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Quantum Zeno effect and quantum nondemolition spin measurement
in a quantum dot–micropillar cavity in the strong coupling regime
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We theoretically describe the quantum Zeno effect in a spin-photon interface represented by a charged
quantum dot in a micropillar cavity in the strong coupling regime. This simplest model allows for various
generalizations for the different systems. We derive a simple expression for the spin measurement rate, which
allows one to tune the electron spin precession frequency in an external magnetic field and spin relaxation
time. We calculate the spin noise bispectrum, which reveals the qualitative change of the spin dynamics with
an increase of the measurement strength and proves the quantum nature of the spin noise. We also calculate the
quantum information gain rate and find the conditions when it equals the spin dephasing rate, i.e., reaches the
quantum limit.
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I. INTRODUCTION

The quantum Zeno effect in the most spectacular way
shows the fundamental difference between the quantum mi-
croscopic world and the classical everyday life. Explicitly,
it states that a continuously observed quantum object cannot
move [1,2]. After being formulated as a paradox for classical
objects by Zeno of Elea in the 5th century BC [3], it was later
described as a physical effect for the quantum objects in the
most popular way in 1977 [4].

Nowadays many aspects of the quantum Zeno effect are
under active investigation [5,6]. These include, for example,
deceleration of the quantum dynamics under continuous weak
measurement [7], quantum anti-Zeno effect [8,9], dynamics
in the quantum Zeno subspaces [10], and observation of the
quantum Zeno effect in various systems from free atoms to
semiconductors [11–18]. The general interest is additionally
boosted by the importance of this effect for quantum com-
putation [19–23]. The quantum Zeno effect on one hand can
help to increase the storage time of quantum information [24],
but on the other hand it can slow down or even damage the
computations [25,26].

In parallel to the mainly theoretical investigations of the
quantum Zeno effect, there is a growing interest in the re-
alization of a spin-photon interface. It has a large number
of applications including spin-photon gates, spin-mediated
photon-photon gates, and emission of a photonic cluster
state with a wide range of applications for quantum infor-
mation processing [27–31]. These applications are based on
the entanglement between photon and electron spins during
the interaction, which can be strongly enhanced by optical
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microcavities. Recently, we demonstrated that even single
photon detection can lead to significant backaction on the
electron spin [32].

When the electron spin is subject to a continuous inter-
action with light, many photons get entangled with a single
electron spin, so it is natural to expect the quantum Zeno
effect. Its theoretical description is an important step towards
the realization of quantum information processing. In this
paper we consider the simplest, almost textbook realization
of the spin-photon interface, which is represented by a quan-
tum dot (QD)–micropillar cavity with a resident electron in
the QD. The fastest spin manipulation and electron photon
entanglement are reached in the strong coupling regime, when
hybrid polariton modes are formed in the micropillar [33]. The
fabrication of such devices remained elusive until recently
[34]. Despite a few theoretical proposals for the efficient spin
control and nearly nonperturbing spin measurement in the QD
micropillar cavity in the strong coupling regime [32,35], the
theory of electron spin dynamics under the conditions of the
quantum Zeno effect in this structure is still missing.

Our paper is organized as follows. In the next section we
formulate the model of the device under study. Then in Sec. III
we describe the quantum Zeno effect using three independent
approaches—phenomenological, numerical, and analytical—
and establish the relation between them. In Sec. IV we
calculate the quantum nondemolition spin measurement rate,
relate it with the entanglement between electron and photon
spins, and compare it with the spin dephasing rate. We also
find the conditions when the quantum limit for the spin mea-
surement is reached. Finally, in Sec. V we study the statistics
of the spin noise and calculate the noise bispectrum. The
applicability of our findings to realistic devices and possible
extensions of our simplest model, as well as a brief summary,
are presented in Sec. VI.
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FIG. 1. (a) Sketch of a QD micropillar cavity with a single
electron with the spin S in an external magnetic field B with the
incident linearly polarized probe light. (b) Energy levels of the QD:
two ground electron spin states with Sz = ±1/2 and two singlet trion
states with heavy hole spin Jz = ±3/2 as well as the allowed optical
transitions between them.

II. MODEL

We consider a micropillar cavity with a QD inside it
[Fig. 1(a)]. We assume that the QD is charged with a single
electron. The device is placed in an external transverse mag-
netic field (perpendicular to the structure growth axis z) and
coherently excited by a continuous linearly polarized light.

The Hamiltonian of the system has the form [32,35]

H = H+ + H− + HB. (1)

The first two terms describe the contributions with right-
handed and left-handed helicities (signs of the angular
momentum projections on the z axis):

H± = h̄ωcc†
±c± + h̄ω0a†

±3/2a±3/2

+ h̄(gc±a†
±3/2a±1/2 + E±e−iωt c†

± + H.c.). (2)

Here, c± (c†
±) are the annihilation (creation) operators of the

σ± photons in the cavity. The two orthogonally polarized
cavity modes have an eigenfrequency ωc, and they are as-
sumed to be degenerate. In the devices available to date there
is a large splitting between the two linearly polarized cavity
modes [34,36]. In order to optically control the electron spin
and directly apply the theory presented below, this splitting
should be reduced to a value below the cavity mode decay rate.
The QD is described by four states with the corresponding
annihilation operators a±1/2 and a±3/2. The former two corre-
spond to the two ground electron states with a spin projection
Sz = ±1/2. The latter two correspond to the excited singlet
trion states with an energy h̄ω0 [see Fig. 1(b)]. The trion
consists of two electrons with opposite spins and a heavy hole

with a spin Jz = ±3/2. Further, g is the light-matter coupling
strength. It describes the photon absorption from the cavity
mode and the creation of a trion from a single electron, as well
as the reverse process. According to the optical selection rules,
the total angular momentum component along the z axis is
conserved, so the absorption of the σ± photon is accompanied
by the creation of a hole with Jz = ±3/2 and an electron with
Sz = ∓1/2, respectively [37] [see Fig. 1(b)]. Due to the Pauli
exclusion principle this is possible only when the resident
electron in the QD has Sz = ±1/2, as described by Eq. (2).
Finally, the parameters E± are proportional to the amplitudes
of the σ± polarized components of the coherent incident light
with frequency ω [38]. We consider the system excitation by
linearly polarized light, which corresponds to E+ = E− = E .

The effect of the external magnetic field is described by

HB = h̄�L

2

∑
±

a†
±1/2a∓1/2, (3)

where �L is the Larmor frequency of the electron. The trans-
verse Landé factor of the heavy hole is very small [39], so we
neglect it.

The system under study is open, and it should be described
using the density matrix formalism. The density matrix ρ(t )
satisfies the master equation

ρ̇(t ) = i

h̄
[ρ(t ),H] − L{ρ(t )}, (4)

where the dot denotes the time derivative and the Lindblad su-
peroperator L{ρ(t )} describes the incoherent processes [38].
We take into account only two of them: nonradiative trion
decay with the rate 2γ and the photon escape from the cavity
with the rate 2κ. They are described by

L{ρ} =
∑
±

[κ(c†
±c±ρ + ρc†

±c± − 2c±ρc†
±)

+ γ (a†
±3/2a±3/2ρ + ρa†

±3/2a±3/2

− 2a†
±1/2a±3/2ρa†

±3/2a±1/2)]. (5)

Note that γ can also account for the radiative trion recombi-
nation, if the photon is not emitted into the cavity mode. We
assume that the trion recombination conserves the helicity,
so after the recombination of a trion with Jz = ±3/2, a σ±
polarized photon is emitted and an electron with Sz = ±1/2
is left in the QD [see Fig. 1(b)]. The cavity mode decay
rate is contributed by the photon escape through the left and
right mirrors and through the side walls: κ = κ1 + κ2 + κ0,
respectively. We assume that the light is incident at the cavity
from the left. The amplitude transmission coefficient through
the left (right) mirror is proportional to the square root of κ1

(κ2) [40].
For the rest of the paper we assume perfect tuning between

the trion resonance frequency and the cavity mode, ωc = ω0,
and stick to the notation ω0. Moreover, we limit ourselves to
the weak magnetic and driving fields:

�L, E � κ. (6)

The lowest eigenstates of the system and transitions between
them, taking into account the interaction with the cavity in the
strong coupling regime, are shown in Fig. 2. The two ground
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FIG. 2. The lowest energy levels of the system and optical tran-
sitions between them. The electron spin states are denoted by the red
vertical arrows, the ± sign refers to the σ± polarization of a single
photon, and the polariton states are defined in Eqs. (7).

spin states, which are mixed by the magnetic field, are mostly
populated.

The lowest excited states are the single photon states and
the polariton states [33]. If a single σ± photon is present
in the cavity and the electron is in the spin-down/up state,
respectively, then the photon cannot be absorbed, as described
above and shown in Fig. 1(b), and this is an eigenstate. These
states are shown in the middle of Fig. 2. In the opposite
case, when the electron and photon have the same helicities,
multiple photon absorption and reemission by the QD leads
to the formation of polariton states. In the case under study
(ωc = ω0) they have the form

|⇑u
l
〉 = a†

+3/2 ± c†
+√

2
|0〉, |⇓u

l
〉 = a†

−3/2 ± c†
−√

2
|0〉, (7)

where |0〉 denotes the vacuum state, and the subscripts u, l
refer to the upper and lower polariton states, respectively.
These states have the energies

Eu,l = h̄(ω0 ± g), (8)

as shown in Fig. 2. The polariton states (7) are well defined
states in the strong coupling regime only, when the damping is
smaller than the splitting: γ , κ � g. In this paper we mainly
focus on this regime, but the formalism developed below is
valid for the weak coupling regime as well. However, the
quantum Zeno effect in the weak coupling regime can be
described without taking into account the quantization of the
electromagnetic field [41,44].

