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We propose a four-state quantum system, or quantum unit, that can be realized in superconducting het-
erostructures. The unit combines the states of a spin and an Andreev qubit providing the opportunity of
quantum superpositions of their states. This functionality is achieved by tunnel coupling between a four-terminal
superconducting heterostructure housing a Weyl point and a quantum dot. The quantum states in the vicinity of
the Weyl point are extremely sensitive to small changes of superconducting phase; this gives rich opportunities
for quantum manipulation. We establish an effective Hamiltonian for the setup and describe the peculiarities
of the resulting spectrum. We concentrate on the four-state subspace and explain how to make a double qubit
in this setup. We review various ways to achieve quantum manipulation in the unit: this includes resonant,
adiabatic, diabatic manipulation and combinations of those. We provide detailed illustrations of designing
arbitrary quantum gates in the unit.
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I. INTRODUCTION

Superconducting qubits are defined in the microfabricated
macroscopic-scale superconducting circuits with quantum
properties. Such circuits generally comprise superconduct-
ing loops with weak link coupling the superconductors. The
artificial quantum mechanics emerging from an interplay of
Josephson effect and Coulomb blockade makes possible a rich
variety of qubit designs [1]. Flux qubit [2,3], charge qubit
[4,5], and phase qubit [6,7] have been developed over the
decades. The qubits defined in the circuits may be arranged
to couple a common resonator mode; this enables multiqubit
quantum gates and noninvasive qubit measurements [8].

Another major direction in solid-state quantum informa-
tion processing are spin qubits, where the electron spin is used
to store quantum information [9]. The spin qubits are usually
realized in quantum dots in semiconductor materials where
the electrons are confined in visibly discrete states. Both
singlet [10,11] and spin-doublet [12,13] schemes have been
realized. The important experiments include Refs. [14–17].
The spin coherence time of these quantum dot systems may
achieve milliseconds, which is beneficial for the quantum
manipulation and quantum memory.

A less common but promising design of superconducting
qubits exploits Andreev bound states: the localized quasi-
particle states in the vicinity of superconducting contacts. It
has been realized that with the Andreev bound states one
can realize both kinds of the qubits within the same device.
Namely, if the number of excess localized quasiparticles is
even, a (an Andreev) qubit emerges from the ground and ex-
cited spin-singlet states [18]. However, if the number of excess
quasiparticles is odd, the superconducting device houses a
conveniently isolated spin qubit [19]. Such realization is more
interesting than a traditional electron confinement in quantum
dots motivating theoretical research [20,21]. These ideas have

been realized experimentally [22–24] and remain in focus of
attention of the superconducting qubit community.

Recently, a topological singularity in the Andreev spec-
trum of a multiterminal superconducting structure, a Weyl
point, has been predicted and theoretically investigated [25].
For a four-terminal structure, the spectrum of Andreev states
depends on three independent superconducting phases. At
a particular choice of these three phases, the energy of
the lowermost Andreev level approaches zero, signaling the
degeneracy of the corresponding spin-singlet qubit. The spec-
trum is conical in the vicinity of this singularity manifesting
the critical dependence of the wave functions: very small
changes of the phases in the vicinity of the point strongly
affect the wave functions of the states. This is already ad-
vantageous for quantum manipulation applications. The Weyl
points in the superconducting structures have been investi-
gated in [26–34].

As for any Andreev-based setup, the parity effect is crucial
here. For even parity, the spectrum of two spin singlets is
conical and the dependence of the wave functions is critical in
the vicinity of the point. For odd parity, the spin-doublet states
are slightly split owing to spin-orbit interaction [35]. Their
wave functions or energies exhibit no critical dependence on
the phases [Fig. 1(a)].

The quantum spaces of different parity are completely
separated and cannot be made coherent: indeed, a transition
between those would involve a quasiparticle coming from or
escaping to the delocalized states of the continuous spectrum.
So, despite the fact that the system can house both super-
conducting and spin qubits, there is no quantum coherence
between the two.

