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Hamiltonian models based on a localized basis set are widely used in condensed matter physics, as, for
example, for the calculation of electronic structures or transport properties. The presence of a weak and
homogeneous magnetic field can be taken into account through Peierls phase factors on the hopping Hamiltonian
elements. Here, we propose simple and convenient recipes to properly determine such Peierls phase factors for
quasi-one-dimensional systems that are periodic or with periodic subcomponents (as in Hall bars, for example),
and periodic two-dimensional systems. We also show some examples of applications of the formulas, and more
specifically concerning the electronic structure of carbon nanotubes in magnetic fields, the integer quantum Hall
effect in six-terminal bars obtained in two-dimensional electron gases, and the electronic structure of bumped
graphene superlattices in the presence of a magnetic field.
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I. INTRODUCTION

Depending on the specific nature of the problem, numerical
simulations in condensed matter physics can strongly benefit
from the use of localized basis sets. In fact, the corresponding
Hamiltonian is tight-binding-like and with coupling generally
limited to spatially neighbor states. The subsequent sparsity of
the Hamiltonian matrix allows a convenient treatment of, for
example, electron transport problems. Typically, such Hamil-
tonians result from the use of semiempirical tight-binding
models [1], from density-functional simulations based on lo-
calized basis sets, from the calculation of maximally localized
Wannier functions [2] for density-functional results based on
plane waves, or from the direct discretization of continuous
(effective mass or k · p) Hamiltonians.

Another convenient aspect of localized basis sets is the pos-
sibility to easily take into account the presence of an external
magnetic field through the so-called Peierls phase factors [3],
which multiply the corresponding hopping elements in the
Hamiltonian. These phases depend on the gauge adopted to
describe the magnetic field. However, their circulation along
a closed path is invariant and proportional to the flux of the
magnetic field through the circuit itself, thus suggesting the
expected invariance of the related physics observables. When
the system or some of its parts (such as contacts and probes
in a Hall bar) are periodic, a generic gauge choice will lead
to a Hamiltonian that is not necessarily invariant under spa-
tial translations. This prevents the applicability of convenient
numerical techniques based on periodicity, such as the use of
the Bloch theorem for the Hamiltonian diagonalization, or the
Sancho-Rubio renormalization algorithm [4] for the calcula-
tion of the contact self-energies. We can avoid these problems
by a proper choice of the gauge for the magnetic field. In the
case of quasi-one-dimensional (quasi-1D) systems, our idea
is analogous to what is illustrated in Ref. [5] for continuous
Hamiltonians, and already implemented in available transport
codes such as KWANT [6]. However, our derivation moves
directly from the expression of the Peierls phase factors.

A similar approach will be illustrated for the case of two-
dimensional (2D) periodic systems. In this case, the procedure
can only be adopted for values of the magnetic fields such that
the magnetic flux through the primitive cell is a multiple of the
flux quantum. In the literature [7–9], alternative approaches
consider the use of periodic gauges specifically adapted to
the geometry of the cell, or more general and sophisticated
periodic gauges based on the use of singular magnetic field
flux vortices. Our methodology has the advantage of providing
a simple and explicit expression of the Peierls phase factors
for arbitrarily oriented magnetic fields, and of requiring the
definition of the gauge only on the discrete lattice points. The
main result of this paper is to provide the reader with explicit
and simple recipes for the Peierls phase factors, which are
given in Eqs. (22) and (36).

The paper is organized as follows. Section II introduces
the Hamiltonian and the concept of Peierls phase. In Sec. III,
we obtain the recipes to determine the Peierls phase factors
for 1D and 2D systems. In Sec. IV, we show some exam-
ples of application of the different formulas by considering
the cases of carbon nanotubes, multiterminal Hall bars, and
bumped graphene superlattices. Finally, Sec. V concludes.
Some details of the Peierls phase mathematical derivation, of
the periodic gauge for 1D systems, and of the relation between
periodic Peierls phases for 1D and 2D systems are reported in
Appendices A–C, respectively.