For weak incident light [Eq. (6)] the system is mainly in the
Hilbert space of the two electron spin states and vacuum pho-
ton state. In this case, the amplitude transmission coefficient
of circularly polarized light is equal to

t0 = iκ

ω − ω0 + iκ
(9a)

for σ± polarized light and a spin-down/up electron, re-
spectively. The intensity transmission coefficient T0 = |t2

0 | is
shown in Fig. 3 as a function of the detuning ω − ω0. It
has a Lorentzian shape with the maximum at a bare cavity
frequency ω0. It describes the resonant transmission of the
circularly polarized light for the case when its interaction

FIG. 3. Contributions to the total intensity transmission coeffi-
cient T and �T [see Eq. (10)] (black and red curves, respectively)
and the transmission coefficients T0,1 (blue and green areas, re-
spectively) calculated after Eqs. (9) with the parameters γ = 0 and
g/κ = 10.

with the QD is forbidden by the optical selection rules. In
the opposite case of σ∓ polarized light and a spin-down/up
electron, respectively, the amplitude transmission coefficient
is [38,42]

t1 = iκ

ω − ω0 + iκ − g2

ω−ω0+iγ

. (9b)

In this case, the intensity transmission coefficient T1 = |t2
1 |

describes the resonant light transmission at the polariton en-
ergies [Eq. (8)] for the case when the circularly polarized
photons can be absorbed by the QD. Typically, the trion decay
rate is much smaller than the photon escape rate [36], so in
Fig. 3 we consider the limit γ = 0. In this limit, the widths of
the peaks in T1 are two times smaller than that in T0, because
the polariton consists of the photon only by one half, so its
amplitude decay rate is two times smaller than κ.

Generally, the intensity transmission coefficients of the σ±
polarized light depend on the electron spin as [35]

T± = T ± �T Sz, (10)

where T = (T0 + T1)/2 and �T = T1 − T0. These transmis-
sion coefficients are also shown in Fig. 3.

Equation (10) shows that the transmission coefficient of
circularly polarized light depends on the electron spin orienta-
tion. The circular polarization degree of the transmitted light
for the linearly polarized incident light is proportional to the
electron spin polarization:

Sz(t ) ∝ I+(t ) − I−(t ) ≡ �I (t ). (11)

Here, I±(t ) are the intensities of the transmitted σ± polarized
light, and we introduced �I (t ). This is also called the spin
induced ellipticity of the transmitted light [43].

In the steady state, the average spin polarization is ab-
sent: 〈Sz(t )〉 = 0. Hereafter the angular brackets denote the
quantum statistical average. In this case, the spin dynamics is
characterized by the spin correlation function 〈Sz(t )Sz(t + τ )〉
[44]. In the steady state it does not depend on t , so in the
following we write it as 〈Sz(0)Sz(τ )〉. From Eq. (11) one can
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see that it is given by the correlation function of the circular
polarization:

〈Sz(0)Sz(τ )〉 ∝ 〈�I (0)�I (τ )〉. (12)

Detection of the correlation functions is known as the spin
noise spectroscopy [44], and this is a particular case of the
ellipticity measurement of the transmitted light.

The same time spin correlation functions for a single elec-
tron simply read [44]

〈Sα (0)Sβ (0)〉 = δα,β

4
, (13)

where α, β = x, y, z and δα,β is the Kronecker symbol. The
correlation function 〈Sz(0)Sz(τ )〉 is an even function of τ and
for τ > 0 it satisfies the same equation of motion as Sz(τ )
[45]. For this reason the spin correlation function gives direct
access to the spin dynamics and reveals the quantum Zeno
effect even in the case when the average spin polarization is
absent.

III. QUANTUM ZENO EFFECT

The quantum Zeno effect is natural to expect under a con-
tinuous electron spin measurement. However, the microscopic
description of this effect is absent for the system under study.
Here, we use the phenomenological, numeric, and analytical
approaches to describe this effect. As a result, we obtain a
simple expression which allows one to tune the strength of
the backaction by changing the intensity and frequency of the
probe light.

A. Phenomenological approach

Here, we present a simple phenomenological approach to
the quantum Zeno effect. Its validity for the system under
study will be rigorously proven using the numerical and an-
alytical approaches in the following sections.

A single electron spin precession in the external magnetic
field applied along the x axis is generally described by the
Hamiltonian

H0 = h̄�Lσx/2, (14)

where we use a vector composed of the spin Pauli matrices
σ = (σx, σy, σz ). Phenomenologically, the continuous weak
measurement of the spin component Sz is described by the
following equation for the 2 × 2 spin density matrix ρ(t )
[46,47],

ρ̇(t ) = − i

h̄
[H0, ρ(t )] − λ

2
[σz, [σz, ρ(t )]], (15)

where the second term describes the measurement of the
spin z component with the phenomenological “measurement
strength” λ. It leads to the continuous decay of the spin com-
ponents Sx and Sy which do not commute with the observable
Sz due to the measurement backaction. The measurement can
be associated with the quickly fluctuating magnetic field along
the z axis, which is provided by the randomly incoming and
outcoming photons due to the dynamic Zeeman effect [48,49].
This is a quite general situation, so one can expect that this
model correctly describes different ways of the spin measure-
ment. Note that here we use the Markovian approximation, so

the quantum anti-Zeno effect does not take place in this model
[50,51].

The electron spin is given by S(t ) = Tr[ρ(t )σ/2], and from
Eq. (15) we obtain the kinetic equations

Ṡx = −2λSx, Ṡy = −�LSz − 2λSy, Ṡz = �LSy. (16)

These equations describe the electron spin precession around
the magnetic field and relaxation of the spin components Sx

and Sy, which do not commute with the observable Sz due to
the measurement backaction [52,53].

From the two latter equations we obtain the two complex
eigenfrequencies of the spin dynamics

�∗
± = ±

√
�2

L − λ2 − iλ. (17)

For the weak measurement strength λ < �L the frequencies
have opposite real parts and the same imaginary part λ. This
describes the damped spin oscillations. With an increase of
the measurement strength, the absolute values of the real parts
of the eigenfrequencies decrease and eventually become zero.
For the strong measurement there are no spin oscillations and
the spin decays as an overdamped oscillator.

From the solution of Eqs. (16) we obtain

Sz(t ) = Sz(0)

[
cos(�t ) + λ

�
sin(�t )

]
e−λt

+ Sy(0)
�L

�
sin(�t )e−λt , (18)

where � =
√

�2
L − λ2 is the reduced spin precession fre-

quency. This expression shows that the quantum Zeno effect
leads to the decrease of the spin precession frequency � and
induces the spin relaxation. Qualitatively, this effect was ob-
served for an ensemble of electrons in the planar microcavity
[41]. Note that it can also be called a watchdog effect [54].

The spin correlation functions can be calculated using a
number of methods [44]. For the following it is useful to apply
the formalism of the Kraus operators of the form

K (s) =
(

2η

π

)1/4

e−η(s−Sz )2
, (19)

where s is a continuous real parameter and η tends to zero for
a weak continuous spin measurement [55]. To calculate the
correlator 〈Sz(0)Sz(τ )〉 for τ > 0 we solve the master equation
(15) with the initial condition

ρ(0) = K (s1)ρ0K (s1), (20)

which represents the steady state density matrix weakly mod-
ified by the action of the measurement at t = 0 with ρ0 being
proportional to the identity matrix. The measurement at t = τ

similarly weakly changes the density matrix to

ρ2 = K (s2)ρ(τ )K (s2). (21)

Then the spin correlation function is given by

〈Sz(0)Sz(τ )〉 =
∫∫

s1s2Tr[ρ2]ds1ds2, (22)
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where the limit η → 0 should be taken. The calculation yields
[55,56]

〈Sz(0)Sz(t )〉 = 1

4

[
cos(�t ) + λ

�
sin(�|t |)

]
e−λ|t |. (23)

This correlation function can be directly measured experimen-
tally, as described in the previous section.

Interestingly, it was suggested that with an increase of
the spin measurement strength, the spin dynamics undergo a
quantum dynamical phase transition due to the quantum Zeno
effect [57]. The transition can be evidenced in the modifi-
cation of the counting statistics, which is described by the
generating functions [58]. They satisfy the Schrödinger-like
equation with the non-Hermitian Hamiltonian. The eigen-
spectrum of this Hamiltonian can be described by a certain
braid group [59]. At the measurement strength λ = �L the
braid group of the eigenspectrum changes, so the spin dy-
namics arguably undergoes the topological phase transition.
Moreover, one can show that the braid group changes also
at λ/�L ≈ 0.65 and 0.18. This may correspond to the two
additional phase transitions, which, however, were predicted
to take place at λ/�L = 0.58 and 0.5 [60]. In this paper we
will not study this contradiction.