However tempting such coherence may be, it seems to be
forbidden by fundamental laws. The main point of this paper
is that the coherence can be achieved with a rather simple
extension of the Weyl point setup.
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FIG. 1. The spin Weyl quantum unit. (a) The low-energy spec-
trum of the multiterminal superconducting structure with a Weyl
point consists of a pair of flat spin-doublet states an a pair of
conical spin singlets. The spin doublets are split by small energy
2B coming from spin-orbit interaction. The pairs are not coherent
corresponding to different parities. (b) The spin Weyl quantum unit
provides coherence and hybridization between the flat and conical
states. Sketch of the spectrum presents the hybridization with solid
lines and before hybridization with dashed lines. (c) The setup of the
spin Weyl quantum unit. The superconducting structure with four
leads and three independent phases ϕ1,2,3 is tunnel coupled with a
single-electron quantum dot. The quantum dot is tuned by the gate
electrode, and a lead supplies electrons to the dot.

In this paper we propose a hybrid system that can be
regarded as two coherently coupled qubits. It thus exhibits
hybridization of flat spin-doublet states with conical spin-
singlet states [Fig. 1(b)]. We term the system a spin Weyl
quantum unit. We show how the unit can be manipulated to
achieve an arbitrary unitary transformation in the space of four
states, by the superconducting phase controls only, and can be
conveniently read out.

The system proposed combines a superconducting het-
erostructure and a single-electron quantum dot [Fig. 1(c)].
The two parts are coupled with a weak electron tunneling
between the heterostructure and the dot. The degeneracy at
the Weyl point guarantees that even the weak coupling results
in strong change of the spectrum, making it advantageous for
quantum manipulation applications. The electron tunneling to
localized states of the dot is essential for breaking the parity
conservation that forbids the hybridization of flat and conical
states near the Weyl point.

The structure of the paper is as follows. In Sec. II we
describe the setup, establish a minimum Hamiltonian required
to describe the unit, and explain its relevance in the wider
context of more detailed description of the device. In Sec. III,
we describe the resulting spectrum and the choice we made
for the subspace where quantum manipulations are performed.
We discuss in Sec. IV read-out, initialization, and various
methods of quantum manipulation that can be implemented in

the unit. In Sec. V, we describe the implementation of single-
qubit gates by means of resonant manipulation. In Sec. VI
we concentrate on diabatic manipulations and demonstrate the
design of various two-qubit gates. We conclude in Sec. VII.

II. THE SETUP AND THE HAMILTONIAN

The unit consists of two subsystems [Fig. 1(c),]: the
superconducting heterostructure and the quantum dot. The su-
perconducting heterostructure is connected to four supercon-
ducting leads biased with three independent superconducting
phases ϕ1,2,3 and houses the discrete Andreev bound states
with the spectrum depending on the phases. At a certain
choice of the phases, the energy lowermost Andreev state
reaches zero, exhibiting a Weyl singularity [25,30]. The quan-
tum dot houses a discrete number of electrons; this number
can be tuned by a nearby gate electrode. A normal-metal lead
supplies the electrons. The subsystems are coupled by electron
tunneling.

Such setup can be realized with a variety of technolo-
gies, including the two-dimensional (2D) semiconducting
heterostructures, semiconducting nanowires, and graphene,
brought in proximity with superconducting metals. Here, we
do not specify a concrete technology but rather spell out
the physical restrictions. The spacing δ between the An-
dreev bound states becomes small in comparison with the
superconducting energy gap � if the conductances G in
the superconducting structure exceed much the conductance
quantum GQ, δ � (GQ/G)�. So, the conductances should
be of the order of GQ. As mentioned in [25], the existence
of Weyl points relies on general scattering theory and does
not impose any further restrictions on the properties of the
structure. The vicinity of the Weyl point implies the working
energy scale ��. The level spacing in the quantum dot should
be big at this energy scale. The tunneling energy should be
also at this scale, that is, not too large. The spin-orbit splitting
B is much smaller than � in materials with weak spin-orbit
coupling. The tunneling energy should be comparable with B.