II. THE PEIERLS PHASE

We preliminarily define the basis set and the Hamiltonian
in the absence of the field. Let us consider a basis set of
localized states {|φm〉} with wave functions {〈r|φm〉 = φm(r)},
centered at the positions {Rm}, where m is an integer index,
and with overlap matrix Smn ≡ 〈φm|φn〉. For example, |φm〉
could correspond to an atomic-like orbital of the atom at posi-
tion Rm. Given a generic one-body Hamiltonian Ĥ = H (r̂, p̂),
which is function of the position and momentum operators r̂
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and p̂, the corresponding matrix elements on the considered
basis set are

Hmn ≡ 〈φm|Ĥ |φn〉 =
∫

dr3 φ∗
m(r) H (r,−ih̄∇ ) φn(r), (1)

where we considered the real-space representation of the
momentum operator p̂ → −ih̄∇. Other degrees of freedom,
such as the spin, can be straightforwardly included with-
out entailing any modification of the procedure illustrated in
this section. In the presence of a static magnetic field B(r)
described by a vector potential A(r) through the relation
B(r) = ∇ × A(r), the Hamiltonian transforms according to
the principle of minimal coupling [10] as

ĤA = H (r̂, π̂) with π̂ = p̂ + e

c
A(r̂), (2)

where e > 0 is the absolute value of the electron charge and
c is the speed of light. We proceed by defining a new set of
localized states {|φ̃n〉} with wave functions [3,11]

φ̃n(r) = 〈r|φ̃n〉 ≡ exp

[
−i

e

h̄c

∫
�n(r)

dr′ · A(r′)
]

φn(r)

= exp

[
− i

e

h̄c
Gn(r)

]
φn(r) with

Gn(r) ≡
∫

�n(r)
dr′ · A(r′), (3)

Rn

r

Rm

-lm(r)ln(r)

lmn
mn(r)

FIG. 1. Linear paths �n(r) between the points Rn and r, �m(r)
between the points Rm and r, and �mn between the points Rm and
Rn. The closed path passing through the points Rn, Rm, and r, and
composed of the three paths �mn(r), �n(r), and −�m(r), delimits the
shaded area corresponding to the magnetic flux �mn(r).

where �n(r) is the straight line path from Rn to r (see Fig. 1),
which we parametrize as �n(r, λ) = Rn + (r − Rn)λ in terms
of λ ∈ [0, 1]. As a consequence, the line integral G(r) be-
comes

Gn(r) =
∫ 1

0
dλ (r − Rn) · A(Rn + (r − Rn) λ). (4)

If we apply the momentum operator π̂, which corresponds to
−ih̄∇ + e/cA(r) in the real-space representation, we obtain

〈r|π̂|φ̃n〉 =
[

− ih̄∇ + e

c
A(r)

]
exp

[
− i

e

h̄c
Gn(r)

]
φn(r)

= exp

[
− i

e

h̄c
Gn(r)

] [
− ih̄∇φn(r) − e

c
∇Gn(r) φn(r) + e

c
A(r) φn(r)

]
. (5)

As detailed in Appendix A, according to the derivation of Ref. [11] we can demonstrate that, for a well-localized basis set {|φm〉},
we have ∇Gn(r) ≈ A(r). As a consequence, the last two terms of Eq. (5) cancel and

〈r|π̂|φ̃n〉 = exp

[
− i

e

h̄c
Gn(r)

]
〈r|p̂|φn〉 = exp

[
− i

e

h̄c

∫
�n(r)

dr′ · A(r′)
]
〈r|p̂|φn〉. (6)

In a similar manner, we can demonstrate that

〈r|π̂2|φ̃n〉 = exp

[
− i

e

h̄c
Gn(r)

]
〈r|p̂2|φn〉 = exp

[
− i

e

h̄c

∫
�n(r)

dr′ · A(r′)
]
〈r|p̂2|φn〉 (7)

and then

[HA]mn = 〈φ̃m|ĤA|φ̃n〉 =
∫

dr3 exp

[
i

e

h̄c

∫
�m (r)

dr′ · A(r′)
]

φ∗
m(r)H

(
r,−ih̄∇ + e

c
A(r)

)
exp

[
−i

e

h̄c

∫
�n(r)

dr′ · A(r′)
]
φn(r)

=
∫

dr3 exp

[
−i

e

h̄c

∫
�n(r)

dr′ · A(r′) + i
e

h̄c

∫
�m (r)

dr′ · A(r′)
]

φ∗
m(r)H (r,−ih̄∇ )φn(r)

