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For the pristine phosphorene nanoribbons (PNRs) with edge states, there exist two categories of edge bands
near the Fermi energy (EF ), i.e., the shuttle-shaped twofold-degenerate and the near-flat simple degenerate edge
bands. However, the usual experimental measurement may not distinguish the difference between the two cate-
gories of edge bands. Here we study the varying rule for the edge bands of PNRs under an external electrostatic
field. By using the KWANT code based on the tight-binding approach, we find that the twofold-degenerate edge
bands can be divided into two separated shuttles until the degeneracy is completely removed and a gap near EF

is opened under a sufficiently strong in-plane electric field. Importantly, each shuttle from the ribbon upper or
lower edge outmost atoms is identified according to the local density of states. However, under a small off-plane
field the shuttle-shaped bands are easily induced into two near-flat bands contributed from the edge atoms of
the top and bottom sublayers, respectively. The evidence provides the edge and sublayer degrees of freedom
(DOF) for the PNRs with shuttle-shaped edge bands, which is obviously different from another category of
PNRs intrinsically with near-flat edge bands. This is because the former category of ribbons solely have four
zigzaglike atomic configurations at the edges in each unit cell, which also results in that the property is robust
against the point defect in the ribbon center area. As an application, furthermore, based on this issue we propose
a homogenous junction of a shuttle-edge-band PNR attached by two electric gates. Interestingly, the transport
property of the junction with field manipulation well reflects the characteristics of the two DOFs. These findings
may provide a further understanding on PNRs and initiate new developments in PNR-based electronics.

DOI: 10.1103/PhysRevB.103.045405

I. INTRODUCTION

The internal degree of freedom (DOF) of electrons in
nanostructures is an important issue of modern condensed
matter physics. In addition to the charge and spin DOFs, other
ones have also been discussed. For example, in multilayer
graphene [1] and transition-metal dichalcogenides (TMDs)
[2], both the layer and valley DOFs are presented [3,4].
In addition, new DOF may appear upon tailoring a two-
dimensional (2D) material into a nanoribbon. The edge and
layer, for instance, have been regarded as tunable equivalents
of the spin-one-half DOF in bilayer phosphorene nanorib-
bons (PNRs) with zigzag edge [5]. However, here we treat
the edge and sublayer as two DOFs in a recently revealed
monolayer slope-edged PNR (sPNR) with twofold-degenerate
edge bands [6].

Phosphorene is a few- or monolayer black phosphorus (BP)
where P atoms are arranged in the top and bottom sublayers of
a puckered honeycomb lattice [7,8]. Inside phosphorene, each
P atom is covalently bonded with three adjacent atoms to form
a puckered honeycomb structure due to the sp3 hybridiza-
tion [9,10]. This promising new 2D material, in the sense of
applications in nanoelectronics, can be exfoliated from bulk
BP due to the weak interlayer Van der Waals interaction and
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possesses a direct band gap of 0.3 eV [7,9]. This direct gap
increases up to ∼2 eV as its thickness decreases from bulk to
monolayer [11]. In the aspect of application, the field-effect
transistor (FET) [7,12–14] based on phosphorene is found to
have an on/off ratio up to 103 and a high hole carrier mobility
to 800 cm2/Vs [15]. Further, arising from the low symmetric
and highly anisotropic structure, phosphorene owns strongly
anisotropic electrical, thermal, and optical properties, which
may open up possibilities for conceptually new devices [9,16–
20].

On the other hand, nanoribbons can offer better tunability
in electronic structures because of the quantum confinement
and edge morphological influence. Tailoring a 2D phos-
phorene sheet along the conventional zigzag and armchair
directions have been experimentally realized [21,22]. Hence
the zigzag PNRs (zPNRs) with significant edge states and
armchair PNRs (aPNRs) with a direct band gap have been
extensively studied [10,23–26], and their skewed or beard
counterparts have also been further reported [24,27]. In
general, the edge states projecting to the outermost atoms
of a ribbon in real space are near the Fermi level EF