Let us consider the full Hamiltonian of the system, that is
the sum of the Weyl point structure Hamiltonian, the quantum
dot Hamiltonian, and the tunneling Hamiltonian:

H = HWP + HT + HQD (1)

We will construct a minimum Hamiltonian disregarding pos-
sible higher-energy states in the dot and in the structure. The
Andreev levels in the vicinity of the Weyl point are described
by a Weyl BdG Hamiltonian [30]. Assuming spin degeneracy,
this Hamiltonian is a 2 × 2 matrix in Nambu space. Its general
linear expansion near the Weyl point reads as

ĤWP = τ̂ avabδϕb, (2)

a, b = 1, 2, 3, τ̂ a being a 3-vector of Pauli matrices in Nambu
space, δϕb being small deviations of the superconducting
phases from the Weyl point, vab being a matrix of pro-
portionality coefficients. It is advantageous to introduce the
convenient coordinates in the space of three superconduct-
ing phases φa = vabδϕb. We will name these coordinates
phases for brevity, although they have dimension energy.
The spectrum of the Hamiltonian is conveniently isotropic in
the resulting space E = ±| �φ|, while the wave functions do
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depend on the direction. To account for spin-orbit interaction,
we promote the Hamiltonian to 4 × 4 matrix in spin and
Nambu space,

ĤWP = �̂τ · �φ + 1
2
�B · �̂σ, (3)

�̂σ being the vector of Pauli matrices in spin space. The spin
and orbital degrees of freedom separate, so the spectrum
reads as E = ±| �φ| + sz2B, B ≡ | �B|, sz = ± 1

2 being the spin
projection on the direction of �B. We need the Hamiltonian
in second quantization form. We introduce the quasiparticle
annihilation operators γ̂σ and associated Nambu bispinors
γ̄a,σ ≡ (γ̂σ , σ γ̂

†
−σ ) to recast it to the standard form

HWP = 1
2 γ̄ †

α ĤWP
αβ γ̄β . (4)

This Hamiltonian can be reduced to a diagonal form for a
certain direction in φ space, �φ = φ�n by a Bogoliubov trans-
form of γ̂σ to a direction dependent ˆ̃γσ . Choosing the spin
quantization axis along �B, we arrive at

HWP = 1
2 (φ + Bσ )( ˆ̃γ †

σ
ˆ̃γσ − ˆ̃γσ

ˆ̃γ †
σ ). (5)

This gives the spectrum sketched in Fig. 1(a): E = ±φ for
the states |0〉, |2↑↓〉 ≡ ˆ̃γ †

↑ ˆ̃γ †
↓ |0〉, E = ±B for the states |↑〉 ≡

ˆ̃γ †
↑ |0〉, |↓〉 ≡ ˆ̃γ †

↓ |0〉.
To model the dot at the small energy scale, we only need to

take into account three states that differ by an addition of an
electron: a nondegenerate state |0〉 and two spin-degenerate
states d̂†

σ |0〉, d̂†
σ being the electron creation operator corre-

sponding to spin σ . The charging energy of the quantum dot
pushes the states of other occupancy too high in energy. As
such, the Hamiltonian reads as

HQD = εd d̂†
σ |0〉〈0|d̂σ , (6)

the value of εd can be tuned with the gate voltage. The only
function of the normal-metal lead in our setup is to provide
equilibration of the total parity, which is impossible otherwise.
This equilibration is not required in the course of quantum ma-
nipulation and measurement and thus can be a slow process.
The speed of equilibration is determined by tunneling rate �L

to and from the lead. We assume the inverse of this rate to
exceed all other relevant timescales in the setup. On this basis,
we can disregard the dissipation and decoherence brought by
the lead, as well as neglect the tunneling to and from the lead
in the Hamiltonian description of the setup.

The least trivial and the most important part of the to-
tal Hamiltonian describes tunneling between the dot and the
setup. To derive it, we assume spin conservation regarding
spin orbit as an irrelevant perturbation. Then, the most general
form of the tunneling Hamiltonian reads as follows:

HT =
∫

dy dx ĉ†
σ (y)d̂ (x)σ t (x, y) + H.c. (7)

Here, y and x are the electron coordinates in the supercon-
ducting structure and in the dot, respectively, ĉσ (y), d̂ (x)σ
are the corresponding electron annihilation operators, and
t (x, y) is the tunneling amplitude from the point x to the
point y. We need to project this operator to the low-energy
electron states involved. To this end, we express the operators
in terms of the wave functions of the quasiparticle states in the

superconducting structure, and the electron states in the dot,
and the corresponding creation and annihilation operators,

ĉσ (y) =
∑

n

[un(y)γ̂n,σ − σv∗
n (y)γ̂ †

n,−σ ], (8)

d̂σ (x) =
∑

n


n(x)d̂n,σ , (9)

where the summation is over all possible states. From this
sum, we pick up the low-energy states, one for the supercon-
ducting structure, one for the dot, to arrive at

HT = (t1γ̂
†
σ − t2σ γ̂

†
−σ )d̂σ + H.c. (10)

with

t1 =
∫

dy dx u∗(y)
(x)t (x, y), (11)

t2 =
∫

dy dx v(y)
(x)t (x, y). (12)

The tunnel Hamiltonian is thus characterized with two com-
plex effective tunneling amplitudes t1,2, whose common phase
is irrelevant. It is important to understand that the remaining
three parameters define the overall tunneling strength T ≡√

|t1|2 + |t2|2 and the direction in the phase space. Thus, the
tunneling breaks the isotropy in the phase space.