=
∫

dr3 exp

[
−i

e

h̄c

∫
�n(r)−�m (r)

dr′ · A(r′)
]

φ∗
m(r)H (r,−ih̄∇ )φn(r)

= exp

[
−i

e

h̄c

∫
−�mn

dr′ · A(r′)
] ∫

dr3 exp

[
−i

e

h̄c

∫
�n(r)−�m (r)+�mn

dr′ · A(r′)
]

φ∗
m(r)H (r,−ih̄∇ )φn(r),

= exp

[
−i

e

h̄c

∫
−�mn

dr′ · A(r′)
] ∫

dr3 exp

[
− i

e

h̄c
�mn(r)

]
φ∗

m(r)H (r,−ih̄∇ )φn(r), (8)
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where we made use of Eq. (7) to obtain the second line,
we introduced the straight line path �mn from Rm to Rn, as
indicated in Fig. 1, and defined

�mn(r) ≡
∫

�n(r)−�m (r)+�mn

dr′ · A(r′), (9)

which is none other than the gauge-invariant flux of the mag-
netic field through the area enclosed by the circuit �n(r) −
�m(r) + �mn, corresponding to the shaded region in Fig. 1.
Due to the localized nature of the basis, the second integrand
in Eq. (8) is expected to be nonvanishing only when r is
around Rm or Rn. When r is in this region, the choice of
�mn as a linear path reduces the surface enclosed by the cir-
cuit �n(r) − �m(r) + �mn, and then the magnetic flux �mn(r).
Moreover, if the magnetic field varies smoothly on the scale of
the atomic positions, the flux changes its sign when r moves
from one side to the other of the line �mn. As a consequence,
we can approximate �mn(r) ≈ 0 in Eq. (8), and obtain

[HA]mn ≈ exp

[
−i

e

h̄c

∫
−�mn

dr′ · A(r′)
]

×
∫

dr3φ∗
m(r)H (r,−ih̄∇ )φn(r)

= exp

[
−i

e

h̄c

∫
−�mn

dr′ · A(r′)
]

Hmn = eiϕmn Hmn.

(10)

We define the Peierls phase ϕmn [3] as

ϕmn ≡ 2π

�0

∫ Rn

Rm

dr · A(r), (11)

where the integral is performed along the linear path �mn from
Rm to Rn, and �0 = hc/e ≈ 4.136 × 10−15 Wb is the flux
quantum. The empirical choice of a linear path for �mn is
widely adopted in the literature [12], and can be justified in
a more rigorous way from gauge invariance [13]. The Peierls
phase is not gauge independent since

A(r) → A(r) + ∇χ (r) : ϕmn → ϕmn + 2π

�0
[χn − χm],

(12)
where χ (r) is any differentiable scalar function and χm ≡
χ (Rm). However, as is evident from Eq. (12), the circulation
of the Peierls phase along a closed path is gauge independent,
being proportional to the flux of the magnetic field through
the surface enclosed by the path. Note that the gauge χ (r)
does not need to vary slowly with respect to the interatomic
distance, but just needs to be a continuous function. Indeed, at
the position Ri, χi can be freely chosen, since we can always

define a continuous function with given values on a discrete
set of points.

The overlap matrix S changes in the same way as the
Hamiltonian, as seen by substituting the operator ĤA with the
identity operator 1̂ in the previous derivation, i.e.,

S̃mn ≡ 〈φ̃m|φ̃n〉 ≈ eiϕmn Smn. (13)

The results presented in Sec. III are thus valid for a general
(also nonorthonormal) basis, provided Eq. (13) is taken into
account. If the starting basis set is orthonormal, from Eq. (13)
it follows that also the basis set defined by Eq. (3) is approxi-
mately orthonormal, as in the case of the examples of Sec. IV.

We remark that the literature [14,15] also proposes a phase
choice that is an alternative to that of Eq. (3), specifically

φ̃n(r) = 〈r|φ̃n〉 ≡ exp

[
− i

e

h̄c
A(Rn) · r

]
φn(r). (14)

While this different choice entails a different mathematical
treatment compared to Eq. (3), under the commonly adopted
approximations, the resulting Peierls phase is equivalent to
that of Eq. (11). More accurate approaches, which take into
account further terms, for the Hamiltonian and the overlap
matrix are available in the literature [16].