[24,28]. They have been extensively studied for graphene and
MoS2 nanoribbons [29,30]. However, a zPNR has two near-
degenerate edge bands closing to EF , which are respectively
contributed by the atoms of the two edges. The properties of
these important edge states have been recognized [5,28,31–
34]. Moreover, we may cut a phosphorene sheet so that the
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zigzag (armchair) direction intersects the puckered ridges
under a chiral angle other than 0◦ (90◦), resulting in PNRs
with other possible edge geometries [6]. These ribbons can be
classified into two types, one type with edge states including
zPNR and the other without edge states including aPNR.
In specification, from our previous definition of the chiral
vector T = ma1/2 + na2/2 for the crystallographic character-
izations on planar phosphorene with chiral numbers (m, n),
the cases of m+n=even integer have defined all possible
planar crystal directions [6]. Hence a ribbon can be generally
denoted as (m, n)PNR. Furthermore, according to the edge
atomic arrangement (morphology), PNRs with edge states can
be further divided into two categories. When both m and n
are odd, the outermost edge atoms of a PNR are alternately
located at the two sublayers, resulting in the shuttle-shaped
twofold-degenerate edge bands near EF , such as (1,3)PNR
and (3,1)PNR [6,27,35,36], while for both even m and n, the
outermost atoms are located at the same sublayer and the
ribbon only has a near-flat degenerate edge band, such as
(2,4)PNR and (4,2)PNR [6]. Some of the typical ribbons with
these two categories of edge states have already been observed
in experiments [37,38]. However, the electronic property may
be significantly different from each other between the two
categories. There are few studies on the PNRs with shuttle-
shaped twofold-degenerate edge bands [27]. Therefore, it is
essentially demanded to explore the microscopic origin of
the twofold-degenerate edge bands, especially the transport
property. Meanwhile, the defects in PNR samples, such as
monatomic vacancies, are inevitable in experiments [39]. It is
also important to understand the defect effect on the electronic
and transport properties [40].

In this paper we select two sPNRs, (1,3)PNR and
(2,4)PNR, as the exemplary ribbons belonging to the cate-
gories with twofold-degenerate and near-flat degenerate edge
bands, respectively. By using the KWANT software within
the framework of tight-binding method, we find that the two
shuttle-shaped twofold-degenerate edge bands of (1,3)PNR
are separated until the degeneracy is removed and a gap near
EF is opened under a sufficiently strong in-plane electric
field. Each shuttle contributed from the outmost atoms of the
ribbon upper or lower edge are identified according to the
local density of states (LDOS). However, under a small off-
plane field the shuttle-shape bands are easily separated into
two degenerated near-flat bands contributed from the edge
atoms of the top or bottom sublayer. The edge band variation
with external field for this category is completely different
from that of (2,4)PNR belonging to the previously reported
zPNR category. This is because a (1,3)PNR has four zigzag
atomic configurations on the upper and lower edges and the
degenerate bands are from the outermost atoms in the same
sublayer or different upper-lower edge. This allows the two
DOFs to be distinguished and regulated by applying electric
field along different directions. Further, based on this issue we
propose a (1,3)PNR homogenous junction attached by electric
gates. Interestingly, the transport property of the junction with
field manipulation well reflects the characteristics of the two
DOFs for (1,3)PNR category. In addition, the defect effect on
the transport property is also discussed. The conclusion is that
both DOFs are robust against the defect in the center area of
the ribbon, but the sublayer DOF is more effective to resist the

FIG. 1. The schematic illustrations of (a) (1,3)PNR and
(b) (2,4)PNR, where the red dashed line parallelogram in each ribbon
indicates its minimum periodical supercell, the chiral vector T is
illustrated by the red solid arrow along the edge, a1 and a2 denote the
primitive vectors, and t1–t5 are the five effective hoping parameters.
The distance between atomic rows for the two sPNRs is 0.9 Å and
0.53 Å, respectively. The ribbon end side views in (a) and (b) indicate
the top/bottom sublayer by the red/blue color. (c) The sketch of the
p-n junction composed of a (1,3)PNR where the different color shade
in two sides implies the top and bottom back gates which adjust
the Fermi level, and the green thick arrows indicate the in-plane
transverse and off-plane vertical electric fields, respectively.

edge vacancy than the edge DOF. These results may provide a
further understanding on PNRs and initiate new developments
in PNR-based electronics.

The organization of the paper is as follows. First, we clas-
sify the categories of the PNRs with edge states and then
analyze their edge atomic arrangements and unit cell choice.
In Sec. II, we present the model description and the details
on the calculations. Then in Sec. III, we demonstrate the
the edge state bands of the two exemplary sPNRs belong to
different categories and the edge band variations under in- and
off-plane electric fields, respectively. Hence according to the
coexistence of two (upper or lower edge and sublayer) DOFs
in monolayer (1,3)PNR, with which a p-n junction is proposed
and the the important transport property is discussed. Finally,
the conclusion is briefly drawn in Sec. IV.