To analyze the spectrum, it is convenient to make the
isotropy breaking explicit. For this, we fix the third axis of the
coordinate system to the direction defined by t1,2, express φ in
spherical coordinates �φ = φ(sin θ cos μ, cos θ sin μ, cos θ ),
and perform the unitary transformation of γ̂σ that diagonalizes
HWP. With this, the transformed Hamiltonian reads as

H = 1

2
(φ + Bσ )( ˆ̃γ †

σ
ˆ̃γσ − ˆ̃γσ

ˆ̃γ †
σ )

+ T

[
cos

(
θ

2

)
e−iμ/2 ˆ̃γ †

σ d̂σ

− sin

(
θ

2

)
eiμ/2σ ˆ̃γ−σ d̂σ + H.c.

]
+ HQD. (13)

The azimuthal angle μ is not relevant for the spectrum and can
be set to 0. The spectrum depends on the polar angle θ owing
to the tunneling term.

It is useful to shortly discuss possible decoherence and
dissipation sources in the resulting quantum system. As we
will see, the resulting level energies are either essentially
phase dependent, as the singlet states in Fig. 1(a), or “flat,”
as the spin states in the same figure. As to phase-dependent
states, their dissipation and decoherence are determined by
(quantum) fluctuations of the control phase differences. The
corresponding rates can be estimated as ZGQE , E being the
energy difference between the levels in the unit, Z being a
typical impedance of the electromagnetic environment. Typ-
ically, ZGQ � 10−2, that guarantees low decoherence at the
timescale of quantum manipulation. The dissipation and de-
coherence of the flat states are determined by weaker sources,
and the electron-photon interaction may be a plausible one.

III. SPECTRUM

The whole spectrum consist of 3 × 4 = 12 states. They are
separated into two groups of different total parity, six states
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FIG. 2. The spectrum of spin Weyl unit (even parity, sz = 0) consists of four subbands connected by three Weyl points, and emerges from
hybridization of two flat and two conical subbands. The spectrum has axial symmetry. The columns correspond to four different settings of
the polar angle θ . The choices of parameters for rows: upper row, B = T , εd = 2T , both flat bands are above the conical point; middle row,
B = 2T , εd = 0, the conical point is between two flat subbands and remains at �φ = 0 for this parameter choice; lower row, B = T , εd = −2T ,
both flat bands are below the conical point.

in each group. In addition, the states are separated by the spin
projection sz on the B axis.

Let us consider the even parity first. There are two states
with sz = ±1, |1↑1↑〉 and |1↓1↓〉 (first and second number
refer to the occupation of the superconducting structure and
the dot, respectively) that are not affected by superconducting
phases or tunneling, with energies εd ± B. The group of four
states with sz = 0 is of primary interest for us and comprises
the spin Weyl unit. Without tunneling, there are two coni-
cal states |00〉, |2↑↓0〉 with energies ±φ, and two flat states
|1↑1↓〉 and |1↓1↑〉 with energies εd ± B (the second number
in this notation is the occupation of the dot). The tunneling
hybridizes the states. The hybridization ceases at sufficiently
large distances from the Weyl point, the energies of the states
returning to their values without tunneling. The Hamiltonian
in this basis is obtained by collecting the matrix elements of
(13) into the 4 × 4 matrix. We assume μ = 0. The signs of
nondiagonal matrix elements depend on the choice of signs of
the basis vectors; the current choice stresses the antisymmetry

of a singlet state:

H4 =

⎡
⎢⎢⎢⎣

−φ −T sin
(

θ
2

)
T sin

(
θ
2

)
0

−T sin
(

θ
2

)
εd − B 0 T cos

(
θ
2

)
T sin

(
θ
2

)
0 εd + B −T cos

(
θ
2

)
0 T cos

(
θ
2

) −T cos
(

θ
2

)
φ

⎤
⎥⎥⎥⎦.