The description of the quantum Zeno effect presented in
this section is phenomenological. In the next sections we
prove that it can correctly describe the spin dynamics in the
QD micropillar cavity and derive the microscopic expression
for the phenomenological measurement strength λ.

B. Numerical approach

Here, we present the numerical results obtained in the
density matrix formalism based on the solution of the master
equation (4) and compare them with the phenomenological
theory described above.

The electron spin cannot be measured directly, but only
using the photons as described in Sec. II. For this reason
we study in this section the polarization of the transmitted
light. The intensity of the transmitted σ± polarized light is
proportional to the number of corresponding photons in the
cavity, I±(t ) ∝ c†

±(t )c±(t ), so �I (t ) ∝ �n(t ), where

�n(t ) = c†
+(t )c+(t ) − c†

−(t )c−(t ). (24)

Thus the correlator 〈Sz(0)Sz(t )〉 in Eq. (12) is proportional to
the correlator of �n(t ) given by

〈�n(0)�n(t )〉 = 2(〈c†
+(0)c†

+(t )c+(t )c+(0)〉
− 〈c†

+(0)c†
−(t )c−(t )c+(0)〉), (25)

where we used the fact that �n(t ) is zero on average and
took into account the normal and time ordering of the
operators [40].

In Eq. (25) the creation and annihilation operators in
the Heisenberg representation are used. However, in the nu-
merical calculations it is more convenient to switch to the
Schrödinger representation and to solve Eq. (4) for the time
dependent density matrix.

The numerical calculation of Eq. (25) consists of three
steps:

(i) We find the density matrix ρ0 for the steady state.

FIG. 4. Dimensionless correlation function of the circular polar-
ization degree of the transmitted light calculated numerically with
the parameters ω = ω0 and γ = 0 in the limit g � κ for different
amplitudes of the incident light given in the labels with the corre-
sponding color. The curves show the fits after Eq. (30). The vertical
magenta line shows the time t = 5/κ.

(ii) Following the quantum regression theorem [40], we
calculate the density matrix of the system after a single σ+
photon detection

ρ(0) = c+ρ0c†
+. (26)

It represents the action of the two outer operators in Eq. (25).
(iii) We find the solution ρ(t ) of the master equation (4)

with the initial condition (26). Then the correlators in Eq. (25)
are given by

〈c†
+(0)c†

±(t )c±(t )c+(0)〉 = Tr[c+ρ(t )c†
+]. (27)

As a result, the correlator of the photon numbers reads

〈�n(0)�n(t )〉 = 2{Tr[c†
+c+ρ(t )] − Tr[c†

−c−ρ(t )]}. (28)

This approach is exact and valid for the arbitrary relation
between the parameters of the system. To speed up the numer-
ical calculations, we consider the strong coupling regime and
coherent excitation in the vicinity of the bare cavity resonance
frequency:

|ω − ω0|, κ, γ � g. (29)

In this limit we can neglect the polariton states and consider
only the states that are the product of the QD ground state and
photon Fock states. In the numerical calculation we consider
the states with up to six photons and we checked that for 12
photons the results are the same. This allows us to perform the
exact calculations beyond the limit (6).

In Fig. 4 we show with the dots the correlator
〈�n(0)�n(t )〉 as a function of t for the different amplitudes
of the incident light E . It indeed resembles the spin correlation
function, Eq. (23): It shows the damped oscillations. For this
reason we fit 〈�n(0)�n(t )〉 with an expression

Re(Ae−i�∗t ), (30)

where A and �∗ are the complex fit parameters. The fits are
shown in Fig. 4 by the curves of the corresponding color. One
can see that the fits nicely describe the numerical results for

045413-5



LEPPENEN, LANCO, AND SMIRNOV PHYSICAL REVIEW B 103, 045413 (2021)

(a)

(b)

FIG. 5. The spin precession frequency (red circles) and spin
relaxation rate (blue squares) as functions of the amplitude of the
incident light. The parameters of the calculation in (a) are the same
as in Fig. 4 and in (b) they are the same except for ω = ωc + 2κ.
The curves are calculated after Eqs. (17) and (42) with the same
parameters.

the time t > 5/κ. At shorter timescales the photon-photon
interaction modifies the photon correlation functions [32].

We show the fit parameters Re(�∗) and − Im(�∗) in Fig. 5
by circles and squares, respectively, as functions of the ampli-
tude of the incident light. One can see that they show similar
behavior for the different frequencies of the light [Figs. 5(a)
and 5(b)]: The precession frequency Re(�∗) monotonously
decreases with an increase of E and becomes zero after a
certain threshold. The spin relaxation rate − Im(�∗) first in-
creases with an increase of the intensity of the light, and then
decreases after the threshold. In the limit of large power of the
probe light, E → ∞, we obtain �∗ = 0, which evidences the
spin “freezing” due to the quantum Zeno effect under a strong
continuous spin measurement.

We have checked that the presented dependencies are qual-
itatively the same for any choice of the system parameters.
We have also checked that the relation |�∗| = �L is satisfied
below the threshold in agreement with Eq. (17). This shows
that the phenomenological model of the quantum Zeno effect
described in the previous section is valid for the system under
study and that this effect can be observed in the intensity cor-
relation functions of the transmitted light. In the next section

we derive an analytical expression for the spin measurement
strength λ.

C. Analytical approach

For the weak incident light and small magnetic field
[Eq. (6)], only a few lowest eigenstates are populated, so the
master equation (4) can be solved analytically. This allows us
to establish the applicability limits of the phenomenological
approach and to calculate the measurement strength λ.

It is convenient to start the analysis from the simple limit,
when there is no incident light, E = 0. In this case, only the
two ground spin states are populated and only the four density
matrix elements are nonzero. From Eq. (4) we find that

ρ̇↑,↑ = i�L

2
(ρ↑,↓ − ρ↓,↑), (31a)

ρ̇↑,↓ = i�L

2
(ρ↑,↑ − ρ↓,↓). (31b)

Here, the two electron spin states with Sz = ±1/2 are labeled
by the up and down arrows, respectively. The equation for ρ↓,↑
can be obtained from Eq. (31b) by the complex conjugation,
and the equation for ρ̇↓,↓ follows from Eq. (31a) and the
normalization condition ρ↑,↑ + ρ↓,↓ = 1. Both of them can be
also obtained from Eqs. (31) by the exchange of ↑ and ↓.

The electron spin components are given by

Sx = ρ↑,↓ + ρ↓,↑
2

, Sy = i
ρ↑,↓ − ρ↓,↑

2
, Sz = ρ↑,↑ − ρ↓,↓

2
.

(32)
Using Eqs. (31) we arrive at the phenomenological Eqs. (16)
with λ = 0, as expected for the case, when the spin is not
measured.

Equations (32) are valid for the case of weak excitation
also, when the two lowest states are mostly populated. To ac-
count for the finite excitation strength we use the perturbation
theory and consider �L/κ and E/κ as the small parameters.
In the zeroth order, only the four density matrix elements
discussed above are nonzero and their time derivatives vanish.

In the first order in E/κ there are another 12 nonzero
density matrix elements between the two ground states and
the six excited states shown in Fig. 2. They can be found from
the equations

ρ̇⇓u,↑ = −i(ω0 + g)ρ⇓u,↑ − κ

2
(ρ⇓u,↑ − ρ⇓l ,↑)

− γ

2
(ρ⇓u,↑ + ρ⇓l ,↑) − iEe−iωt

√
2

ρ↓,↑, (33a)

ρ̇⇓l ,↑ = −i(ω0 − g)ρ⇓l ,↑ − κ

2
(ρ⇓l ,↑ − ρ⇓u,↑)

− γ

2
(ρ⇓u,↑ + ρ⇓l ,↑) + iEe−iωt

√
2

ρ↓,↑, (33b)

ρ̇↓+,↑ = −iω0ρ↓+,↑ − κρ↓+,↑ − iEe−iωt

√
2

ρ↓,↑. (33c)

Another nine equations can be obtained from these three by
flipping the spins and by the Hermitian conjugation.
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The solution of these equations can be conveniently written
using Eqs. (9):

ρ⇓l ,↑ = −iρ↓,↑
Ee−iωt

√
2κ

t1

(
g

ω − ω0 + iγ
− 1

)
, (34a)

ρ⇓u,↑ = −iρ↓,↑
Ee−iωt

√
2κ

t1

(
g

ω − ω0 + iγ
+ 1

)
, (34b)

ρ↓+,↑ = −i
E
κ

ρ↓,↑t0e−iωt . (34c)

One can check that the transmission coefficients t0 and t1 can
be obtained from the density matrix in the first order in E from
the following relation:

Tr[ρc±] = −i
Ee−iωt

κ

(t1,0ρ↑,↑ + t0,1ρ↓,↓). (35)

These relations reflect the fact that the transmission coefficient
of circularly polarized light is t0 or t1 when the helicity of the
incident light is opposite or the same as the spin helicity.