II. MODEL DESCRIPTION AND METHOD

The schematic illustrations of the considered (1,3)PNR and
(2,4)PNR are shown in Figs. 1(a) and 1(b), respectively. The
red dashed parallelograms are the minimum supercells, where
the red solid arrows are the chiral vectors indicating the crystal
direction of the ribbon edges [6]. The integer N denotes the
number of atomic chains (blue dashed lines) across the ribbon
width. Further, for (1,3)PNR shown in Fig. 1(a), the red and
blue outmost edge atoms are arranged alternately on the two
sublayers (see the side view), as a consequence the supercell
width must be twice that of |T |. In contrast, the outmost edge
atoms for (2,4)PNR are always located at one sublayer and
the supercell width is equal to |T |. Moreover, as shown in
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Fig. 1(c), we propose a homogenous p-n junction based on
a (1,3)PNR, where the blue and orange background imply the
positive and negative potentials provided by back-gate electric
gates, respectively. The thick green arrows in upper and lower
panels indicate the in-plane transverse electric field along the
y direction and the off-plane vertical one along the z direction,
respectively. The stability of PNRs have been analyzed in our
previous work [6]. Since |T | of the two selected PNRs here
are much less than 20 Å, they are considered relatively stable
and do not appear to have obvious edge reconstruction.

We use the KWANT code based on tight-binding (TB)
Hamiltonian [41] to calculate the electronic energy band
for the selected PNRs, and the atomistic quantum-transport
simulations for the proposed junction are based on the
scattering-matrix method from matching wave functions
[42–44]. In comparison with the first-principles calculation
[33], this approach can treat large nanostructures matching the
usual experimentally reachable sample size up to sub-100 nm
scales with better precision without large computational con-
sumption.

The TB model Hamiltonian for phosphorene [45] in the
presence of an electric field can be described as

H =
∑

<i, j>

ti jc
†
i c j + (elεy/z + Ui )

∑

i

c†
i ci , (1)

where c†
i (c j ) is the creation (annihilation) operator of elec-

tron at site i( j), the summation 〈i, j〉 means over all the
neighboring atomic sites with hopping integrals ti j , l is the
component of the atomic position from the selected origin
along the electric field direction, εy/z is the strength of the
field along the y/z direction as shown in Fig. 1(c), and Ui is
the impurity-induced potential if available. It has been shown
that five hopping parameters [see Fig. 1(b)] are enough to
describe the electronic band structure of phosphorene. The
values of these hopping integrals suggested in previous stud-
ies [45] are t1 = −1.220 eV, t2 = 3.665 eV, t3 = −0.205 eV,
t4 = −0.105 eV, and t5 = −0.055 eV. Therefore, by solving
the discrete Schrödinger equation corresponding to Hamilto-
nian (1) on the proper basis for the supercell drawn by the
red dashed parallelograms in Fig. 1 and applying the Bloch
theorem, the k-dependent Hamiltonian for a PNR can be
written as H (k) = H0,0 + H0,1eika + H†

0,1e−ika in the form of
(N ′ × N ′) dimensional matrix. Here N ′ is the number of atoms
in the supercell, H0,0 is the matrix of the central cell, H0,1 the
coupling matrix with the right-hand adjacent cell, and a is the
length between two nearest-neighbor cells. Diagonalizing this
k-dependent Hamiltonian, we can obtain the band spectrum
and the corresponding eigenwave functions. Then we can
calculate the LDOS using the following formula

LDOS(E , r) = 1

c
√

2π

∑

n

|�n(r)|2e
−(En−E )2

2c2 , (2)

where c is the broadening parameter, �n(r) and En are the
eigenwave function and eigenvalue, respectively, in which n
denotes the energy band index and r the atom position.

In addition, we mention that the description of the TB
model has been effectively used for PNRs with different edge
geometries [5,6,20,25,27,28]. We have verified the validity
of TB approach by the first-principles calculation using the

Atomistix Toolkit code [46]. The result shows that the edge
bands can also be near the Fermi energy and the difference
between them is quantitative. As for the influence of spin
polarization, it is found that the total energy of (1,3)PNR for
the spin polarization case is 8.82 meV lower than that of the
nonpolarized case. For the (2,4)PNR, the energy difference
is only 0.04 meV. This is well conceivable that the few-meV
energy difference will be mitigated by a reasonable finite
temperature (few tens of Kelvin), i.e., the spin-polarized states
will transit into paramagnetic states in actual experiments so
that we do not consider the effect of spin polarization on the
results for the present work.