III. EXPLICIT PEIERLS PHASE FACTORS FOR A
HOMOGENEOUS MAGNETIC FIELD

Given a homogeneous magnetic field B, we can write

A(r) = 1
2 B × r + ∇χ (r). (15)

The corresponding Peierls phase ϕmn is obtained by perform-
ing the integration of Eq. (11) along the straight line from Rm

to Rn:

ϕmn = 2π

�0

[(∫ Rn

Rm

dr · 1

2
(B × r)

)
+ χ (Rn) − χ (Rm)

]

= 2π

�0

[
1

2
B · (Rm × Rn) + χ (Rn) − χ (Rm)

]
, (16)

where the generic gauge function χ on the discrete points
{Rm} is defined modulo �0.

A. One-dimensional periodic systems

Let us consider a system that is invariant under translations
by a vector T. If we require also the Hamiltonian to be invari-
ant, the Peierls phase ϕm̄n̄ for a translated couple of states, i.e.,
such that Rm̄ = Rm + T and Rn̄ = Rn + T, must be equal to
ϕmn, modulo 2π . Therefore, according to Eq. (16), we have

0 = ϕm̄n̄ − ϕmn = 2π

�0

[
χ (Rn + T) − 1

2
Rn · (T × B) − χ (Rn)

]
− 2π

�0

[
χ (Rm + T) − 1

2
Rm · (T × B) − χ (Rm)

]
, (17)

modulo 2π . Such a condition is satisfied if

χ (Rm + T) = 1
2 Rm · (T × B) + χ (Rm). (18)
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FIG. 2. (a) System with periodic regions, for example leads, with translation vector T, which can be different for the different leads.
(b) Periodic 2D system. The translation vectors are T1 and T2, and the basis vectors are indicated by {di}.

From the previous formula, we deduce that χ (r) is at least quadratic in r. We guess the function

χ (r) = r · α r · β + γ · r + η, (19)

where α, β, and γ are vectors and η is a scalar. Therefore, Eq. (18) becomes

χ (Rm + T) − χ (Rm) = T · α Rm · β + Rm · α T · β + T · α T · β + γ · T = 1
2 Rm · (T × B). (20)

A simple and convenient choice to solve this equation is

α = T
2|T| ; β = T

|T| × B; γ = 0; η = 0 → χ (r) = 1

2
r · t r · (t × B) with t ≡ T

|T| . (21)

Note that the resulting Peierls phase is also invariant under
spatial translations along the direction of the magnetic field.
More details about the vector potential of Eq. (15) with the
gauge choice of Eq. (21) are illustrated in Appendix B. In
particular, it is straightforward to show that if t = x̂ and
B = B ẑ, as in the case of a carbon nanotube oriented along
the x direction in a homogeneous magnetic field along the
z direction discussed in Sec. IV A, then the resulting vector
potential is A(r) = −B y x̂, which does correspond to the first
Landau gauge usually adopted in the literature [17,18].

In case we deal with, for example, a multiterminal system
with leads oriented along different directions [see Fig. 2(a)],
we can define the gauge in each region according to the
periodicity direction t(r) of the region corresponding to the
position r. If the position r corresponds to a nonperiodic
region (for example the central part of a device or a region

where the periodicity of the phase is not required), we can
choose any t(r), for example t(r) = 0.

In conclusion, the recipe to calculate the Peierls phase is

ϕmn = π

�0
B · {Rm × Rn + [Rn · t(Rn)] Rn × t(Rn)

− [Rm · t(Rm)] Rm × t(Rm)}. (22)

B. Two-dimensional periodic systems

Periodic 2D lattices are defined by a unit cell repeated
periodically with translation vectors T1 and T2. The basis
set {|φim1m2〉} consists of states localized around the positions
{Rim1m2 = di + m1T1 + m2T2}, where di indicates the posi-
tion of the ith state inside the unit cell and m1T1 + m2T2 is
the position of the cell with integer indices m1 and m2; see
Fig. 2(b). According to Eq. (16), the Peierls phase between
the two states at positions Rim1m2 and R jn1n2 is

ϕi,m1,m2; j,n1,n2 = 2π

�0

[
1

2
B · (

Rim1m2 × R jn1n2

) + χ
(
R jn1n2

) − χ
(
Rim1m2

)]
. (23)