The equations of motion for the electron spin can be ob-
tained from the off-diagonal density matrix element between
the ground states [see Eqs. (32)]. In the two lowest orders of
the perturbation theory we obtain

ρ̇↑,↓ = i�L

2
(ρ↑,↑ − ρ↓,↓)

+
√

2κ(ρ⇑u,↓+ + ρ↑−,⇓u − ρ⇑l ,↓+ − ρ↑−,⇓l )

− iE√
2

[e−iωt (ρ↑,⇓l − ρ↑,⇓u −
√

2ρ↑,↓+)

+ eiωt (ρ⇑u,↓ − ρ⇑l ,↓ +
√

2ρ↑−,↓)]. (36)

Here, the unknown density matrix elements can be found from
another two equations in the second order in E/κ:

ρ̇⇑u,↓+ = −igρ⇑u,↓+ + iE
(

eiωtρ⇑u,↓ − e−iωt

√
2

ρ↑,↓+

)

− γ

2
(ρ⇑u,↓+ + ρ⇑l ,↓+) − κ

2
(3ρ⇑u,↓+ − ρ⇑l ,↓+),

(37a)

ρ̇⇑l ,↓+ = igρ⇑l ,↓+ + iE
(

eiωtρ⇑l ,↓ + e−iωt

√
2

ρ↑,↓+

)

− γ

2
(ρ⇑l ,↓+ + ρ⇑u,↓+) − κ

2
(3ρ⇑l ,↓+ − ρ⇑u,↓+).

(37b)

Their solution reads

ρ⇑u,↓+ = ρ↑,↓√
2

( E
κ

)2( g

ω − ω0 + iγ
+ 1

)
t∗
0 t1, (38a)

ρ⇑l ,↓+ = ρ↑,↓√
2

( E
κ

)2( g

ω − ω0 + iγ
− 1

)
t∗
0 t1. (38b)

Another two density matrix elements in Eq. (36), ρ↑−,⇓u and
ρ↑−,⇓l , are obtained from these two by the flip of helicities
and the Hermitian conjugation.

Finally, substituting Eqs. (38) and (34) in Eq. (36) we
obtain

ρ̇↑,↓ = i�L

2
(ρ↑,↑ − ρ↓,↓) − 2λρ↑,↓, (39)

in agreement with the phenomenological Eqs. (16) for Sx and
Sy. Here, the measurement strength is given by [61]

λ = E2

κ

|t0 − t1|2
(

1 + γ [(ω − ω0)2 + κ
2]

g2
κ

)
. (40)

This is the main result of this section.
In a similar way one can consider the equation of motion

for ρ↑,↑ in the second order of the perturbation theory. In this
case the terms with E and κ cancel each other, so one simply
obtains

ρ̇↑,↑ = i�L

2
(ρ↑,↓ − ρ↓,↑), (41)

which agrees with Eq. (16) for Sz.
In the absence of trion nonradiative decay, γ = 0, the mea-

surement strength [Eq. (40)] is simply given by

λ = E2

κ

|t0 − t1|2. (42)

In Fig. 5 we use this relation between λ and E along with
Eq. (17) to calculate the complex spin precession frequency.
One can see that it agrees with the fit of the numerical results.
The difference between them is mainly due to the moderate
ratio �L/κ = 0.1, which is assumed to be very small in the
derivation of Eq. (42).

This derivation allows one to control the electron spin
precession frequency and relaxation time by intensity and
frequency of the external light.

Beyond the limit (6) the excited states should be con-
siderably populated in order to suppress the electron spin
precession in the magnetic field. In this case the phenomeno-
logical theory breaks down, so the quantum Zeno effect can
be described only microscopically taking into account the
structure of the optically excited states [41].

Noteworthy, we find that the dependence of λ on ω − ω0

and g in Eq. (42) reduces to the amplitude transmission co-
efficients only. This suggests that the measurement strength
in this limit can be derived without a detailed analysis of the
excited states. This is done in the next section.

IV. QUANTUM NONDEMOLITION SPIN MEASUREMENT

Despite the fundamental importance of the quantum Zeno
effect, most of its descriptions have a very general form and
their validity to every specific system is always questionable
[18,62]. Generally, the quantum Zeno effect stems from the
interaction of the system with the environment. But in an
experimental observation of an effect it is not always clear
if the interaction with the environment really represents the
measurement that yields the quantum information or not [63].
To demonstrate that the transmission of the light through the
cavity truly represents the quantum spin measurement, we
discuss it in this section from the perspective of quantum
informatics.

In the previous section we demonstrated that the quantum
Zeno effect for weak fields is described by Eqs. (16) with the
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measurement strength given by Eq. (40). The relaxation of the
spin components Sx and Sy arises due to the spin measurement
backaction. Generally, the relaxation (dephasing) rate of the
off-diagonal density matrix element �deph is greater than or
equal to the measurement rate �meas [63–65]:

�deph � �meas. (43)

Note the difference between the measurement rate �meas,
which we rigorously define below, and the measurement
strength λ, introduced in the previous section. By definition, in
the quantum limit the measurement rate equals the dephasing
rate.

It is desirable to increase the useful measurement rate while
keeping the dephasing rate as low as possible. In optimal
conditions one can hope to reach the quantum limit. In this
section we identify the conditions when it can be reached for
the system under study.

The inequality (43) holds for any external magnetic field
while, in particular, for �L = 0. In this case, the Hamiltonian
H0 [Eq. (14)] vanishes and commutes with the observable Sz,
and the relaxation of the spin component Sz is absent. This
means, by definition, the realization of the quantum nonde-
molition measurement. In this section we consider this limit.

A. Optical spin measurement rate

To recall the definition of the measurement rate �meas we
assume that the spin is initially prepared in one of the states
Sz = ±1/2, e.g., by a short circularly polarized pump pulse
[35]. Consequently, the spin orientation can be determined
using the continuous probe light, as discussed in Sec. II. In
the absence of magnetic field the measurement is quantum
nondemolition, so Sz does not change. After a short measure-
ment time t , after a few photons are detected, one cannot say
for sure what is the electron spin state, but one can calculate
the two conditional probabilities P±(t ) for the spin-up and
spin-down states, respectively.

The quantum statistical average

I (t ) = −
∑
±

P±(t ) ln[P±(t )] (44)

yields the “entropy,” which characterizes our knowledge about
the spin direction. Note that I (t ) does not describe the real
entropy of the system, which is zero, because the electron is
actually completely spin polarized. The measurement rate is
defined by

�meas = −İ (0), (45)

and represents the “entropy” decrease rate at the beginning of
the spin measurement.

In the previous section we considered the spin measure-
ment by the detection of the intensities of σ+ and σ−
polarized components of the transmitted light. Their depen-
dence on the spin direction [Eq. (10)] allows one to deduce the
spin direction from the circular polarization of the transmitted
light. Generally, the polarization of the light is described by
the vectors of the Stokes parameters ξ± for the cases of spin-
up and spin-down electrons, respectively [37,66].

FIG. 6. Scheme of the quantum nondemolition spin measure-
ment by linearly polarized light. The magnetic field is absent. The
transmitted light is separated into two orthogonally polarized com-
ponents by the polarizing beam splitter (PBS), and then the photons
in the two polarizations are independently counted using the pho-
todetectors (PDs).

The amplitude transmission coefficients of σ± light are
given similarly to Eq. (10) by

t± = t0 + t1
2

± (t1 − t0)Sz (46)

[see also Eqs. (35)]. In the canonical basis [67] the circular
components of the electric field are given by E± = (∓Ex +
iEy)/

√
2, so the Stokes parameters can be expressed as

ξ1,± = ± 2Im(t1t∗
0 )∣∣t2

1

∣∣ + ∣∣t2
0

∣∣ , ξ2,± = ±
∣∣t2

1

∣∣ − ∣∣t2
0

∣∣∣∣t2
1

∣∣ + ∣∣t2
0

∣∣ ,

ξ3,± = − 2Re(t1t∗
0 )∣∣t2

1

∣∣ + ∣∣t2
0

∣∣ . (47)

Thus, the spin polarization can be measured using both the
Faraday rotation and the ellipticity of the transmitted light,
which are proportional to ξ1 and ξ2, respectively. To determine
one of them, the light transmitted through the cavity can be
analyzed using the polarizing beam splitter and two photode-
tectors, as shown in Fig. 6. Note that the total intensity of the
transmitted light being proportional to T+ + T− is independent
of Sz [see Eq. (10)].

To maximize the detection sensitivity one can adjust the
polarizations separated by the beam splitter to measure a
combination of the Faraday rotation and ellipticity signals.
Generally, by the appropriate rotation of the polarization basis
of the Poincaré sphere one can obtain the Stokes parameters
of the form

ξ1′,± = 0, ξ2′,± = ±ξ, ξ3′,+ = ξ3′,−. (48)

Here, the primes denote the rotated axes. In this basis the spin
state is distinguished by the second Stokes parameter only,
which is the circular polarization degree. From Eqs. (47) one
can see that

ξ =
√

ξ 2
1,± + ξ 2

2,± =
∣∣t2

1 − t2
0

∣∣∣∣t2
1

∣∣ + ∣∣t2
0

∣∣ . (49)

As expected, the Stokes parameters are different only if the
transmission coefficients t0 and t1 are different.