In calculating the conductance for the junction under an
external electric field, it is divided into the left electrode,
the right electrode, and the middle scattering region. The S
matrix can be obtained by matching the wave functions at
the two interfaces of the electrode/scattering region. Once the
S matrix is obtained, the conductance of the system at zero
temperature can be calculated by using the Landauer formula
[47]

GLR = e2

h
TLR = e2

h

∑

n∈L,m∈R

|Smn|2, (3)

where L/R labels the left/right leads, TLR is the transmission
coefficient from lead L to lead R, and Smn gives the scattering
amplitude from an incoming mode n to an outgoing mode m,
both of which are the elements of the scattering matrix. It is
clear that the conductance depends on the number of available
transport modes through the junction.

III. RESULTS AND DISCUSSIONS

A. Edge bands under in-plane electric field

The calculated energy spectra for the selected exemplary
(1,3)PNR (N = 35) and (2,4)PNR (N = 49) with nearly the
same width ∼3 nm under an in-plane electric field with dif-
ferent strength are shown in Figs. 2(a)–2(c) and 2(d)–2(f),
respectively, where the Fermi level EF is set to zero. The
left and right insets in (b), (c), and (f) indicate the LDOS
corresponding to energies marked, respectively, by the red and
blue points contributed by the ribbon upper or lower edge
outermost atoms, where the side view for each supercell is
embodied. First, as shown in Fig. 2(a), the band structure of
the pristine (1,3)PNR has a shuttle-shaped edge band near
EF , which implies the ribbon is metallic. In fact, the shuttle-
shaped edge bands are twofold degenerate differentiating by
the red dashed and blue solid lines. However, the degeneracy
can be eliminated by applying an in-plane electric field along
the y direction. As a small field with strength εy = 2 mV/Å
is applied shown in Fig. 2(b), the twofold-degenerated edge
bands obviously separate into two partially overlapped shut-
tles. Interestingly, as shown in Fig. 2(c), the two shuttles are
completely separated as the field strength is further increased
up to 5 mV/Å, which means the degeneracy is completely
removed. In contrast, for the (2,4)PNR as the example of the
another category, it has two near-flat degenerate edge state
bands in the original band structure which are drawn by the
red dashed and blue solid lines shown in Fig. 2(d). They also
pass through EF exhibiting metallicity, which is very similar
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FIG. 2. The band structure for (a)–(c) (1,3)PNR with N = 35 and (d)–(f) (2,4)PNR with N = 49 under an in-plane electric field with
different strengths, (a) and (d) εy = 0, (b) and (e) 2 mV/Å, and (c) and (f) 5 mV/Å, respectively. The Fermi energy EF is set to zero, and the
left and right insets in (b), (c), and (f) indicate the LDOS distributions corresponding to energies near EF marked by the red and blue points,
respectively, where the side view for each supercell LDOS is embodied. The right-side attached color bar indicates the electron density from
the lowest (blue) to the highest (red) value.

to that of a conventional zPNR except for a little difference
in the curvature of the edge bands [10,24,48]. However, much
different from the twofold-degenerated bands, the degeneracy
for this category of ribbon can be easily removed by a small
electric field as shown in Figs. 2(e) and 2(f). The characteristic
of edge band under an electric field for (2,4)PNR is very
similar to the extensively studied zPNR [24,28,49], and hence
we attribute them to the same category.

An in-plane electric field removing the degeneracy of the
edge bands can be understood from Hamiltonian (1). The
additional diagonal terms increase (accumulate) linearly with
the y coordinate. From the analysis of the calculated results,
it can be seen that the degenerate edge state bands for both
categories of sPNRs would be broken by the application of
an in-plane electric field. As the field strength increases, a
band gap is opened and the transition from metal to semi-
conductor is occurred. The variation of (2,4)PNR edge bands
with electric field is basically the same as zPNR [24,28,49].
This is because they belong to the same category of sPNRs,
where the outermost atoms of the ribbon are all at the same
sublayer. However, for the (1,3)PNR with twofold-degenerate
edge bands, the EF is embedded in a mirrored shuttle-shape
bands. In order to further know which atoms in the ribbon
contribute the edge state bands, we have calculated the LDOS
at the energies near EF marked by the red and blue points,
respectively. When the two shuttle-shape bands are not com-
pletely separated shown in Fig. 2(b) for εy = 2 mV/Å, from
the insets we see the difference in LDOS between energies on
the two shuttles. The red/blue dashed/solid shuttle bands are
mainly contributed by the outermost atoms at the upper/lower
edge.

