE [33] and HSE06 [34]
functionals with PAW pseudopotentials [35] and Grimme-D3
[36] correction as implemented in VASP [37]. For our density
functional calculations, a plane-wave cutoff of 900 eV is used
to accurately capture the confinement effects. Simulations
with cutoffs of 600 eV and below showed changes in the
electronic structure, which converged at 600 eV and higher.
For our consideration of the Monkhorst-Pack grid [38] used
in the simulations, we applied a minimum of 15 × 15 × 15 for
bulk TMDCs and a 15 × 15 × 1 (or greater) Monkhorst-Pack
grid for monolayer TMDCs. For Moiré cells, a k-point density
greater than 12 × 12 × 1 per monolayer constituent cell is
maintained. Bulk TMDCs consisted of two three-atom indi-
vidual layers in the 2H structure. Similarly, our monolayers
consisted of a single layer of three atoms in H structure. Our
heterostructures are formed from two of these primitive cells
with H-type stacking. To generate Moire structures we used
ARTEMIS [39]. This allows the generation of supercells with
a lattice matching of 12 MoS2 cells to 13 CrS2 cells with an
angle ∼16.1◦ and 19 MoS2 cells to 16 HfS2 cells with an
angle ∼23.4◦ between their respective primary lattice vectors.
The structures began with an interatomic distance smaller
than the average of the two bulks and were allowed to relax.
In all the systems considered, we used a 15 Å vacuum gap
between monolayer and bilayers to avoid spurious interactions
with periodic replicas. All structures are relaxed using the
conjugate gradient algorithm to within 0.001 eV/Å. Also, to
avoid the effect of electric fields across the vacuum created by
the charge transfer involved in the heterostructures, we created
mirror image structures which were compared with to ensure
the electric field effects were negligible in all cases. The
bilayer structures maintain their lack of inversion symmetry

and therefore band splitting due to spin orbit coupling (SOC)
still occurs [40,41]. However, here SOC is neglected as it is
an intralayer effect [42] with no influence on the interlayer
coupling [43] and has no direct effect on the band alignment.
All relevant systems have been examined with SOC to confirm
this conclusion.

III. RESULTS AND DISCUSSION

A. Band structure of TMDC heterostructures

A broad set of TMDCs are investigated using the PBE
functional. In Fig. 1 we can observe the full band structure
of nine TMDC heterostructures compared to their individual
constituents. For many of the heterostructures the overlay
bands appear to match their constituents almost exactly.
The fact that this similarity is so strong could help ex-
plain why Anderson’s rule is so commonly used in literature
[5,11,13,14,20,21,24]. Despite this however, there are key
differences that can be identified between the bands of the
heterostructure and the constituents. Two clear alterations to
the bands occur when a heterostructure is formed. Firstly,
there is a static shift in some of the bands and, secondly, there
is an interaction that drives up the valence band maximum
at the Brillouin zone center (�). These two changes are the
only significant adaptation to the Anderson’s rule prediction.
The limited variation and consistency of these subtle effects in
the band structure make truer band-gap prediction for TMDC
heterostructures attainable.

We examine in further detail two subcases considered us-
ing the more accurate HSE06 functional. We present in Fig. 2
the band alignment of WSe2/MoS2 and MoS2/CrS2, and we
show that, while Anderson’s rule is a reasonable estimate,
it is not precisely held. This is just as was found using the
PBE functional. The results in Fig. 2 show that the deviation
from Anderson’s rule is 0.07 eV (8.0%) for WSe2/MoS2 and
0.12 eV (11.9%) for MoS2/CrS2.

The two heterobilayers WSe2/MoS2 and MoS2/CrS2, are
laterally strained resulting in a 1.90% compression on WSe2

and 1.92% expansion on MoS2, for the WSe2/MoS2 het-
erobilayer, and a 2.14% compression on MoS2 and 2.53%
expansion on CrS2, for the MoS2/CrS2 heterobilayer. This
is because TMDC heterostructures are typically incommen-
surate and thus the creation of a periodic unit cell inevitably
results in strain. Despite this, it is still possible to distinguish
interlayer and strain effects. Our calculations show the effects
of strain can be treated as decoupled from the interlayer inter-
actions.We further discuss the effects of strain on our theory
later.