(14)

The resulting axially symmetric spectrum is shown in
Fig. 2 for various directions in the phase space given by the
polar angle θ (to compact the plots, we concatenate the plots
at θ and π − θ in such a way that the latter corresponds to
negative φ) and three different settings of εd where the former
conical point is above, below, or in-between the energies of
the flat states.

The spectrum comprises four subbands that eventually
touch each other in three Weyl points. They are located at
symmetry axis corresponding to θ = 0 (or θ = π , if φ < 0),
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FIG. 3. The spectrum of a qutrit (odd parity, sz = 1
2 ) consists of three subbands connected by two Weyl points, and emerges from

hybridization of one flat and two conical subbands. The spectrum has an axial symmetry. The columns correspond to four different settings of
the polar angle θ . The choices of parameters for rows: upper row, B = T , εd = 3T , the flat band is above the conical point; lower row, B = T ,
εd = −T , the flat band is below the conical point.

the leftmost column of the plots. For the middle row of the
plots, the Weyl point is visible in all columns since it is located
at �φ = 0 for a particular symmetric choice εd = 0 made. In
general, the points are shifted from �φ = 0. The existence of
these points is a consequence of topology, so these points re-
main even if we perturb the Hamiltonian, for instance, with the
terms breaking the axial symmetry. Apart from this feature,
the subbands show rather expected hybridization at φ � T and
go asymptotically to flat and conical states for φ � T . This
four-dimensional subspace suits well to represent two coupled
qubits, and we will use it to realize the spin Weyl quantum
unit.

For completeness, let us also describe the spectrum for
odd parity. Six states are separated in two groups of three
with sz = ± 1

2 , that is, into two qutrits. The qutrit with sz = 1
2

is composed from the flat state |1↑0〉, and the conical states
|01↑〉, |2↑↓1↑〉 with energies B, εd ± φ. The Hamiltonian is a
3 × 3 matrix:

H3 =

⎡
⎢⎣

−φ + εd −T cos
(

θ
2

)
0

−T cos
(

θ
2

)
B −T sin

(
θ
2

)
0 −T sin

(
θ
2

)
φ + εd

⎤
⎥⎦. (15)

The spectrum is plotted in Fig. 3 for a set of polar angles and
three different settings of εd where the former conical point is
above or below the energy of the flat state. There are two Weyl
points in the spectrum that are situated at the axis. Apart from
the number of flat subbands, the spectrum is similar to that of
the spin Weyl unit. The spectrum of the qutrit with sz = − 1

2 is
very similar to be obtained by inverting the value of B.

IV. QUANTUM INFORMATION PROCESSING

Let us discuss the system under consideration from the
point of view of quantum information processing. Without go-
ing to unnecessary details, we describe all elements required
for the processing: state read-out, initialization, and various
methods of manipulation.

Read-out. The most natural read-out in the system utilizes
the supercurrents induced in the superconducting leads. For
the state i, the supercurrent in the lead j is given I j = 2e

h̄
dEj

dϕi
.

The supercurrents thus distinguish the slopes in the states. A
realistic measurement scheme is usual for superconducting
qubits and involves a change of nonlinear inductance in a
resonator by this current, so the current is detected as a shift
of resonant frequency [23]. One of the advantages of Weyl
point is the conical property of the spectrum whereby the
slopes are of the same value far and close to the point, and
can be significantly changed by a small change of the phase
settings. The ground state and excited state in a conical pair
give opposite supercurrent signals. In distinction, the spinlike
flat states give almost zero supercurrent at φ � T and thus can
not be distinguished. This is another advantage: the superpo-
sition of spinlike states is preserved by the measurement. Yet,
if necessary, they can be distinguished as well: one needs to
adiabatically change the phase settings close to zero where
these states acquire slopes owing to hybridization.