In addition, the left and right insets in Figs. 2(c) and 2(f)
depict the real-space electronic distributions at the energies of
conduction band minimum (CBM) and valence band maxi-
mum (VBM) marked by the red and blue points, respectively.

The right-side attached color bar indicates the density from the
lowest (blue) to highest (red) value. From the LDOS insets we
can identify whether an edge band is completely contributed
by the outmost atoms of the upper or lower edge of the
ribbon, which provides a (upper-lower) edge DOF. However,
we cannot distinguish them from which sublayers since their
responses to an in-plane field are the same. Therefore, we
need to apply an off-plane vertical electric field along the z
direction, respectively, to the two categories of sPNRs.

B. Edge bands under off-plane electric field

The difference in the layer atomic arrangement on the edge
of a sPNR with different parity rows can be reflected by the
response to an off-plane electric field and then affects the
corresponding band structure. This effect has been revealed
and discussed for other 2D material nanoribbons, such as
graphene, silicene, and phosphorene ones [28,50,51]. Here,
in Fig. 3 we present the result of the edge band response to
a vertical electric field with strengths εz = 0.1 and 0.4 V/Å
for the two exemplary ribbons, respectively. For the consid-
eration of the even-odd parity [20,28], we consider the two
width cases of N = 35, 36 and N = 49, 50 for (1,3)PNR
and (2,4)PNR, respectively. The LDOS left/right inset corre-
sponding to the energies marked by the red/blue point. From
Fig. 3(a) for (1,3)PNR with N = 35, the twofold-degenerate
edge bands in shuttle shape are almost unchanged under small
εz = 0.1 V/Å. However, when εz is increased up to 0.4 V/Å,
interestingly, the two shuttle-shape edge bands are separated
into two nearly flat bands as shown in Fig. 3(b). This results
in implying a transition from metal to semiconductor phase.
But the twofold degenerate is still not removed. Further, from
Figs. 3(a)–3(d) it seems that the number of atom rows (parity)
does not affect the band structure of (1,3)PNR. In addition, the
side view in (b) shows that the left/right inserted LDOS come
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FIG. 3. The band structures for (a)–(d) (1,3)PNR with odd (N = 35) and even (N = 36) parities under an off-plane vertical electric field
with different strengths, respectively, where (a) and (c) εz = 0.1 V/Å and (b) and (d) 0.5 V/Å. The band structures for odd-even (N =
49–50) (2,4)PNR under the same field are correspondingly shown in (e)–(h). The insets in (b), (d), (f), and (h) depict the LDOS distributions
corresponding to the edge states at the certain energies pointed by the red and blue points, where the side view for each supercell LDOS is
embodied. The color bar indicating the density is neglected here since it is the same as that in Fig. 2.

from the edge outermost atoms of the top/bottom sublayer.
We can identify a band from the top or bottom sublayer,
which provides a sublayer DOF. This is because the edge
outmost atoms are alternately located at the top and bottom
sublayers. In the contrast, for (2,4)PNR belongs to another
category with two near-degenerate edge bands, the response
of the edge bands to the field is sensitive on the ribbon width
(parity), which is the same as that for the conventional zPNRs
[28]. As shown in Figs. 3(e) and 3(f), in specification, with
the increase of the field strength the edge band degeneracy
of the odd-numbered (N = 49) ribbon can not be broken but
moves upward a little, since the degenerate edge bands are
contributed by the outermost atoms of both edges. However,
for the even-numbered (N = 50) ribbon shown in Figs. 3(g)
and 3(h), the outermost atoms of the two edges come from the
same sublayer. Hence as the field strength increases, the edge
band degeneracy is removed and the transition from metal to
semiconductor occurs.

C. (1,3)PNR homogeneous junction

Next, from the above results for the two exemplary sPNRs
belonging to different categories, we know that a monolayer
(1,3)PNR owns two DOFs of edge and sublayer, which is
particularly similar to a bilayer zPNR with two DOFs of
edge and layer [5]. Using this similarity, we may construct
a homogenous p-n junction using a (1,3)PNR. The two sides
of a (1,3)PNR are attached by the near top and bottom back
gates which adjust the EF , leading to the lifting up or down of
the edge bands for two ends. Further, the external in-plane
and off-plane electric fields applied on the junction shown
in Fig. 1(c) can be realized by using a side-gate and another
back-gate electrode, respectively. The side-gate technique has
been proven to be experimentally feasible in graphene as
a channel material for other applications [52,53]. The back
gates can arouse a potential difference (electric field) across
the whole monolayer. This kind of setup has been real-
ized for bulk phosphorene transistors [54,55]. A pseudospin

field effect transistor has also been proposed and character-
ized based on a bilayer zPNR-based junction, in which a
pseudospin-polarized current is generated [5]. The similar
interesting effect may also be realized in the p-n junction
based on a monolayer (1,3)PNR, which can generate an edge-
or sublayer-polarized current by properly adjusting the gate
electrodes.