B. Band alignment theory

The band structures in Fig. 1 and 2 show two consistent
deviations from Anderson’s rule. As such, two factors are
needed to correct for these deviations. These corrections are
(i) �E� , the change in the valence band energy at � created
due to interlayer interaction (an IIGS effect) and (ii) �EIF,
the energy shift in all the bands of the constituent with the
smallest hole affinity created due to the induced field.

First we discuss the role of IIGS, that is the change in
the band structure due to interlayer interactions. Adjacent
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FIG. 1. The overlay band structures of all nine studied heterobilayers. From (a) to (i) they are (a) CrS2/MoS2, (b) WSe2/MoS2,
(c) MoS2/WS2, (d) WSe2/WS2, (e) ZrS2/HfS2, (f) CrSe2/WSe2, (g) CrS2/WS2, (h) MoS2/ZrS2, (i) WS2/ZrS2. Each panel consists of
the band structure of the heterostructure and the individual constituents and are aligned by reference to the vacuum level.

layers interact through weak transient bonding resulting in
small distortions to the existing bands. These distortions are
shown in Figs. 2(a) and 2(b), where �E� equals 0.43 eV and
0.36 eV for WSe2/MoS2 and MoS2/CrS2, respectively. In
the WSe2/MoS2 �E� does not raise the valence band at �

above the height of the valence band at K . Similarly, one can
observe that the induced shift in the heterobilayer bands due
to band alignment, �EIF, is equal to 0.11 eV, for WSe2/MoS2

and acts on the WSe2 bands. The deformation of the band

structure by �E� is highlighted in Fig. 2(b), while Fig. 2(a)
shows �E� − �EIF. In the MoS2/CrS2 case, the value of
�EIF is very small, resulting in the MoS2 bands being shifted
by 0.03 eV in the heterobilayer. This shift is driven by an
induced field created from the relative positions of the two
constituents’ valence bands. It is interesting that our results
show that correction due to charge transfer resulting from the
band offset is nonlinear, as has been suggested in previous
works [44]. This, in turn, suggests that the electric field does
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FIG. 2. (a) The electronic dispersion of the heterostructure
WSe2/MoS2 (black dashed) overlaying the electronic dispersions
of the two constituents WSe2 (red) and MoS2 (blue). (b) Disper-
sion of the heterostructure MoS2/CrS2 (black dashed) overlaying
the electronic dispersions of the MoS2 (blue) and CrS2 (yellow).
(c) Band edge diagram of heterostructures and their constituents
showing VBM and CBM. All energies are plotted relative to the
vacuum energy and calculated with the HSE06 functional.

not follow the simple quadratic form normally considered for
a heterojunction.

1. Induced field correction, �EIF

The shift in band alignment due to the field induced from
the band offset can be described as �EIF. The simulation data
for �EIF is plotted against the VBM offset (χh,B − χh,A) in
Fig. 1. �EIF is defined as the average band shift for all k
points along the band edge from M to K. Figure 3 shows the
empirical fit

�EIF = α (exp(β (χh,B − χh,A)) − 1), (1)

where α and β are 0.03 eV and 1.91 Å/eV, respectively. We
define material A as having the smaller hole affinity, χh,A,
compared to the hole affinity of material B, χh,B. The form
of Eq. (1) both agrees with the data and obeys the condition
�EIF = 0 for identical layers (i.e., a bilayer system consisting
of a single material).
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FIG. 3. The relationship between the valence band offset (χh,B −
χh,A) and the resultant shift in the band energies (�EIF). The inset
gives the equation and parameters for the empirical fit (blue dashed
line).

The shift, �EIF, is similar to the description of band
bending in conventional heterostructures created by a charge
transfer that occurs due to the VBM offset, which induces an
electric field. However, the functional form of the electric field
is not simply described. Its effect is to change the relative
energy of the bands in each layer such that local electron
affinity is preserved. The resultant electric field also changes
the vacuum energy in that region. By defining the highest local
potential energy as the vacuum, we observe that the lower
valence band material (negatively charged, so higher vacuum
energy) is aligned with the heterobands and the other layer
has shifted bands. This shift is the term we describe as �EIF.
As expected, this induced field does not change the size of
the band gap of either constituent as has been observed in
monolayer systems [45].