To ensure Hamiltonian periodicity, the Peierls phase must be invariant modulo 2π under any translation Ts1s2 = s1T1 + s2T2,
i.e., ϕi,m1+s1,m2+s2; j,n1+s1,n2+s2 = ϕim1m2; jn1n2 + 2πq, for any integer numbers s1 and s2, where q ∈ Z. Therefore

2πq = ϕi,m1+s1,m2+s2; j,n1+s1,n2+s2 − ϕi,m1,m2; j,n1,n2

= 2π

�0

[
χ j,n1+s1,n2+s2 − χ j,n1,n2 − 1

2
R jn1n2 · (

Ts1s2 × B
) − χi,m1+s1,m2+s2 + χi,m1,m2 + 1

2
Rim1m2 · (

Ts1s2 × B
)]

. (24)
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Let us define the function g(i, m1, m2, s1, s2) such that

χi,m1+s1,m2+s2 ≡ χim1m2 + 1
2 Rim1m2 · (

Ts1s2 × B
) + g(i, m1, m2, s1, s2), (25)

modulo �0. To satisfy Eq. (24), we must have

g( j, n1, n2, s1, s2) = g(i, m1, m2, s1, s2) + q�0 ∀ i, j, m1, m2, n1, n2, s1, s2 with q ∈ Z, (26)

which implies, in the most general case, that g(i, m1, m2, s1, s2) = f (s1, s2), i.e., it only depends on its last two arguments s1 and
s2. By setting s1 = m1, s2 = m2, m1 = 0, and m2 = 0 in Eq. (25), we obtain

χi,m1,m2 = χi00 + 1
2 B · (

di × Tm1m2

) + f (m1, m2). (27)

From Eqs. (25) and (28), it follows that

χi,m1+s1,m2+s2 = χi00 + 1
2 B · (

di × Tm1m2

) + 1
2 B · (

di × Ts1s2

) + f (m1 + s1, m2 + s2)

= χim1m2 − f (m1, m2) + 1
2 B · (

di × Ts1s2

) + f (m1 + s1, m2 + s2) (28)

= χim1m2 + 1
2 B · (

di × Ts1s2

) + 1
2 B · (

Tm1m2 × Ts1s2

) + f (s1, s2), (29)

where we made use of Eq. (27) for the first two lines and Eq. (25) for the last line. By comparing Eqs. (28) and (29), for
consistency we have

f (m1 + s1, m2 + s2) = f (m1, m2) + f (s1, s2) + 1
2 B · (

Tm1m2 × Ts1s2

)
. (30)

After inverting (m1, m2) ↔ (s1, s2), the sign of the cross product changes, while the other terms of the previous equation are just
swapped

f (m1 + s1, m2 + s2) = f (s1, s2) + f (m1, m2) + 1
2 B · (

Ts1s2 × Tm1m2

) = f (m1, m2) + f (s1, s2) − 1
2 B · (

Tm1m2 × Ts1s2

)
. (31)

Since, to have a well-defined function f (m1, m2), Eqs. (30) and (31) can only differ by a multiple of �0, it follows that

B · (
Tm1m2 × Ts1s2

) = q�0 ∀m1, m2, s1, s2 → � ≡ B · (T1 × T2) = q�0 with q ∈ Z. (32)

Therefore, the magnetic flux through the unit cell � must be an integer multiple of the flux quantum �0. If B lies on the same
plane as T1 and T2, then Eq. (32) is automatically satisfied with q = 0. Otherwise, Eq. (32) determines the minimum admissible
magnetic field and its multiples:

B = q
�0

b · (T1 × T2)
b with q ∈ Z , (33)

where b = B/|B| is the direction of the magnetic field. Of course, the minimum allowed magnetic field can be decreased by
combining more unit cells into a larger supercell.