Initialization. In the unit, one can adopt a conservative
approach to initialization: just wait until the relaxation brings
the system to the ground state. After this, one can go to the de-
sired state by performing a manipulation. The problem may be
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FIG. 4. The quantum manipulation methods for spin Weyl quan-
tum unit. (a) Resonant manipulation. The phases oscillate around the
working point φw with amplitude δ �φ and frequency ω that matches
the level spacing �. (b) Adiabatic manipulation. Adiabatic change
of phases along a trajectory can realize a phase gate (trajectory a)
if a trajectory (trajectory a in the plot) is far from a Weyl point
�φ0 or a Landau-Zener gate if a trajectory passes close to the point
(trajectory b). Trajectory c passes directly through the point and
realizes an exchange of wave-function amplitudes in the subbands.
(c) Diabatic manipulation. The phase settings jump from a working
point �φw to a series of consecutive points coming back in the end of
the manipulation.

that the relaxation without quasiparticle exchange in principle
conserves parity, so the unit could stuck in the ground state
of odd parity. In addition, the spin conservation in the pro-
cess of relaxation may also be stuck in two isolated sz = ±1
states, unaffected by superconducting phase and tunneling.
To prevent this, one requires a tunnel connection to the lead
which will change the parity and the spin projection. Another
problem could be a slow relaxation from the flat states: this
can be circumvented by setting the phases close to zero so
these states are not flat any more.

Manipulation. Let us see how we can manipulate the
states in the unit. The most natural way is to change the
superconducting phases in time. As mentioned, the advantage
of Weyl point is that the big changes of the wave functions
can be achieved by small φ � T changes of phases. We do
not consider manipulation by magnetic field that is typical for
spin qubits since it is rather impractical: the magnetic fields
required for such manipulation are much bigger than those
required to provide the small superconducting phase changes.
A more interesting and practical possibility is to change the
gate voltage modulating εd , but we do not consider it here
either.

The manipulation methods differ by the way the �φ is
changing in time. Generally, there are three distinct methods
(Fig. 4): (i) resonant manipulation whereby a small oscil-
lating phase addition is applied at a working point �φw; (ii)

adiabatic manipulation whereby the phase is slowly changing
along a trajectory in the phase space, usually returning to the
initial point �φ; (iii) diabatic manipulation where the phases are
changed by sudden jumps, and the changed settings are kept
for a time interval before jumping back to another point or the
initial point. Let us discuss each method for the unit in hand.
We acknowledge that an efficient implementation of each
method requires Hamiltonian characterization and subsequent
design on the basis of a concrete Hamiltonian. However, the
Hamiltonian is defined by a handful of parameters, so this
should be a doable task. One can also employ the combina-
tions of these methods.

Resonant manipulation is the most common manipulation
method working for almost all quantum systems. If one ap-
plies a modulation δ �φ(t ) that oscillates with the frequency
matching the energies of the states |a〉 and |b〉 defined in a
working point φw, one is able to achieve an arbitrary uni-
tary transformation in the basis |a〉, |b〉 tuning the duration
and phase of the modulation pulse [1]. One needs to do
more for a more general unitary transformation. To implement
single-qubit gates, we use the resonant manipulation in special
working points where two energy differences are the same;
this permits unitary transformations in the basis of four states.
We discuss the details in Sec. V.

Adiabatic manipulation involves a change of �φ along a
closed trajectory [Fig. 4(a)]. Usually, adiabaticity implies no
transitions between the levels; this requires the velocity in
phase space �v ≡ φ̇ to be small in comparison with the en-
ergy difference between the levels. For our system, where the
energy difference in interesting region of the phase space is
�T , this implies v � T 2. With this, one can easily arrange
a phase gate: an amplitude of a quantum state on each level
acquires a phase factor with no change of its modulus [trajec-
tory a in Fig. 4(b)]. Notably, the presence of Weyl points in
the spectrum of the unit permits design of more complicated
gates. The point is that the level splitting becomes small near
the point and, for any fixed v, the adiabaticity criterion is
not satisfied if the trajectory comes sufficiently close to the
Weyl point [trajectory b in Fig. 4(c)]. This realizes a Landau-
Zener gate [36]: there is a nonadiabatic transition between
two subbands with an amplitude α given by Landau-Zener
formula |α| = exp(−πφ2

d/v), φd being the smallest distance
between the Weyl point and the trajectory. If the trajectory
goes precisely through the Weyl point, a SWAP gate for two
subbands is realized [trajectory c in Fig. 4(b)]. The phase fac-
tors accumulated in the course of the Landau-Zener transition
can be adjusted by tuning the shape or velocity at the returning
trajectory.