In Fig. 4(a), we show the calculated conductance spectrum
for the proposed junction based on (1,3)PNR with a width ∼3
nm under a transverse in-plane field with different strengths
εy = 0 (gray line), 0.5 (blue), and 5 mV/Å (red), respec-
tively. The solid/dashed line indicates the alignment for the
edge bands from the same/different upper-lower edge. The
separated edge bands from the two edges of the terminals
with/without alignment by back gates is shown in Fig. 4(c),
where the upper/lower panel corresponds to the case of the
solid/dashed line in 4(a), and the green/red arrows implies
the switch on/off state. First, we find a conductance plateau
of 2e2/h around EF for the junction without external field
shown by the gray solid line, which is in accord with the band
structure for a pristine (1,3)PNR shown in Fig. 2(a). When a
small field 0.5 mV/Å is applied, by adjusting the positive and
negative voltages of the two back gate as to the edge bands
from the same upper or lower edge be aligned, the conduc-
tance still maintains a 2e2/h plateau (blue solid line) near
EF , whereas the conductance is decreased to 0.3e2/h from
different edge as shown by the blue dot-dashed line. This is
because the band degeneracy is broken not enough so that the
two shuttle-shaped edge bands are not completely separated.
Further, as the field strength increases up to 5 mV/Å, the
degenerate shuttle-shaped edge bands is fully removed and a
significant band gap is opened around EF [see Fig. 2(c)]. As a
consequence, when the same edge bands are aligned as shown
in the upper panel in 4(c), a conductance gap correspondingly
appears with two 2e2/h plateaus beside it (red solid line).
Otherwise the conductance is almost zero even though there
are two shuttle-shaped edge bands from the different upper or
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FIG. 4. The conductance spectrum for the (1,3)PNR-based p-n
junction with a width about 3 nm under (a) in-plane transverse and
(b) off-plane vertical electric fields, respectively. The gray solid line
implies the conductance without applied field. The blue and red
solid (dashed) lines indicate the edge bands from the same (differ-
ent) (a) upper-lower edge with field strength 0.5 and 0.5 mV/Å,
(b) top-bottom sublayer with field strength 0.1 and 0.5 V/Å are
aligned, respectively. (c) and (d) The alignment of the edge bands of
the two semi-infinitive ribbons under transverse and vertical fields,
respectively, where the green/red arrow implies the on/off state of
the junction.

lower edge are aligned as shown in the lower panel in 4(c),
which shows a transport off state.

Since the speciality of the edge atom arrangement for the
monolayer (1,3)PNR, sublayer is also an important DOF in
its transport property. In Fig. 4(b), we show the conductance
spectrum for the junction under an off-plane vertical electric
field with strengths, 0 (gray), 0.1 (blue), and 0.5 V/Å (red),
respectively. Here the solid/dashed lines indicate the two
edge bands from the same/different sublayers are aligned, of
which the diagrammatic sketch for the edge band alignment
is shown in 4(d). First, we also find a conductance plateau
of 2e2/h around EF for the junction without external field
shown by the gray solid line. In the presence of applied field
εz = 0.1 V/Å, there is a gap opened within the shuttle-shaped
edge bands. Therefore, as the edge bands from the same upper
or lower edge are adjusted (by back gate) to be aligned, the
conductance exhibits two steps of 2e2/h besides EF (see the
blue solid line), which is in accord with the band structure
shown in Fig. 3(b) or 3(d). In this case the increase of the field
strength (e.g., εz = 0.5 V/Å) only result in the two narrower
steps and more far away from EF (see the res solid line). On
the contrary, when the edge bands from the same upper or
lower edge are not aligned, the conductance is nearly zero
except for very small peaks at EF as shown by the blue and
red dashed lines. The reason for the results is that the edge

FIG. 5. The wave-function overlap, < �∗
L (n, E )|�R(n′, E ) >, as

a function of (a) εy and (b) εz for the two terminals of the junction,
where n (n′) is the band index number for the junction left (right)
side. The LDOS diagrams with certain energies at two different field
strengths pointed by black arrows are inserted with the embodied
side view of the supercell.

outermost atoms of (1,3)PNR are alternately located at the
top and bottom sublayers. Therefore, a small vertical electric
field can result in a wave function superposition in different
sublayers.