The effect of �EIF on the bands is constant however how it
effects the band gap depends on the band alignment. In type II
band alignment (where the two band gaps partially overlap),
the effect of �EIF will be to increase the band gap since the
VBM will drop lower. In the case of type I band alignment
(where one constituents band gap lies completely within the
other material), the heterobilayers will have an unchanged
band gap because both the VBM and conduction band minima
(CBM) change together. Hence, from Eq. (1) it is possible to
determine the shift, �EIF, based only on the properties of the
monolayer constituents.

2. Layer hybridization correction, �E�

We have explored one of the identified consistent devi-
ations from Anderson’s rule, and a second corrective term,
arising from the overlap of the atomic wave functions between
layers, is required, which we describe as �E� . This shift
can be seen in Figs. 2(a) and 2(b) at �, as well as many of
the band structures in Fig. 1. This shift will usually, but not
always, affect the band gap, depending on where the VBM
is located in the Brillouin zone. When the valence band at
�, EVB(k = �), is below the VBM, EVBM, by an amount
greater than �E� , then the band gap will not be affected.
As is the case in Fig. 2(b), we find that, typically, �E� >

045417-4



BAND ALIGNMENT OF TRANSITION METAL … PHYSICAL REVIEW B 103, 045417 (2021)

FIG. 4. (Top) The relation between �E� and �d . (Bottom) The
tabulated fitting parameters that reproduce the simulation data, cor-
responding to those in Eq. (2) for η0 (eV) and η1 (eV/Å). Both ZrS2

and HfS2 are metallic for d � 6 Å and therefore have no η′
i values.

(EVBM − EVB(k = �)) and thus it reduces the band gap of the
heterostructure.

The �E� term comes from the weak overlap of the or-
bitals of the two constituent layers. To examine this behavior,
we have calculated the magnitude of �E� using first prin-
ciples simulations by varying the interlayer spacing d in
bulk TMDCs, as shown in Fig. 4. Analysis of the projected
density of states suggests that the magnitude of �E� is con-
trolled by the overlap of the 〈dz2 |dz2〉 and 〈pz|dz2〉 (which is
a function of d). The sharp discontinuity corresponds to the
switch between energy configurations, i.e., from 〈dz2 |dz2〉 to
〈pz|dz2〉. To confirm this, we have developed a tight binding
model [46–48], calibrated from our first principles findings.
In this model, we have shown that, while the in-layer com-
ponents consist of dxy and dx2−y2 , we only need to consider
the interactions of the pz and dz2 orbitals between layers to
replicate the behavior of �E� . In agreement with previous
work we dismiss the weaker π and δ bonding as insignificant
interlayer contributions [49]. These results show that �E� is
driven by the bonding and antibonding interaction of the pz

and dz2 orbitals between layers. Generally, the tight-binding
approach clearly shows that the pz-dz2 (dz2 -dz2 ) dominates
in the high (low) separation regimes. We note, however, for
HfX2 and ZrX2 the behavior is controlled by 〈pz|pz〉, which
becomes metallic at low separations. This is due to these
nanostructures effectively having their d orbitals depleted to
form the TMDC structure. Furthermore, the splitting is no
longer meaningful beyond the point that the nanostructure
becomes metallic.

Following our tight-binding model, we derive a simplified
form for �E� by directly considering the overlap of 〈dz2 |pz〉
or 〈dz2 |dz2〉. This suggests �E� should take the form

�E� = e−λ�d
n+n′−3∑

i=0

ηi(�d )i, (2)
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FIG. 5. Conduction and valence band edges calculated within
PBE for the 2D TMDCs. The colored bar edges represent the valence
bands (shades of blue/cyan) and the conduction bands (shades of
red/yellow) for each monolayer; all energies are taken with respect
to the vacuum level. Due to the band gap underestimate by PBE, the
electron affinities are overestimated.