Diabatic manipulation is implemented as a sequence of
sudden jumps between the points in the phase space, that
brings the system back to the initial point [Fig. 4(c)]. The wave
function does not change during the jumps. After each jump,
the phase settings are kept constant during a time interval to
let the wave function evolve with a Hamiltonian local to the
point. To prevent the excitation to higher states in the course of
jump, its actual duration should be yet longer than the inverse
energy distance to higher levels. The Weyl point structure is
advantageous for diabatic manipulation since big changes of
the Hamiltonian can be produced by small jumps in the phase
space.
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This variety of manipulation methods permits multiple
implementations of quantum gates. To illustrate, we have to
make choices. To start with, we define a bipartition of four-
dimensional Hilbert space into two qubits. We label the states
as |00〉, |01〉, |10〉, |11〉 from the lowest energy to the highest
energy, that is, the second qubit has the smaller excitation
energy E01 − E00. For separate noninteracting qubits, one ex-
pects E11 + E00 = E01 + E01. This condition is generally not
fulfilled for the spectrum in hand. However, it is fulfilled
asymptotically at εd = 0 and also in special points of the
phase space. We assume |εd | < B, so that the conical point is
between the energies of the flat states. For the implementation
of single-qubit gates, we choose resonant manipulation in
special points. For the implementation of the two-qubit gates,
we choose diabatic manipulation. We describe the implemen-
tations in the subsequent sections.

V. SINGLE-QUBIT GATES

We will realize the single-qubit gates by means of resonant
manipulation. This realization requires some tuning. Gener-
ally, the three energy differences between the levels are all
different and resonant manipulation would result in a two-
qubit gate. For instance, if the frequency of the oscillating
field is in resonance with the energy difference between the
states |10〉 and |11〉, one can swap by a pulse the amplitudes of
the states |10〉 and |11〉 realizing the traditional controlled-not
(CNOT) gate [37].

The single-qubit manipulation is possible at a family of
special working points where E11 + E00 = E01 + E01. This
corresponds to independent qubits with energy splittings
�1 = E10 − E00 and �2 = E01 − E00. At these frequencies,
the oscillating field resonates with two pairs of levels. Since
the energy spectrum is independent of the azimuthal angle,
these special working points form a surface of revolution
around the z axis.

Let us explain how one realizes the X rotations of the first
qubit. As an example, we take B = 3T , εd = 2T . The spe-
cial working point can be realized at �φw/T = (1.3, 0, 2.25).
The qubit splittings are �1 = 6.0T , �2 = 2.0T . We apply
an oscillatory modulation δ �φ(t ) = Re(δ �φei�1t ), δ �φ being a
complex vector of the oscillation amplitudes. It results in a
time-dependent perturbation ĥ = 1

2δ �φ · �τei�1t + H.c. For the
result of the manipulation not to depend on the state of the
second qubit, this perturbation should satisfy 〈10|ĥ|00〉 =
〈11|ĥ|01〉. Since both matrix elements can be presented as
scalar products of complex vectors, h10,00 = �v10,00 · δ �φ, and
similar for other matrix elements. To satisfy independence
from the second qubit, the direction of δφ should be orthogo-
nal to �v10,00 − �v11,01. It also has to be orthogonal to the cross
product of the vectors since the modulation in this direction
does not appear in the matrix elements. For the example in
hand, this fixes δφ to |δ �φ|(0.16, 0.21i, 0.97). To perform the
rotation exp(iγ σx ), one chooses γ = 0.34|δ �φ|T , T being the
pulse duration.

To design the X rotation of the second qubit, we
proceed in the same way choosing the direction of
oscillations to achieve 〈01|ĥ|00〉 = 〈11|ĥ|10〉. This fixes
δφ to |δ �φ|(0.6, 0.7i,−0.35). To perform the X rotation

exp(iγ σx ), one chooses γ = 0.04|δ �φ|τ , τ being the pulse
duration.

As it is usual in the context of resonant manipulation, the
Y and Z rotations can be achieved by changing the total phase
of the oscillation and frequency modulation, respectively.

VI. TWO-QUBIT GATES

More complex gates require realization of an arbitrary 4 ×
4 s-unitary transformations. In principle, this can be achieved
only by means of resonance manipulation and adiabatic ma-
nipulation. However, this requires a tedious design and the
time of the manipulation should greatly exceed the inverse en-
ergy differences �T −1. So we turn to diabatic manipulation.