In what follows we assume that ξ2′ is measured as shown
in Fig. 6. We denote the numbers of the detected circularly
polarized photons after the measurement time t as N±(t ) (see
Fig. 6). If they are large, the Stokes parameter is given by

ξ2′ = N+ − N−
N+ + N−

= ±ξ . (50)
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However, if N± are small, this equation yields only an estimate
for ξ2′ , which is a random number and can differ from ±ξ .

B. Entanglement between electron and photon

The spin measurement through the photon detection can
be viewed as a result of the entanglement between electron
and photon spins [68–70]. The electron and photon represent
in this case the two qubits. The photon detection destroys the
entanglement, which leads to the dephasing of the electron
spin. The frequent photon detection leads to the quick relax-
ation of the off-diagonal spin density matrix elements, which
causes the quantum Zeno effect. So the measurement strength
is determined by the degree of the spin-photon entanglement.

To put it on a quantitative basis, we write down the two-
particle wave function of an electron and a single transmitted
photon:

|�e−ph〉 = (χ+t1, χ+t0, χ−t0, χ−t1)√∣∣t2
1

∣∣ + ∣∣t2
0

∣∣ . (51)

Here, we use the basis states |↑, σ+〉, |↑, σ−〉, |↓, σ+〉,
|↓, σ+〉, with an arrow denoting the electron spin state and
σ± denoting the photon polarization. The components of the
electron spinor are denoted as χ±. Equation (51) represents a
pure state, so its concurrence is given by [71]

C = |〈�e−ph|T |�e−ph〉|, (52)

where T denotes the time inversion (multiplication by the sec-
ond Pauli matrices of both qubits and complex conjugation).
The straightforward calculation yields

C = 2ξ |Sx + iSy|. (53)

This establishes the relation between the concurrence and the
difference of the Stokes parameters ξ2′,±. The spin compo-
nents Sx and Sy in Eq. (53) reflect the fact that the destruction
of the entanglement leads to the relaxation of the off-diagonal
density matrix elements [see Eqs. (15) and (16)].

C. Calculation of the measurement rate

To calculate the measurement rate we consider a short
measurement time t , when the average number of the detected
photons N (t ) = N+(t ) + N−(t ) is small: N (t ) � 1. In this
case, we can neglect the probability to detect two photons and
consider zero or one detected photon only.

In the case of N+ = 1 and N− = 0, the conditional proba-
bilities of spin-up and spin-down states are given by

P± = 1 ± ξ

2
(54)

[see Eq. (50)]. In the case of N+ = 0, N− = 1, the ± sign on
the right-hand side should be flipped, and in the trivial case of
N+ = N− = 0 one has P± = 1/2, since there is no ground for
the spin direction estimation.

As an example, if ξ = 1, then the transmitted light is al-
ways circularly polarized and its polarization is σ± (in the
rotated basis) for Sz = ±1/2, respectively. In this case, a
single photon detection strictly yields the electron spin ori-
entation: Either P+ or P− is equal to unity as follows from
Eq. (54).

In the opposite limit of ξ � 1, the polarizations of the
transmitted light for Sz = ±1/2 are very similar, and after a
single photon detection P± ≈ 1/2 in Eq. (54), so it is difficult
to say what is the actual electron spin state.

Generally, Eq. (54) along with the definition (44) yields

I (t ) = ln(2) − N (t )

[
1 + ξ

2
ln(1 + ξ ) + 1 − ξ

2
ln(1 − ξ )

]
.

(55)

This leads to the measurement rate [Eq. (45)]

�meas =
[

1 + ξ

2
ln(1 + ξ ) + 1 − ξ

2
ln(1 − ξ )

]
Ṅ, (56)

where Ṅ is the average flux of the transmitted photons. This
expression is general. It is valid for arbitrary ξ and can be
used to calculate the measurement rate for any optical spin
measurement.

The photon flux is given by

Ṅ = 2κ2〈c†
+c+ + c†

−c−〉, (57)

where we recall that κ2 is the photon amplitude decay rate
through the right mirror of the cavity (the light is assumed
to be incident at the left one). Making use of the steady state
density matrix found in Sec. III C, we obtain

Ṅ = 2κ2
E2

κ
2

(∣∣t2
0

∣∣ + ∣∣t2
1

∣∣). (58)

Now the substitution of this expression along with Eq. (49) in
Eq. (56) yields the spin measurement rate �meas.

It should be compared with the dephasing rate, i.e., the rate
of the decay of the off-diagonal spin density matrix element:

�deph = 2λ (59)

[see Eqs. (16) and (32)]. Here, λ is given by Eq. (40).
In Fig. 7(a) we compare the spin measurement and dephas-

ing rates as functions of the probe frequency. Both rates show
the three peaks at the same frequencies as the transmission
coefficient: bare cavity and polariton frequencies. One can see
that the dephasing rate is always larger than the measurement
rate, so the inequality (43) is satisfied.

The trion decay with the rate γ increases the dephasing
rate in Eq. (40), so in Fig. 7 we consider the limit γ = 0.
Moreover, it follows from Eq. (58) that the detected photon
flux is proportional to the ratio κ2/κ, so the more photons
escape the cavity through the right mirror, the higher is the
measurement rate. The blue dotted and red dashed curves
demonstrate that the measurement rate is two times larger
in the limit κ2 → κ than in the case of a symmetric cavity,
κ2 = κ/2. However, even if all the photons escape the cavity
through the right mirror and are captured by the photodetec-
tors, the measurement rate is still considerably smaller than
the dephasing rate, as shown in Fig. 7(b).

The measurement rate approaches the dephasing rate for
strongly detuned light, because the measurement in this case
becomes almost nonperturbing. However, below we will show
that the measurement rate can be increased up to the dephas-
ing rate at all probe frequencies.
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(a)

(b)

FIG. 7. (a) Spin measurement and dephasing rates, calculated af-
ter Eqs. (56) (red dashed and blue dotted curves) and (59) (black solid
curve), respectively, for γ = 0 and g/κ = 10. For the blue dotted and
red dashed curves, κ2 = κ/2 and κ2 → κ, respectively. (b) Ratio of
the measurement and dephasing rates for the same parameters shown
with the same colors.

D. Reaching the quantum limit

To summarize the previous section, the optimization of the
structure parameters γ = 0 and κ2 → κ does not allow one
to reach the quantum limit. This can be explained using the
expression for the difference of the Stokes parameters (49).
For example, if t0 = 1 and t1 = −1, then the transmitted light
is always polarized linearly perpendicular to the polarization
of the incident light. The Stokes parameters are the same
for spin-up and spin-down electrons, so the detection scheme
shown in Fig. 6 does not allow one to determine the electron
spin state. However, the phase of the transmitted light is op-
posite for the two spin states. This phase can be measured
using the homodyne detection. The homodyne detection is
often used to reach the quantum limit [63], but to date it was
not clear how it changes the measurement rate.

In the homodyne detection scheme (Fig. 8), the light emit-
ted from the cavity interferes with the field of the local
oscillator, which has a fixed phase relative to the light incident
at the cavity. The total amplitudes of the circularly polarized
components of light before the polarizing beam splitter have

FIG. 8. Scheme of the homodyne nondemolition spin measure-
ment. Linearly polarized light is separated into two beams by the
beam splitter BS1. After one of them passes through the cavity, they
are mixed by the beam splitter BS2. The photon counting scheme is
the same as in Fig. 6.

the form

E± ∝ t±E + Elo, (60)

where Elo is proportional to the amplitude of the local oscilla-
tor field (the effective decrease of the transmission coefficients
t± due to the beam splitter BS2 in Fig. 8 can be accounted for
by the renormalization of Elo). In this case, the above theory
is valid provided the effective transmission coefficients

t̃± = t± + tlo (61)

are used instead of t± with tlo = Elo/E . For the large amplitude
of the local oscillator, tlo � 1, the difference between the
Stokes parameters is small,

ξ = |t1 − t0|
|tlo| � 1, (62)

so the measurement rate Eq. (56) can be written as

�meas = ξ 2

2
Ṅ . (63)

However, the photon flux is 2|t2
lo|/(|t2

1 | + |t2
0 |) times larger

than without the homodyne detection [Eq. (58)]. So the total
measurement rate for the homodyne detection is

�homo
meas = 2|t1 − t0|2κ2

E2

κ
2
. (64)

From a comparison with Eqs. (59) and (40) one can see that
for γ = 0 and κ2 = κ the quantum limit is reached at all
frequencies of the probe light.

V. SPIN STATISTICS

The electron spin measurement unavoidably leads to the
quantum Zeno effect and modifies the whole electron spin
statistics. In this section we return to the case when an external
transverse magnetic field is applied to the system. Vanishing
of the spin precession frequency with an increase of the mea-
surement strength shown in Fig. 5 evidences the qualitative
change of the regime of the spin dynamics.

One can argue that the qualitative change of the spin
dynamics is a signature of a quantum dynamical phase tran-
sition [57]. However, the simple vanishing of the precession
frequency due to the quantum Zeno effect is similar to the
classical overdamped oscillator. To prove the quantum nature
of the spin noise, in this section we calculate the fourth-order
spin noise spectrum, which would be zero for any classical
noise.