A simple choice for the function f (m1, m2) to satisfy Eq. (30) modulo �0 is

f (m1, m2) = ±1

2
B · (

Tm1 × Tm2

) = ±m1m2

2
q �0, (34)

where the sign is arbitrary, Tm1 stands for m1T1, and Tm2 stands for m2T2. As a consequence, the gauge function on the lattice is

χim1m2 = χi00 + 1
2 B · (

di × Tm1m2 ± Tm1 × Tm2

) = 1
2 B · (

di × Tm1m2 ± Tm1 × Tm2

) = 1
2 B · (

Rim1m2 × Tm1m2 ± Tm1 × Tm2

)
,

(35)

where we made the arbitrary choice χi00 = 0. Therefore, together with Eq. (33), the recipe to obtain the Peierls phase in a 2D
periodic system is

ϕi,m1,m2; j,n1,n2 = π

�0
B · [

Rim1m2 × R jn1n2 + R jn1n2 × Tn1n2 − Rim1m2 × Tm1m2 ± Tn1 × Tn2 ∓ Tm1 × Tm2

]

= π

�0
B · [

di × d j + (di + d j ) × (
Tn1n2 − Tm1m2

) + Tm1 × Tn2 + Tm2 × Tn1 ± Tn1 × Tn2 ∓ Tm1 × Tm2

]
. (36)

Note that if the magnetic field B is not coplanar with the two translation vectors, then from Eq. (33) it follows that

ϕi,m1,m2; j,n1,n2 = πq

[
b · {di × d j + (di + d j ) × [(n1 − m1)T1 + (n2 − m2)T2]}

b · (T1 × T2)
+ (m1 ± n1) (n2 ∓ m2)

]
. (37)
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Under lattice translations of both Rim1m2 and R jn1n2 , the first
term is manifestly invariant, while the last term always differs
by an even integer, which, once multiplied by πq, gives an
irrelevant 2π -multiple phase. If, on the contrary, the magnetic
field B is coplanar with the two translation vectors, then, as
mentioned above, its strength does not undergo the condition
in Eq. (33) and we have

ϕi,m1,m2; j,n1,n2 = π

�0
B · [

di × d j + (di + d j )

× (
Tn1n2 − Tm1m2

)]
, (38)

which is clearly invariant under lattice translations of both
Rim1m2 and R jn1n2 . As detailed in Appendix C, apart from an
irrelevant redefinition of the gauge function at the edges of the
nonperiodic region, Eq. (38) reduces to Eq. (22) in the case of
1D systems.

IV. EXAMPLES

In this section, we show some examples of applications of
the obtained formulas. These examples are not meant to be
original nor are they based on very sophisticated models, but
just to serve as demonstrations of the application of the dis-
cussed theoretical formulation. We first consider the case of a
metallic carbon nanotube (CNT) in a homogeneous magnetic
field. Such a configuration has been widely investigated in
the literature [19–24], both in the tight-binding and the k · p
descriptions. Depending on the angle between the magnetic
field and the CNT axis, different phenomena occur, such as
the formation of Landau levels (LLs) or the opening of a gap
due to the Aharonov-Bohm effect [19]. The second example is
a six-terminal Hall bar obtained in a two-dimensional electron
gas (2DEG). Here, the presence of chiral edge states and of lo-
calized states around impurities is central for the observation
of extended quantized Hall resistance plateaus. Finally, we
consider a 2D graphene superlattice of Gaussian bumps. This
system has attracted much interest thanks to the possibility of
inducing pseudomagnetic fields by controlling strain [25–27].

A. Metallic carbon nanotubes in a magnetic field

We consider a CNT with chiral indices (n = 204, m = 0),
which corresponds to a metallic zigzag CNT with a radius
R ≈ 8 nm and a circumference of about 50 nm [24]. We
describe the CNT by a tight-binding Hamiltonian with a single
pz orbital per carbon atom and first-nearest-neighbor coupling

H = t0
∑
〈i j〉

|φi〉〈φ j |, (39)