In order to further understand the rule of the two DOFs in
transport for the junction, in Fig. 5 we plot the dependence
of wave-function overlap, 〈�∗

L (n, E )�R(n′, E )〉, as a function
of the field strength (a) εy and (b) εz. Here �L/R(n, E ) is
the wave function in the left/right (L/R) side of the junc-
tion. The LDOS with certain energies at two different field
strengths are also inserted with the embodied side view of
the supercell. From Fig. 5, we first note that the overlap
value drops rapidly as the field strength increasing due to
the degeneracy elimination, with which the edge bands from
the different upper-lower edge or top-bottom sublayer are
separated. Therefore, without applied field the wave-function
overlap is equal to 1. In this case the edge bands are com-
pletely superposed, which refers to its pristine state shown in
Fig. 2(a). Meanwhile, by adjusting the two back gates as to the
two side edge bands from the same edge or sublayer aligned as
shown in upper panels of Fig. 4(c) or 4(d), the overlap degree
is also equal to 1 regardless of the electric field strength.

Further, as shown in Fig. 5(a), we find that the two shuttle-
shaped edge bands from the upper or lower edge are aligned
by adjusting the back gates as to the potential difference
between the junction two sides is equal to the electric field
strength [see the lower panel in Fig. 4(c)], the wave-function
overlap for two terminals is greatly reduced. When the two
shuttle-shape edge bands are just separated a little by a small
field 0.5 mV/Å, the wave-function overlap is greatly reduced
to a small value, which corresponds to the blue dashed peaks
near EF in Fig. 4(a). This is because the overall degeneracy of
the two shuttle bands would be almost removed even under
a small electric field, but some of the degeneracy is still
remained. Therefore, at certain energies the superposition of
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the wave functions in two sides still has a definitive value.
In this case, from the LDOS shown in left upper panel of
Fig. 5(a)], we can see it distributes at the upper and lower
edge outermost atoms. Specifically, the upper edge atoms in
the left side account for the major contribution (bright red
spots), while the reddish ones at lower edge indicate a partial
contribution. On the contrast, the LDOS distributed are the
upper-lower edge for the right side is opposite to the left
one. As the field strength is increased up to 5 mV/Å, the
wave functions overlap for two side approaches zero (as red
dashed line shown in Fig. 4(a)). This is because that the two
shuttle edge bands are completely separated, and electrons are
localized only at the outmost atoms of one edge. This can also
be seen from the LDOS insets with the embodied side view
of the supercell. On the other hand, since the edge mostout
atoms of (1,3)PNR are alternately arranged on the top and
bottom sublayers, the wave functions of the top and bottom
sublayer atoms still mix together when a large vertical electric
field is applied as shown in the lower inset of Fig. 5(b). Hence
the amplitude scale of y axis in Fig. 5(b) is much larger than
that in 5(a). Therefore, when εz = 0.1 V/Å the wave-function
overlap for two sides is still large, which corresponds to the
blue dashed plateau near EF in Fig. 4(b). When the vertical
field becomes larger, the wave-function overlap of the top
and bottom sublayers tends to zero due to the localization of
electrons, as shown by the lower inset in Fig. 5(b) for LDOS
with 0.5 V/Å.