045413-10



QUANTUM ZENO EFFECT AND QUANTUM NONDEMOLITION … PHYSICAL REVIEW B 103, 045413 (2021)

In the system under study the third-order correlator van-
ishes, because the spin is zero on average. Generally, to
describe the nontrivial contribution to the fourth-order corre-
lation function, the cumulant is introduced [44] according to

C4(τ1, τ2, τ3) = 〈Sz(0)Sz(τ1)Sz(τ2)Sz(τ3)〉
− 〈Sz(0)Sz(τ1)〉〈Sz(τ2)Sz(τ3)〉
− 〈Sz(0)Sz(τ2)〉〈Sz(τ1)Sz(τ3)〉
− 〈Sz(0)Sz(τ3)〉〈Sz(τ1)Sz(τ2)〉. (65)

For classical Gaussian noise the cumulants beyond the second
order are zero. Here, for a single spin, the nonzero fourth-
order cumulant stems from the “quantum nature” of the spin:
It takes only one of the two eigenvalues Sz = ±1/2 at the four
moments 0, τ1, τ2, and τ3 [72]. Usually, the fourth-order spin
correlation function is hardly accessible experimentally [73],
but in the system under study it can be easily determined from
the photon counting statistics, as described in Sec. II for the
second-order correlation function.

Higher-order spin correlators can be calculated, for exam-
ple, using the path integrals [55,72] or Ito calculus [74,75].
We use the formalism of the Kraus operators introduced in
Sec. III A. In analogy with Eq. (22), the fourth-order spin
correlator is given by the integral over s1, s2, s3, and s4, which
correspond to the measurements at the four time moments
t = 0, τ1, τ2, and τ3. The straightforward calculation shows
that the high-order correlators for a single electron spin reduce
to the products of the second-order correlators at the consec-
utive time moments. Thus, for 0 < τ1 < τ2 < τ3, the first two
terms in Eq. (65) cancel each other and we obtain

C4(τ1, τ2, τ3) = −〈Sz(0)Sz(τ2)〉〈Sz(τ1)Sz(τ3)〉
− 〈Sz(0)Sz(τ3)〉〈Sz(τ1)Sz(τ2)〉. (66)

This allows us to calculate the fourth-order spin correlation
function using Eq. (23).

The fourth-order correlator depends on the three time
intervals, and its Fourier transform depends on the three fre-
quencies. For simplicity, it is often reduced to the bispectrum
which is given by

B(ω1, ω2) =
∫∫

dτ1dτ2dτeiω1τ1+iω2τ2C4(τ1, τ, τ + τ2).

(67)

Qualitatively it reflects the degree of the correlation between
the spin noise at frequencies ω1 and ω2.

The modification of the bispectrum with an increase of the
measurement strength is shown in Fig. 9. Note that the vertical
axis goes from top to bottom, so the bispectrum is mostly
negative. It is always an even function of ω1 and ω2.

Under the weak measurement, λ � �L [Fig. 9(a)], the bis-
pectrum consists of four peaks at the frequencies ω1,2 = ±�L.
For the positive frequencies the bispectrum has the form

B(ω1, ω2) = λ[(δ1 + δ2)2 + 4λ2](δ1δ2 − λ2)

16
(
λ2 + δ2

1

)2(
λ2 + δ2

2

)2 , (68)

where δ1,2 = ω1,2 − �L.
With an increase of the measurement strength the peaks

become broader and shift to the lower frequencies along the

FIG. 9. Spin noise bispectrum B(ω1, ω2) in arbitrary units calcu-
lated after Eq. (66) for the different measurement strengths given in
the labels.

|ω1| = |ω2| directions. The peaks start to overlap as shown in
Fig. 9(b) and eventually merge at ω1 = ω2 = 0 at the phase
transition, λ = �L [Fig. 9(c)]. Note that there is no abrupt
change in the bispectrum as in the case of the second-order
phase transition described by the continuously changing order
parameter.

Under the strong spin measurement λ � �L the spin noise
bispectrum has the form

B(ω1, ω2) = γ

2

ω2
1ω

2
2 − γ 2

(
ω2

1 + ω2
2

) − 3γ 4

(
ω2

1 + γ 2
)2(

ω2
2 + γ 2

)2 , (69)

where γ = �2
L/(2λ) is the spin relaxation rate in this limit

[see Eq. (17)]. This expression coincides with the bispectrum
of the telegraph noise [72]. Thus when the quantum Zeno
effect is strong, the electron spin is in every time moment
either +1/2 or −1/2, as required for the telegraph noise.

VI. DISCUSSION AND CONCLUSION

Generally, the spin measurement leads to anisotropic spin
relaxation. In order to reach the quantum limit this should
be the only source of spin relaxation, while there are many
other additional spin relaxation mechanisms of an electron in
a QD. In a weak magnetic field, the dominant spin relaxation
mechanisms are the hyperfine interaction [43] and Auger trion
recombination [76], which lead to the spin relaxation on the
timescale from a few nanoseconds to tens of microseconds. In
the same time, the characteristic timescale 1/κ is usually of
the order of 1 ps, so there is a time gap of at least three orders
when the spin relaxation can be neglected. The model of the
quantum Zeno effect developed in this paper is valid in this
case. In particular, for zero magnetic field, the nondemolition
spin measurement can be realized and the quantum limit can
be reached using the homodyne detection.

The calculations in this work were done for a par-
ticular choice of the spin photon interface. However, we
believe that they give an essential physical insight and
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can be adapted to other situations such as weak coupling
regime, different polarization configurations, different geome-
tries including photonic crystals, waveguides, and plasmonic
structures [77–84], and different material systems including
trapped atoms, color centers, and rare earth ions.

The ratio of the measurement and dephasing rates was not
studied for most of the particular realizations of the spin-
photon interfaces [32,35,85,86]. However, from our analysis
we can expect that it is very small (far from the quantum limit)
for the QD systems in the weak coupling regime [87–89],
because most of the emitted photons are not detected in this
case. The situation may change in the case of the resonance
fluorescence measurements [90–93], but this requires a spin
measurement by many photons. In the system under study the
spin measurement can be performed in principle by a single
photon [32,35].

To summarize, we have developed a microscopic theory
of the quantum Zeno effect for a continuous measurement
of a single electron spin noise in a QD micropillar cavity.
We showed that in the limit of a small population of trion
states, the suppression of the spin precession in a magnetic
field is described by a single parameter, the measurement
strength given by Eq. (40). We demonstrated that the quantum
Zeno effect results from the destruction of the entanglement

between the electron spin and photon polarizations. We de-
rived the general expression for the optical spin measurement
rate analyzing the Stokes parameters of the transmitted light
[Eq. (56)]. We demonstrated that the high-order spin statistics
qualitatively change at the transition between the regime of
quantum coherent dynamics and the quantum Zeno phase.
They agree with the telegraph noise for the strong continuous
spin measurement. Finally, we demonstrated that the quantum
limit can be reached for any probe frequency using a one-sided
cavity and the homodyne nondemolition spin measurement.

The developed theory allows one to tune the strength of
the measurement backaction and to maximize the quantum
information gain rate for the given spin dephasing rate.

ACKNOWLEDGMENTS

We gratefully acknowledge fruitful discussions with A. N.
Poddubny and the partial financial support by the RF Presi-
dent Grant No. MK-1576.2019.2 and the Foundation for the
Advancement of Theoretical Physics and Mathematics “BA-
SIS.” The numerical calculations by N.V.L. were supported
by the Russian Science Foundation Grant No. 19-12-00051.
The analytical calculations by D.S.S. were supported by the
Russian Science Foundation Grant No. 19-72-00081.

[1] L. A. Khalfin, Contribution to the decay theory of a quasi-
stationary state, Sov. Phys. JETP 6, 1053 (1958).

[2] P. Facchi and S. Pascazio, Quantum Zeno dynamics: Mathemat-
ical and physical aspects, J. Phys. A: Math. Theor. 41, 493001
(2008).

[3] R. P. Hardie and R. K. Gaye, Physica by Aristotle (translation),
in The Works of Aristotle, edited by J. A. Smith and W. D. Ross
(Clarendon Press, Oxford, 1930), Vol. II.

[4] B. Misra and E. C. G. Sudarshan, The Zeno’s paradox in quan-
tum theory, J. Math. Phys. 18, 756 (1977).

[5] D. Guéry-Odelin, A. Ruschhaupt, A. Kiely, E. Torrontegui,
S. Martínez-Garaot, and J. G. Muga, Shortcuts to adiabatic-
ity: Concepts, methods, and applications, Rev. Mod. Phys. 91,
045001 (2019).

[6] L. Pezzè, A. Smerzi, M. K. Oberthaler, R. Schmied, and
P. Treutlein, Quantum metrology with nonclassical states of
atomic ensembles, Rev. Mod. Phys. 90, 035005 (2018).

[7] J. A. Gross, C. M. Caves, G. J. Milburn, and J. Combes, Qubit
models of weak continuous measurements: Markovian condi-
tional and open-system dynamics, Quantum Sci. Technol. 3,
024005 (2018).

[8] A. G. Kofman and G. Kurizki, Acceleration of quantum decay
processes by frequent observations, Nature (London) 405, 546
(2000).

[9] P. Facchi, H. Nakazato, and S. Pascazio, From the Quantum
Zeno to the Inverse Quantum Zeno Effect, Phys. Rev. Lett. 86,
2699 (2001).