where t0 = −2.7 eV is the hopping parameter, |φi〉 corre-
sponds to the pz orbital of the carbon atom with index i, and
〈i j〉 indicates that the atoms with indices i and j are first
neighbors. We make use of Eq. (22) with unit vector t along x̂
to take into account the presence of a homogeneous magnetic
field B that forms an angle θ with the CNT axis; see Fig. 3(a).
The color scale in this figure represents the projection of
the magnetic field B⊥ along the normal to the CNT curved
surface. B⊥ is maximum at the top of the CNT, it decreases to
0 at its sides, and changes sign to reach its maximum negative
value on the bottom of the CNT. This quantity corresponds to
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FIG. 3. (a) CNT with chirality (204,0), corresponding to a radius
of about 8 nm and a circumference of about 50 nm. The magnetic
field forms an angle θ with the nanotube axis. The color scale
indicates the normal component of the magnetic field B⊥, which is
maximum and with opposite sign on the top and the bottom regions
of the CNT, while it vanishes at the sides of the CNT. (b) Band
structure in the absence (red lines) and in the presence (black lines)
of a 100 T magnetic field along the CNT axis (θ = 0). (c) Slicing of
the hexagonal Brillouin zone of graphene with quantized transverse
wave vector. The Dirac cones are at the K and K ′ points at the corner
of the Brillouin zone. The cases B = 0 and B �= 0 correspond to the
red and black lines, respectively. (d) Energy of the first low-energy
bands at k = 0 as a function of the magnetic field along the CNT axis.
(e) Band structure for B = 100 T and θ = π/4. The first LLs with
E � 0 are indicated. (f) Band structure for B = 100 T and θ = π/2.
(g) Probability density for the three states indicated by green, blue,
and red dots at k = −1.5/nm, k = 0, and k = 1.5/nm, respectively,
along the lowest band in (f). (h) Same as (g) for states along the first
band.
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the varying orthogonal magnetic field locally experienced by
electrons, and it is useful for the interpretation of the results,
as we will see later on.

In the absence of magnetic field [see the red lines in
Fig. 3(b)], the band structure presents a linear dispersion at
the charge neutrality point, which corresponds to the graphene
Dirac point, and quantized subbands whose spacing is in-
versely proportional to the CNT diameter. The K and K ′ points
of the hexagonal Brillouin zone of 2D graphene are folded at
k = 0 and the bands are valley degenerate.

When a B = 100 T magnetic field is along the ribbon axis
(θ = 0), a small gap opens and the degeneracy lift of the other
bands occurs [see the black lines in Fig. 3(c)], as observed in
Ref. [19]. Remarkably, these changes occur despite the fact
that B⊥ = 0, i.e., the magnetic flux vanishes through the car-
bon hexagons of the CNT lattice. To understand this behavior,
we consider the so-called zone-folding approximation [28,29].
The low-energy band structure of a CNT can be obtained from
the energy dispersion of 2D graphene and considering that the
transverse component of the wave vector kc, i.e., orthogonal
to the CNT axis, must be quantized to ensure the single
valuedness of the electron wave function around the CNT
circumference. Indeed, according to the Bohr-Sommerfeld
quantization condition, we have∮

π · dr =
∮ (

h̄k + e

c
A

)
· dr = h̄kc2πR + e

c
�(B)

= 2πqh̄ → kc = 1

R

(
q − �(B)

�0

)
, (40)

where the integral is performed along the CNT circumference,
�(B) = πR2B is the magnetic flux through the CNT section,
and q is an integer number. The bands are thus obtained by
slicing the hexagonal Brillouin zone of 2D graphene along
lines that are parallel to a line with angle π/3 and passing
through the � point, and spaced by q/R. For the considered
CNT chirality (n is a multiple of 3 and m = 0) and for B = 0,
one of these lines passes exactly at the K and K ′ points [see
the red lines in Fig. 3(c)], where the graphene Dirac cones are
located. Therefore, the bands are valley degenerate with the K
and K ′ points folded at k = 0, and the system is metallic, with
linear dispersion at the charge neutrality point. When a mag-
netic field is present, the shift in kc by kc = �(B)/(R�0)
results in a shift of the slicing of the Brillouin zone; see
the black lines in Fig. 3(c). The slices do not pass anymore
through the K and K ′ points and they are not equidistant from
them, and then we observe the opening of the band gap and the
degeneracy removal for the other bands. Figure 3(d) shows the
energy of the first low-energy (around E = 0) bands at k = 0
as a function of the magnetic field B along the CNT axis.
We can clearly observe the linear shift of the energies and
a periodicity B = �0/(πR2) ≈ 20.7 T, which corresponds
exactly to integer multiples of the quantum magnetic flux
through the CNT section, as expected from Eq. (40).