where �d is the change in separation from the bulk in-
terlayer spacing, defined as d − d0, with d0 being the bulk
interlayer spacing and d the interlayer spacing of the het-
ero/homobilayer. λ and ηi are constants, which differ for the
pz-dz2 or dz2 -dz2 regimes with n and n′ being principle quan-
tum numbers. One can estimate the value of λ and ηi using the
2H-TMDCs (ηi in the pz-dz2 regime and where η′

i denotes the
dz2 -dz2 regime). Hence, we have evaluated �E� for many 2H-
TMDCs at different spacings (d), using the PBE functional,
as shown in Fig. 4. From these results, we determine that
λ = 1.3 Å−1 (λ′ = 0.5 Å−1) with the exception of those 2D
layered materials which are pz-pz dominated (ZrS2 and HfS2)
where λ = 0.75 Å−1. The values of ηi for Eq. (2) are given in
Fig. 4. The first two terms are sufficient to make the error of
Eq. (2) negligible (∼10−5 eV) compared with the simulation
data.

The remaining parameters are material dependent and can
now be evaluated using the appropriate values for λ and ηi

and the interlayer distance. The interlayer distance can be
approximated as the average of the distances between the
layers in the two bulk constituents. Now, one only has to
consider the higher VBM material and use Eq. (2) with that
materials parameters and the average interlayer spacing to
estimate �E� .

3. Band-gap prediction

Having evaluated the corrections to Anderson’s rule, we
propose a corrected form which calculates the band offsets
using only information about the monolayer constituents. We
present the key properties, the band edges, of the monolayer
constituents in Fig. 5.

The two corrections explored in this work can be im-
plemented on top of an Anderson’s approach. It is first
necessary to evaluate whether the system is type I, II, or
III. This is determined from the electron and hole affinities,
χe and χh, respectively. By defining material A using the
condition χh,A > χh,B, it is possible to define the type of
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TABLE I. Tabulated values of TMDC heterobilayers quantitatively comparing the original and corrected Anderson’s band-gap predictions
to the DFT PBE band-gap values. The values of �E� and �EIF are calculated using Eq. (1) and Eq. (2), respectively. Here �EVB equals
EVBM − EVB(k = �) and d is the interlayer spacing. The error values of the corrected method are directly compared to those obtained using
Anderson’s rule. Heterobilayers in this table without provided error values have type III band alignment and are therefore metallic.

�EVB �E� �EIF d Band gap (eV) Error

Hetero (eV) (eV) (eV) (Å) DFT Anderson’s Corrected Anderson’s Corrected

CrS2/MoS2 0.045 0.378 0.003 6.15 0.465 0.700 0.343 50.71% 20.90%
WSe2/MoS2 0.670 0.537 0.078 6.37 0.647 0.521 0.641 19.41% 7.36%
MoS2/WS2 0.141 0.342 0.009 6.22 1.260 1.505 1.107 19.51% 4.27%
WSe2/WS2 0.666 0.536 0.077 6.37 0.936 0.858 0.941 8.33% 0.09%
ZrS2/HfS2 0.295 0.656 0.023 6.22 0.696 1.021 0.683 46.67% 1.89%
CrSe2/WSe2 0.404 0.102 0.035 6.48 0.468 0.398 0.438 15.00% 7.54%
CrS2/WS2 0.252 0.371 0.019 6.17 0.393 0.451 0.301 14.85% 15.43%
MoS2/ZrS2 1.114 0.594 0.083 6.18 0.000 0.000 0.000
WS2/ZrS2 1.313 0.340 0.113 6.22 0.000 0.000 0.000

Average 24.93% 8.21%
Standard deviation 16.70% 7.48%

heterostructure following the normal convention, i.e., type I
alignment if χe,B > χe,A, type III if χe,A > χh,B, type II oth-
erwise. The �EIF correction will only affect the band gap for
type II band alignments. It is also necessary to determine to
what extent �E� will affect the band gap. As discussed earlier,
�E� must be larger than (EVBM − EVB(�)) to alter the band
gap, and generally this is the case. This requires the difference
in energies for the valence band at �, EVB(�), and the valence
band maxima (normally at K), EVBM. We implement the pos-
itive part function, which express the band-gap reduction due
to �E� as

E ′
� = �E� − (EVBM − EVB(�))

2

+ |�E� − (EVBM − EVB(�))|
2

. (3)

Hence, we can evaluate the band gap of the heterostructure.
For type I, it is expressed as

Eg = χe,B − χh,B − E ′
�, (4)

and for type II

Eg = χe,B − χh,A + �EIF − E ′
�, (5)

and for type III Eg = 0. This approach reduces the mean
error in predicting the band gap of a heterostructure using
Anderson’s rule (approximately 25%) to less than 10%.