Finally, we demonstrate the influence of defect on the
transport, which is also very important for device application
by using the proposed DOFS since defects are inevitable on
PNR samples in experiments [39]. For the sake of argument
on the two DOFs in a (1,3)PNR, here we mainly consider two
kinds of monatomic vacancies. As shown in the top of Fig. 6
for a defective (1,3)PNR, there are two monatomic vacancy
positions indicated by the black dotted circles, one at the edge
(EV) and the other in the center (CV) of the ribbon. Figure 6
gives the conductance spectrum, where (a),(c) and (b),(d) for
CV and EV cases with εy = 5 mV/Å and εz = 0.1 V/Å,
respectively. As a reference, the red dashed lines in (a),(c) in-
dicate the conductances for a pristine (1,3)PNR without defect
but with in- and off-plane fields, respectively, which can be
refer to the corresponding energy spectrum shown in Figs. 2
and 3. As is seen from the conductance spectra shown by the
blue solid lines, a CV does not affect the edge bands regardless
of the field direction, resulting in an unchanged conductance
in comparison to the pristine case shown in (a) and (c). But
the situation for EV is much different. Comparing with the
conductance spectrum shown by the red solid line in Fig. 4(a)
for the same upper-lower edge are aligned [also shown by red
dashed line in Fig. 6(a)]. As shown in Fig. 6(b), we find that
the edge state on one of the edges with an EV is severely
weakened, which result in that the conductance plateau on the
right side of EF almost disappears. The original conductance
plateau is maintained. In addition, for a EV with εz = 0.1 V/Å
shown by the blue solid line in Fig. 6(d), the conductance
steps are retained as the ideal case [see the blue solid line in
Fig. 4(b) and the red dashed line in Fig. 6(c)]. But the conduc-
tance peak on the left side of EF is reduced by half, while the
right side peak is still close to 2e2/h. This importantly implies
that the CV has no effect on the edge state. The same result

FIG. 6. The conductance spectrum of a (1,3)PNR with
monatomic vacancy, respectively, located at the (a),(c) center and
(b),(d) edge of the ribbon, where (a),(c) with εy = 5 mV/Å and
(c),(d) εz = 0.1 V/Å. The red dashed line in (a) and (c) corresponds
to the pristine case without defect.

is expected for the in-plane field case. Moreover, due to the
particularity of the two DOFs, the effect of EV on edge-state
contributed conductance is different under the regulation of
electric field. As shown by the LDOS in Fig. 5(a), a very small
in-plane field can make the outer electrons of the edge atoms
localized, which provides the transport channel corresponding
to the edge with an EV almost forbidden. On the other hand,
a large off-plane field would cause a certain degree of wave-
function overlap between the sublayer atoms on the same side
[as shown in Fig. 5(b)], so that an EV in one sublayer only
destroys the edge state of the corresponding sublayer, while
the other sublayer on the same side still maintains a channel.
In general, the sPNRs with two DOFs can reduce the influence
of low-concentration edge monatomic defects on the edge
states to a certain extent.

At last but not least, besides the atomic defects the edge
passivation of nanoribbons is also an important issue because
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that the edges are usually passivated in real experimental
samples. When edge hydrogen (H) passivation is considered
in the TB calculation, usually an extra potential field is applied
on the edge atoms of the ribbons. This may lead to that the
original edge bands are disappeared or modified (see, e.g.,
Ref. [20]). Here we have also tested the H- and O-passivation
cases by using a DFT calculation, respectively. The result
shows that the H-passivated edges do not exhibit edge states,
while O-passivated ones remain qualitatively similar to the
case of bare edges. The result of the edge bands is qualitatively
the same as those by the TB approach, which confirms that
the device assumption based on (1,3)PNR is scientifically
valuable [6].

IV. SUMMARY AND CONCLUSION

In summary, we have studied the difference in electronic
structures between the two categories of sPNRs with edge
states and the variation under an external electrostatic field.
Taking (1,3)PNR and (2,4)PNR as the examples, we first
identify the distinction of edge morphology and the unit
cell selection for these two ribbons. Then, by using the
KWANT code based on the TB approach, we find that the
shuttle-shaped twofold-degenerate edge bands of (1,3)PNR
can become two separated shuttles until the degeneracy is
removed and a gap near EF is opened under a sufficient
strong in-plane electric field. Each shuttle contributed from
the outmost atoms of the ribbon upper or lower edge is verified

according to the LDOS. However, under a small off-plane
field the shuttle-shape bands are easily separated into two
degenerated near-flat bands contributed from the edge atoms
of the top or bottom sublayer. The edge band variation with
external field for this category is completely different from
that of (2,4)PNR belonging to previously reported zPNR cat-
egory. This is because a (1,3)PNR has four zigzag atomic
configurations on the upper and lower edges and the degener-
ate bands are from the outermost atoms in the same sublayer
or different upper-lower edge. This allows the two DOFs to be
distinguished and regulated by applying electric field along
different directions. Further, based on this issue we propose
a (1,3)PNR homogenous junction attached by electric gates.
Interestingly, the transport property of the junction with field
manipulation well reflects the characteristics of the two DOFs
for (1,3)PNR category. In addition, the defect effect from the
vacancies in edge and bulk on the transport property is also
discussed. These results may provide a further understanding
on PNRs and initiate new developments in PNR-based elec-
tronics.
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