[10] D. E. Chang, J. S. Douglas, A. González-Tudela, C.-L. Hung,
and H. J. Kimble, Colloquium: Quantum matter built from
nanoscopic lattices of atoms and photons, Rev. Mod. Phys. 90,
031002 (2018).

[11] D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, Quantum
dynamics of single trapped ions, Rev. Mod. Phys. 75, 281
(2003).

[12] J. Wolters, M. Strauß, R. S. Schoenfeld, and O. Benson, Quan-
tum Zeno phenomenon on a single solid-state spin, Phys. Rev.
A 88, 020101(R) (2013).

[13] D. Sokolovski and E. Ya. Sherman, Spin measurements and
control of cold atoms using spin-orbit fields, Phys. Rev. A 89,
043614 (2014).

[14] N. Kalb, J. Cramer, D. J. Twitchen, M. Markham, R. Hanson,
and T. H. Taminiau, Experimental creation of quantum Zeno
subspaces by repeated multi-spin projections in diamond, Nat.
Commun. 7, 13111 (2016).

[15] M. Pfender, P. Wang, H. Sumiya, S. Onoda, W. Yang, D. B. R.
Dasari, P. Neumann, X.-Y. Pan, J. Isoya, R.-B. Liu, and
J. Wrachtrup, High-resolution spectroscopy of single nuclear
spins via sequential weak measurements, Nat. Commun. 10,
594 (2019).

[16] K. S. Cujia, J. M. Boss, K. Herb, J. Zopes, and C. L. Degen,
Tracking the precession of single nuclear spins by weak mea-
surements, Nature (London) 571, 230 (2019).

[17] D. Klauser, W. A. Coish, and D. Loss, Nuclear spin dynamics
and Zeno effect in quantum dots and defect centers, Phys. Rev.
B 78, 205301 (2008).

[18] T. Nutz, P. Androvitsaneas, A. Young, R. Oulton, and D. P. S.
McCutcheon, Stabilization of an optical transition energy via
nuclear Zeno dynamics in quantum-dot-cavity systems, Phys.
Rev. A 99, 053853 (2019).

[19] O. Hosten, M. T. Rakher, J. T. Barreiro, N. A. Peters, and P. G.
Kwiat, Counterfactual quantum computation through quantum
interrogation, Nature (London) 439, 949 (2006).

045413-12

https://doi.org/10.1088/1751-8113/41/49/493001
https://doi.org/10.1063/1.523304
https://doi.org/10.1103/RevModPhys.91.045001
https://doi.org/10.1103/RevModPhys.90.035005
https://doi.org/10.1088/2058-9565/aaa39f
https://doi.org/10.1038/35014537
https://doi.org/10.1103/PhysRevLett.86.2699
https://doi.org/10.1103/RevModPhys.90.031002
https://doi.org/10.1103/RevModPhys.75.281
https://doi.org/10.1103/PhysRevA.88.020101
https://doi.org/10.1103/PhysRevA.89.043614
https://doi.org/10.1038/ncomms13111
https://doi.org/10.1038/s41467-019-08544-z
https://doi.org/10.1038/s41586-019-1334-9
https://doi.org/10.1103/PhysRevB.78.205301
https://doi.org/10.1103/PhysRevA.99.053853
https://doi.org/10.1038/nature04523


QUANTUM ZENO EFFECT AND QUANTUM NONDEMOLITION … PHYSICAL REVIEW B 103, 045413 (2021)

[20] G. Gordon and G. Kurizki, Preventing Multipartite Disentan-
glement by Local Modulations, Phys. Rev. Lett. 97, 110503
(2006).

[21] A. Signoles, A. Facon, D. Grosso, I. Dotsenko, S. Haroche,
J.-M. Raimond, M. Brune, and S. Gleyzes, Confined quantum
Zeno dynamics of a watched atomic arrow, Nat. Phys. 10, 715
(2014).

[22] F. Schäfer, I. Herrera, S. Cherukattil, C. Lovecchio, F. S.
Cataliotti, F. Caruso, and A. Smerzi, Experimental realiza-
tion of quantum Zeno dynamics, Nat. Commun. 5, 3194
(2014).

[23] F. Piacentini, A. Avella, E. Rebufello, R. Lussana, F. Villa,
A. Tosi, M. Gramegna, G. Brida, E. Cohen, L. Vaidman, I. P.
Degiovanni, and M. Genovese, Determining the quantum ex-
pectation value by measuring a single photon, Nat. Phys. 13,
1191 (2017).

[24] G. A. Paz-Silva, A. T. Rezakhani, J. M. Dominy, and D. A.
Lidar, Zeno Effect for Quantum Computation and Control,
Phys. Rev. Lett. 108, 080501 (2012).

[25] J. Stolze, D. Suter, and D. P. Divincenzo, Quantum Computing:
A Short Course from Theory to Experiment (Wiley-VCH, Berlin,
2008).

[26] D. V. Khomitsky, L. V. Gulyaev, and E. Ya. Sherman, Spin dy-
namics in a strongly driven system: Very slow Rabi oscillations,
Phys. Rev. B 85, 125312 (2012).

[27] R. Raussendorf and H. J. Briegel, A One-Way Quantum Com-
puter, Phys. Rev. Lett. 86, 5188 (2001).

[28] K. Koshino, S. Ishizaka, and Y. Nakamura, Deterministic
photon-photon

√
swapgate using a � system, Phys. Rev. A 82,

010301(R) (2010).
[29] S. Rosenblum, S. Parkins, and B. Dayan, Photon routing in

cavity QED: Beyond the fundamental limit of photon blockade,
Phys. Rev. A 84, 033854 (2011).

[30] I. Shomroni, S. Rosenblum, Y. Lovsky, O. Bechler, G.
Guendelman, and B. Dayan, All-optical routing of single pho-
tons by a one-atom switch controlled by a single photon,
Science 345, 903 (2014).

[31] I. Schwartz, D. Cogan, E. R. Schmidgall, Y. Don, L. Gantz,
O. Kenneth, N. H. Lindner, and D. Gershoni, Deterministic
generation of a cluster state of entangled photons, Science 354,
434 (2016).

[32] D. S. Smirnov, B. Reznychenko, A. Auffèves, and L. Lanco,
Measurement back action and spin noise spectroscopy in a
charged cavity QED device in the strong coupling regime, Phys.
Rev. B 96, 165308 (2017).

[33] A. Kavokin, J. J. Baumberg, G. Malpuech, and F. P. Laussy,
Microcavities (Oxford University Press, Oxford, UK, 2007).

[34] D. Najer, I. Söllner, P. Sekatski, V. Dolique, M. C. Löbl, D.
Riedel, R. Schott, S. Starosielec, S. R. Valentin, A. D. Wieck, N.
Sangouard, A. Ludwig, and R. J. Warburton, A gated quantum
dot strongly coupled to an optical microcavity, Nature (London)
575, 622 (2019).

[35] D. S. Smirnov, M. M. Glazov, E. L. Ivchenko, and L. Lanco,
Theory of optical spin control in quantum dot microcavities,
Phys. Rev. B 92, 115305 (2015).

[36] C. Arnold, J. Demory, V. Loo, A. Lemaitre, I. Sagnes, M.
Glazov, O. Krebs, P. Voisin, P. Senellart, and L. Lanco, Macro-
scopic rotation of photon polarization induced by a single spin,
Nat. Commun. 6, 6236 (2015).

[37] E. L. Ivchenko, Optical Spectroscopy of Semiconductor Nanos-
tructures (Alpha Science, Harrow, UK, 2005).

[38] D. F. Walls and G. J. Milburn, Quantum Optics (Springer, New
York, 2007).

[39] X. Marie, T. Amand, P. Le Jeune, M. Paillard, P. Renucci, L. E.
Golub, V. D. Dymnikov, and E. L. Ivchenko, Hole spin quan-
tum beats in quantum-well structures, Phys. Rev. B 60, 5811
(1999).

[40] H. Carmichael, An Open System Approach to Quantum Optics
(Springer, Berlin, 1993).

[41] S. V. Poltavtsev, I. I. Ryzhov, M. M. Glazov, G. G. Kozlov, V. S.
Zapasskii, A. V. Kavokin, P. G. Lagoudakis, D. S. Smirnov, and
E. L. Ivchenko, Spin noise spectroscopy of a single quantum
well microcavity, Phys. Rev. B 89, 081304(R) (2014).

[42] C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity,
Giant optical Faraday rotation induced by a single-electron spin
in a quantum dot: Applications to entangling remote spins via a
single photon, Phys. Rev. B 78, 085307 (2008).

[43] M. M. Glazov, Electron and Nuclear Spin Dynamics in Semicon-
ductor Nanostructures (Oxford University Press, Oxford, UK,
2018).

[44] D. S. Smirnov, V. N. Mantsevich, and M. M. Glazov, Theory
of optically detected spin noise in nanosystems, Phys. Usp.,
(2021).

[45] L. D. Landau and E. M. Lifshitz, Statistical Physics, Part 1
(Butterworth-Heinemann, Oxford, UK, 2000).

[46] C. M. Caves and G. J. Milburn, Quantum-mechanical model
for continuous position measurements, Phys. Rev. A 36, 5543
(1987).