A complete quantitative comparison between the ab initio
simulation data (from Fig. 1) and the predictive band-gap
theory is included in Table I. It shows that the corrected values
of Anderson’s rule have a reduced error on average. The
greatest reduction is given by ZrS2/HfS2 and the only system
for which the corrected prediction is worse is CrS2/WS2. The
average error in band-gap prediction falls below 10% when
applying the corrections. Conversely Anderson’s rule has an
average error above 24%. This demonstrates the advantages of
applying the corrected theory over the current Anderson’s rule
approach. Furthermore, with the standard deviation of the cor-
rected rule being approximately half that of Anderson’s rule,

there is significantly more reliability that the corrected rule
will, for a given heterostructure pairing, provide a reasonable
band-gap prediction.

Corrected rule band gaps can be calculated by applying
Eqs. (3), (4), and (5) alongside the Table I values for �EVB,
�E� , �EIF, and Anderson’s band gap. When the heterobilayer
is of type I band alignment, the Anderson’s rule prediction for
the band gap is equivalent to (χe,B − χh,B) from Eq. (4). When
the heterobilayer is of type II band alignment, Anderson’s rule
is (χe,B − χh,A) from Eq. (5). The value of d is the interlayer
distance, however, the average of the constituents can be used
with a mean error of 1.87%. Calculation of the band gaps
depends on using the appropriate equation for the respective
band alignment; CrS2/MoS2 and CrS2/WS2 are of type I,
MoS2/ZrS2 and WS2/ZrS2 are of type III, and all others are of
type II.

C. Discussion of Moiré and strain effects on band alignment

Thus far all discussions have included strained TMDCs
with no rotation between layers. This is a product of the
one-to-one cell matching. The assumption that the effects
of strain are additive to the effects of interlayer interac-
tion is reasonable. The basis of this assumption is that if a
strained TMDC constitutes part of the heterostructure then
that constituent is not MX2 but is instead strained MX2. At
first, this would appear to undermine the empirical band-gap
prediction presented in this paper as it would require ex-
act knowledge of the strain characteristics of each TMDC,
both when in a heterostructure and when in isolation. This
would, once again, require the application of density func-
tional theory and hence one might as well calculate the
heterostructure itself. However, real world TMDCs tend to
form heterostructures with incommensurate lattice matching
resulting in a Moiré lattice pattern. A greater concern of Moiré
structures is how rotated lattices will affect the interlayer
interaction.

Through the examination of Moiré lattice heterostruc-
tures, testing the assumption that strain is additive with the
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FIG. 6. (a),(b) An overlay band structure showing the constituent
bands (blue and orange) overlayed by the heterobilayer bands (black
dashed) with (a) showing the Moiré structure and (b) showing the
one-to-one cell matching for MoS2/HfS2. (c),(d) Constituent bands
(blue and gold) with heterobilayer bands (black dashed) overlayed.
(c) Showing the Moiré structure and (d) showing a one-to-one cell
matching for CrS2/MoS2.

interlayer interaction is easily done, since the Moiré struc-
tures are effectively without strain (average strain <1%). It
is also possible to investigate the effects of rotation. For this
purpose two heterostructures have been examined. Calcula-
tions for MoS2/HfS2 and CrS2/MoS2 Moiré structures were
performed using the same methodology as the lattice matched
heterostructures.

It can be observed from Figs. 6(a) and 6(b) that both
Moiré and lattices matched systems have a significant �EIF.
However comparison between the two requires careful con-
sideration of their relative strains. Because the strain on the
constituents changes between the two systems it is necessary
to test them against our identified trend instead of against
each other. In the case of MoS2/HfS2 Moiré structure the
value of �EIF is 0.596 eV for a band offset of 1.520 eV; this
deviates from Eq. (1) by 0.07 eV. The one-to-one MoS2/HfS2

heterobilayer results in �EIF = 0.346 eV, for a band offset
of 1.284 eV, deviating from Eq. (1) by 0.02 eV. This demon-
strates that Moiré twisting and strain do not effect the validity
of Eq. (1).