For diabatic manipulation, it is proficient to work with the
spin Weyl Hamiltonian in the phase-independent basis where
it takes the form

H4 =

⎡
⎢⎣

−φ3 0 0 φ1 + iφ2

0 εd − B 0 T
0 0 εd + B −T

φ1 − iφ2 T −T φ3

⎤
⎥⎦. (16)

In this basis, the wave function remains continuous upon a
diabatic change of �φ.

The manipulation starts in a working point �φw where the
Hamiltonian is diagonalized as

H4( �φw) = DEd D−1, (17)

Ed being the diagonal matrix of two-qubit eigenstates. The
phase then goes through a set of points �φi staying for a time
interval ti in each point and finally returning to the working
point �φw. The result of the manipulation is a unitary 4 × 4
matrix in the basis of two-qubit eigenstates

S = D−1eiH4( �φw )
∑

i ti
∏

i

Sie
−iH4( �φw )

∑
i ti D, (18)

Si ≡ exp[−iH4( �φi )ti]. (19)

To design a manipulation given a target S, we need to
choose �φi, ti in a proper way. An arbitrary SU(4) transforma-
tion depends on 42 − 1 = 15 parameters, while each jumping
point brings four parameters: three phases and one time inter-
val. Consequently, an arbitrary SU(4) transformation requires
at least four jumping points [Fig. 4(c)]. To accomplish the
design task numerically, we specify the target unitary matrix
St and define a minimization function in the space of the
manipulation parameters { �φi, ti}:

U ({ �φi, ti}) = 8 − Tr(St S
† + SS†

t ). (20)

We start the minimization routine with a random point in 16-
dimensional space, iterate to a minimum, and check if U = 0
in this minimum. We accomplish this by setting a threshold of
Uth � T 2 and see if U falls into the interval of [0,Uth]. If 0 �
U � Uth, we have found the solution: the minimum U = 0 is
achieved only if S = St . If otherwise U > Uth, we repeat the
procedure starting another random point.

A set of universal quantum gates can be achieved com-
bining elementary quantum logic gates. The minimum circuit
requirement for a general two-qubit manipulation can be con-
structed with 3 CNOT (cX ) gates and 15 elementary one-qubit

045410-7



Y. CHEN AND Y. V. NAZAROV PHYSICAL REVIEW B 103, 045410 (2021)

FIG. 5. Design of two-qubit gates by diabatic manipulation. We implement controlled logic gates cX , cY , and cZ gates, the first qubit
being control one. The choice of the parameters: B = 3T, εd = 2T , working point: �φw = (1.3, 0, 2.25)T . The table specifies for each three
gates the set of jumping points �φi and the time intervals ti. The plots illustrate the diabatic paths and time intervals. The red mark in each graph
indicates the initial working point. The arrow indicates the diabatic jumping sequence initiated from the working point.

gates [38]. In principle, the single-qubit gates can be also
designed by diabatic manipulation method. However, we have
already achieved these gates as described in the previous
section. Here, we present the design of three controlled Pauli
gates cX , cY , and cZ that c(σi ) = (σi

1) in the qubit basis
with the first qubit serving as control one.

We choose the same parameters and the working point
as in the previous section: B = 3T , εd = 2T , �φw/T =
(1.3, 0, 2.25). The results are presented in Fig. 5. The ad-
vantage of the diabatic manipulation is the speed: the longest
manipulation takes no more than �20 T −1.

VII. CONCLUSIONS

In conclusion, we propose a spin Weyl quantum unit: a
four-state system that can be regarded as a coherent com-
bination of spin and Andreev superconducting qubits. The
coherence, that seemingly breaks the parity conservation,
can be achieved by coupling a four-terminal superconducting

structure housing a Weyl point to a quantum dot. We derive a
simple but nontrivial universal Hamiltonian for the setup and
choose four-dimensional subspace for the realization of the
spin Weyl quantum unit. We have described the methods and
advantages of the quantum manipulation by controlling the
superconducting phases in the vicinity of the Weyl point. We
illustrate this by providing concrete designs of single-qubit
and two-qubit quantum gates.

Such devices can be fabricated and tuned, and, as it is com-
mon in superconducting qubit technologies, can be made to
work together in a many-unit quantum computer by coupling
them to electric resonant modes. The system described calls
for an experimental realization.
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