[47] C. Presilla, R. Onofrio, and U. Tambini, Measurement quantum
mechanics and experiments on quantum Zeno effect, Ann. Phys.
248, 95 (1996).

[48] B. J. Sussman, Five ways to the nonresonant dynamic Stark
effect, Am. J. Phys. 79, 477 (2011).

[49] I. I. Ryzhov, G. G. Kozlov, D. S. Smirnov, M. M. Glazov,
Y. P. Efimov, S. A. Eliseev, V. A. Lovtcius, V. V. Petrov, K. V.
Kavokin, A. V. Kavokin, and V. S. Zapasskii, Spin noise ex-
plores local magnetic fields in a semiconductor, Sci. Rep. 6,
21062 (2016).

[50] A. G. Kofman and G. Kurizki, Quantum Zeno effect on atomic
excitation decay in resonators, Phys. Rev. A 54, R3750(R)
(1996).

[51] A. G. Kofman, G. Kurizki, and T. Opatrný, Zeno and anti-Zeno
effects for photon polarization dephasing, Phys. Rev. A 63,
042108 (2001).

[52] D. Sokolovski and E. Ya. Sherman, Measurement of noncom-
muting spin components using spin-orbit interaction, Phys. Rev.
A 84, 030101(R) (2011).

[53] E. Ya. Sherman and D. Sokolovski, von Neumann spin mea-
surements with Rashba fields, New J. Phys. 16, 015013
(2014).

[54] K. Kraus, Measuring processes in quantum mechanics I. Con-
tinuous observation and the watchdog effect, Found. Phys. 11,
547 (1981).

[55] A. Bednorz, W. Belzig, and A. Nitzan, Nonclassical time cor-
relation functions in continuous quantum measurement, New J.
Phys. 14, 013009 (2012).

[56] R.-B. Liu, S.-H. Fung, H.-K. Fung, A. N. Korotkov, and L. J.
Sham, Dynamics revealed by correlations of time-distributed

045413-13

https://doi.org/10.1103/PhysRevLett.97.110503
https://doi.org/10.1038/nphys3076
https://doi.org/10.1038/ncomms4194
https://doi.org/10.1038/nphys4223
https://doi.org/10.1103/PhysRevLett.108.080501
https://doi.org/10.1103/PhysRevB.85.125312
https://doi.org/10.1103/PhysRevLett.86.5188
https://doi.org/10.1103/PhysRevA.82.010301
https://doi.org/10.1103/PhysRevA.84.033854
https://doi.org/10.1126/science.1254699
https://doi.org/10.1126/science.aah4758
https://doi.org/10.1103/PhysRevB.96.165308
https://doi.org/10.1038/s41586-019-1709-y
https://doi.org/10.1103/PhysRevB.92.115305
https://doi.org/10.1038/ncomms7236
https://doi.org/10.1103/PhysRevB.60.5811
https://doi.org/10.1103/PhysRevB.89.081304
https://doi.org/10.1103/PhysRevB.78.085307
https://doi.org/10.3367/UFNe.2020.10.038861
https://doi.org/10.1103/PhysRevA.36.5543
https://doi.org/10.1006/aphy.1996.0052
https://doi.org/10.1119/1.3553018
https://doi.org/10.1038/srep21062
https://doi.org/10.1103/PhysRevA.54.R3750
https://doi.org/10.1103/PhysRevA.63.042108
https://doi.org/10.1103/PhysRevA.84.030101
https://doi.org/10.1088/1367-2630/16/1/015013
https://doi.org/10.1007/BF00726936
https://doi.org/10.1088/1367-2630/14/1/013009


LEPPENEN, LANCO, AND SMIRNOV PHYSICAL REVIEW B 103, 045413 (2021)

weak measurements of a single spin, New J. Phys. 12, 013018
(2010).

[57] G. A. Álvarez, E. P. Danieli, P. R. Levstein, and H. M.
Pastawski, Environmentally induced quantum dynamical phase
transition in the spin swapping operation, J. Chem. Phys. 124,
194507 (2006).

[58] F. Li, J. Ren, and N. A. Sinitsyn, Quantum Zeno effect
as a topological phase transition in full counting statistics
and spin noise spectroscopy, Europhys. Lett. 105, 27001
(2014).

[59] J. Ren and N. A. Sinitsyn, Braid group and topological phase
transitions in nonequilibrium stochastic dynamics, Phys. Rev. E
87, 050101(R) (2013).

[60] K. Snizhko, P. Kumar, and A. Romito, Quantum Zeno effect
appears in stages, Phys. Rev. Research 2, 033512 (2020).

[61] It can be also compactly written as λ = (E2/κ) Re(t0 + t1 −
2t0t∗

1 ).
[62] T. Petrosky, S. Tasaki, and I. Prigogine, Quantum Zeno effect,

Phys. Lett. A 151, 109 (1990).
[63] A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, and

R. J. Schoelkopf, Introduction to quantum noise, measurement,
and amplification, Rev. Mod. Phys. 82, 1155 (2010).

[64] M. H. Devoret and R. J. Schoelkopf, Amplifying quantum sig-
nals with the single-electron transistor, Nature (London) 406,
1039 (2000).

[65] A. N. Korotkov and D. V. Averin, Continuous weak measure-
ment of quantum coherent oscillations, Phys. Rev. B 64, 165310
(2001).

[66] L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields
(Butterworth-Heinemann, Oxford, UK, 1975).

[67] D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii,
Quantum Theory of Angular Momentum (World Scientific,
Singapore, 1988).

[68] K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M.
Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M.
Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer,
and Y. Yamamoto, Quantum-dot spin-photon entanglement
via frequency downconversion to telecom wavelength, Nature
(London) 491, 421 (2012).

[69] W. B. Gao, P. Fallahi, E. Togan, J. Miguel-Sanchez, and
A. Imamoglu, Observation of entanglement between a quan-
tum dot spin and a single photon, Nature (London) 491, 426
(2012).

[70] J. R. Schaibley, A. P. Burgers, G. A. McCracken, L.-M. Duan,
P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and
L. J. Sham, Demonstration of Quantum Entanglement between
a Single Electron Spin Confined to an InAs Quantum Dot and a
Photon, Phys. Rev. Lett. 110, 167401 (2013).

[71] W. K. Wootters, Entanglement of Formation of an Arbitrary
State of Two Qubits, Phys. Rev. Lett. 80, 2245 (1998).

[72] F. Li, A. Saxena, D. Smith, and N. A. Sinitsyn, Higher-order
spin noise statistics, New J. Phys. 15, 113038 (2013).

[73] D. S. Smirnov and K. V. Kavokin, Optical resonance shift spin-
noise spectroscopy, Phys. Rev. B 101, 235416 (2020).

[74] K. Jacobs and D. A. Steck, A straightforward introduction to
continuous quantum measurement, Contemp. Phys. 47, 279
(2006).

[75] D. Hägele and F. Schefczik, Higher-order moments, cumulants,
and spectra of continuous quantum noise measurements, Phys.
Rev. B 98, 205143 (2018).

[76] J. Wiegand, D. S. Smirnov, J. Hübner, M. M. Glazov, and M.
Oestreich, Spin and reoccupation noise in a single quantum dot
beyond the fluctuation-dissipation theorem, Phys. Rev. B 97,
081403(R) (2018).

[77] M. T. Rakher, N. G. Stoltz, L. A. Coldren, P. M. Petroff, and
D. Bouwmeester, Externally Mode-Matched Cavity Quantum
Electrodynamics with Charge-Tunable Quantum Dots, Phys.
Rev. Lett. 102, 097403 (2009).

[78] P. Androvitsaneas, A. B. Young, C. Schneider, S. Maier, M.
Kamp, S. Höfling, S. Knauer, E. Harbord, C. Y. Hu, J. G.
Rarity, and R. Oulton, Charged quantum dot micropillar system
for deterministic light-matter interactions, Phys. Rev. B 93,
241409(R) (2016).

[79] S. Sun, H. Kim, G. S. Solomon, and E. Waks, A quantum phase
switch between a single solid-state spin and a photon, Nat.
Nanotechnol. 11, 539 (2016).

[80] X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen,
S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling,
C.-Y. Lu, and J.-W. Pan, On-Demand Single Photons with High
Extraction Efficiency and Near-Unity Indistinguishability from
a Resonantly Driven Quantum Dot in a Micropillar, Phys. Rev.
Lett. 116, 020401 (2016).

[81] A. J. Bennett, J. P. Lee, D. J. P. Ellis, I. Farrer, D. A.
Ritchie, and A. J. Shields, A semiconductor photon-sorter, Nat.
Nanotechnol. 11, 857 (2016).

[82] P. M. Vora, A. S. Bracker, S. G. Carter, T. M. Sweeney, M.
Kim, C. S. Kim, L. Yang, P. G. Brereton, S. E. Economou, and
D. Gammon, Spin-cavity interactions between a quantum dot
molecule and a photonic crystal cavity, Nat. Commun. 6, 7665
(2015).

[83] K. G. Lagoudakis, K. Fischer, T. Sarmiento, A. Majumdar, A.
Rundquist, J. Lu, M. Bajcsy, and J. Vučković, Deterministi-
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