It is expected that �EIF is preserved as it does not depend
on the local structure. It depends on the relative VBM heights
across each layer. The effect on �E� however is dependent
on the local atomic positioning between the two layers. The
nature of an incommensurate Moiré lattice is that it will,
at some point, pass through all local configurations. By this
logic, the vertical atomic alignment giving rise to the 〈dz2 |pz〉
interaction must occur within the structure. If this interaction
is present anywhere in the system, it will represent the band
with the highest energies at �.

Figures 6(c) and 6(d) show the effect of Moiré twisting
and strain on �E� . In spite of the changing strain on the
systems, the change in �E� is less than 0.02 eV. This change
is a direct result of the strain of the components and not the
angle twist. Hence, the Moiré lattice has no important effect
on the band alignment rule for the minimal gap presented in
Eqs. (4) and (5). However, a significant feature that arises from
the Moiré twisting is the band folding. Due to the reduced
periodicity, the symmetry breaking bands become folded back
across the Brillouin zone. This would mean for optical pro-
cesses there would be more direct transitions. This could be
observed through a reduction in thermalization during elec-
tro/photoluminescence.

In considering TMDC heterostructures, often strain is the
first practical concern. These effects have been thoroughly
explored over the last decade [4,15,47,50–54], which provides
a guide to incorporating the effects of strain into the above
methodology. An effective tight-binding model proposed by
Pearce et al. [47] provided a fundamental description of how
strain influences the electronic response and key points in
the band structure. In addition, several groups have applied
first principles techniques to explore the role of strain. Jo-
hari and Shenoy [51], in 2012, gave an exploration of lateral
strain effects in MoX2 and WX2 (where X= S, Se, Te) us-
ing first principles. These results can be used to determine
the band-gap changes of these constituents for strains of up
to 10%. Rasmussen and Thygesen [53] provide details for
in-plane strains of up to 2%, covering all feasible TMDC
structures, which can be used to extract the band-gap behavior.
The effects of strain have also been explored extensively by
Kang and Kwon [55] computationally showing the band gap
with the PBE approximation for differing values of strain
for various TMDC sulphides and selenides (M = Mo, W,
Ti, Cr, V, Nb, Ta, Hf, Zr) and show that the trends hold
when considered using the GW method, while experiment
has shown that these structures can sustain higher strains
than conventional materials [54] (up to 10%). However, het-
erostructures formed from 2D materials show much lower
or no strain [14–19], due to the weak interlayer interaction
meaning that there is no pinning of adjacent layer positions.
If one wishes to include the effects of strain in the theory
discussed, then one could consider the results presented in the
above works and use these to scale the band gap, and then
apply the corrective terms, �E� and �EIF. In these cases,
we expect that �E� and �EIF would be overestimates but
not sufficiently different to prevent a reasonable estimate of
the band gap, which can be confirmed by comparison of our
results with Lu et al. [56]. Our results have indicated that
strains of less than 5% have minimal impact on the theory
presented.
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D. Discussion

Experimental evidence for �E� and �EIF relies on optical
techniques, where one has to be careful to separate excitonic
effects. However, recent measurements by Wu et al. [19] of
WSe2/WS2 show that the heterostructure has a clear reduction
in band gap compared to the result expected from Anderson’s
rule. In their report it is suggested that this is an issue with the
accuracy of their measurements, but we suggest here that the
reduction is due to �E� . Similarly, Aretouli et al. [16] report
a miscellaneous reduction in the band gap of HfSe2/MoSe2,
which is evidence of the effect of �E� . Indirect evidence of
this is also observed in the exciton behavior in heterostruc-
tures [57], as the effect of �E� is to increase the energy of
the valence band at � and thus decrease its effective mass,
resulting in the exciton lifetime being increased. The case of
MoS2/WSe2 is the most discussed case [14,17,18], however it
is an unhelpful candidate for experimental comparison due to
the predicted correction term being negligible [see Figs. 2(a)
and 2(c)]. This prediction is, however, consistent with experi-
mental results, which would suggest for this particular pairing
that Anderson’s rule is obeyed [14].

The expressions Eq. (4) and Eq. (5) have interesting im-
plications for TMDC heterostructures and for 2D materials in
general. Firstly, the effective mass (and transport properties)
of the valence band depends on �E� and hence on the in-
teraction between layers. This factor will always increase the
curvature (and thus mobility) of the valence band, and this
provides a mechanism to enhance the transport characteristics
of the heterostructure over the constituents. Conversely, the
conduction band is almost identical (see Fig. 2) to the con-
stituent that has the highest electron affinity.

The particular orbital overlap here is unique to H-TMDCs,
but due to all orbital interactions following similar forms as
Eq. (2), the shift from �E� will be universal with values of λ

and ηi changing, which implies that one could expect external
pressure applied perpendicularly to create a pressure sensitive
band gap for all 2D heterostructures, under the condition that
this shift results in Eq. (3) being nonzero. The interaction in
�E� also clearly explains the transition between direct and
indirect behavior between TMDC monolayers and the bulk in
terms of a simple analytically described interaction.

Type III 2D heterostructures offer an intriguing possibility
compared to bulk heterostructures. Normally, when consid-
ering a heterostructure, one considers the system being in
equilibrium with the bulk materials properties, forming a
triangular well. In this case, as both layers are less than a
nanometer thick, one can expect that one 2D layer will effec-
tively have an empty valence band and the other will have a
significantly filled conduction band. This would result in both
layers being metallic, but with electron and hole conduction
localized to different layers.

IV. CONCLUSION

In conclusion, we have demonstrated and explained the
failure of Anderson’s rule and how it can be corrected to
more accurately predict 2D heterostructure band gaps. We
have shown that due to �E� any constructed heterostructure
is likely to exhibit an indirect band gap and that the effective

mass will always decrease. Furthermore we have provided
expressions to give the band alignments in terms of the ma-
terial properties of the constituents and their separation. The
theory could be readily extended to other 2D heterostruc-
tures with some minor adjustments to �E� and �EIF. The
approach presents a method which avoids the need for ad-
vanced calculation when estimating the properties of TMDC
heterostructures. This expands the possibilities for exploring
the optoelectronic properties of various heterostructures to the
broader community.
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TABLE II. Tabulated comparison between literature and the con-
stituents materials of the lattice constant a, hoe affinity χh, and band
gap Eg applied within the main text.

This work Ref. [58] Ref. [59] Ref. [60] Ref. [53]

a (Å) 3.02 3.05
CrS2 χh (eV) −5.65 −6.08

Eg (eV) 0.94 0.90

a (Å) 3.20 3.21
CrSe2 χh (eV) −5.10 −5.50

Eg (eV) 0.74 0.70

a (Å) 3.53 3.54
HfS2 χh (eV) −6.80 −7.05

Eg (eV) 1.14 0.93

a (Å) 3.16 3.11 3.19 3.18 3.18
MoS2 χh (eV) −5.77 −6.13

Eg (eV) 1.64 1.70 1.68 1.58

a (Å) 3.32 3.24 3.32 3.32 3.32
MoSe2 χh (eV) −5.22 −5.5

Eg (eV) 1.38 1.48 1.43 1.32

a (Å) 3.18 3.13 3.19 3.18 3.19
WS2 χh (eV) −5.45 −5.75

Eg (eV) 1.63 1.84 1.81 1.51

a (Å) 3.32 3.25 3.32 3.32 3.32
WSe2 χh (eV) −4.86 −5.13

Eg (eV) 1.29 1.59 1.53 1.22

a (Å) 3.57 3.57
ZrS2 χh (eV) −6.79 −7.02

Eg (eV) 1.06 0.84
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APPENDIX

In this Appendix we present in Table II a comparison
between our calculated values for the individual TMDCs and

results from the works of Akbari et al. [58], Saha et al. [59],
Bhattacharyya et al. [60], and Rasmussen et al. [53]. As can be
seen, the results are in very good agreement with previously
published works.
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