When the angle between the B = 100 T magnetic field and
the CNT axis is increased to θ = π/4 and then to θ = π/2
[see Figs. 3(e) and 3(f)], the usual series of LLs develops
[23] since the magnetic length � = √

h̄c/(eB) ≈ 2.5 nm is
shorter than the CNT circumference. However, the LLs are
dispersive and not flat as in graphene. This is due to the vary-

ing orthogonal component of the magnetic field B⊥, which
is maximum on the top and bottom regions and vanishes on
the CNT sides, where the magnetic field is tangential; see
Fig. 3(a). We also remark that LLs are degenerate due to the
invariance of the system composed by CNT plus magnetic
field under the symmetry operation given by the combination
of a C2 rotation around the CNT axis with a mirror reflection
on a plane passing through the CNT axis and the CNT sides,
where B⊥ vanishes. Such symmetry corresponds to having
two equivalent halves of CNT with opposite components of
the orthogonal magnetic field.

We further investigate the electronic structure by looking at
the spatial probability distribution of the states corresponding
to the colored dots at k = 0 and k = ±1.5/nm on the first two
bands in Fig. 3(f), reported in Figs. 3(g) and 3(h), respectively.
At k = 0 (red dots and lines), we observe the Landau states
corresponding to LL0 and LL1 at the top and the bottom of
the CNT. As expected, when changing k toward positive or
negative values, the Landau state centers move toward the
right or left side of the CNT, and, according to the dispersive
energy dispersion, the LLs acquire a group velocity whose
direction depends on the sign of the nonvanishing gradient of
B⊥. When the states reach the region of vanishing or small
B⊥ [see the green and blue lines in Figs. 3(g) and 3(h)], the
LLs cannot form since the resulting magnetic length is longer
than the CNT circumference. As a consequence their energy
dispersion becomes almost linear. Analogously to what was
observed for edge states in Hall bars discussed below in
Sec. IV B, these states entail a spatial chirality, in the sense
that they show opposite group velocities at the opposite sides
of the Brillouin zone [see the slope of the bands in corre-
spondence of green and red dots in Figs. 3(e) and 3(f)] and
are located at opposite sides of the CNT [see the green and
red lines in Figs. 3(g) and 3(h)]. This phenomenon can be
conveniently described in term of semiclassical snake states,
which originate from a sign inversion of the magnetic field
and whose group velocity direction depends on the magnetic
field gradient, as detailed in Ref. [30], and are also observed
in scrolled graphene [31].

B. Integer quantum Hall effect in a 2DEG Hall bar

We consider here a Hall bar etched in a 2DEG obtained at
the heterojunction between GaAs and AlGaAs. The geometry,
reported in Fig. 4(a), consists of six terminals with width
250 nm and a central bar with same width and a length of
1.5 μm, where disorder may be present. The current probes
correspond to the terminals with indices 1 and 2, while the
voltage probes to the terminals with indices 3, 4, 5, and 6.
To mimic metallic contacts, all the terminals are electrostat-
ically doped by superimposing a constant negative potential
energy −0.5 eV. Note that the size of the Hall bar is much
smaller than that of typical experimental bars for metrolog-
ical application [32]. This choice, whose motivation is to
limit the computational burden, does not affect the physical
interpretation of the results, which are in any case intended
as demonstrative in this article. We consider two cases: a
clean Hall bar with very weak disorder, and a disordered Hall
bar where long-range energy potential centers are included
to mimic charged impurities. The contrast between the two
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FIG. 4. (a) Geometry of the six-terminal Hall bar and back-
ground potential energy. The terminal numbers from 1 to 6 are
indicated. (b) Typical band structure of a 2DEG ribbon in high
magnetic field. It is characterized by the presence of LLs and edge
states in the interlevel regions. The presence of localized states
induced by disorder is schematically indicated by purple energy
levels. (c) Chemical potential as a function of the filling factor for
the Hall bar in (a) in the cases of clean and disordered samples, for
charge density σ = 3 × 1013 e/cm2 and temperature T = 77.36 K.
(d) Longitudinal and Hall resistances for the clean sample. The
horizontal grey lines correspond to the resistance h/(2e2) and its even
submultiples. (e) Same as (d) for the disordered sample. (f) Surface
density of electrons per unit of energy in the disordered sample for
B = 70 T, T = 77.36 K, and μ = 96.15 meV, corresponding to the
dot at ν = 1.77 in (c).

cases is interesting, because the width of the quantized Hall
resistance plateaus is expected to be larger in disordered than
in ultraclean samples. To model disorder, we consider N ran-
domly distributed impurities with Gaussian profile

V (r) =
N∑

j=1

v j exp

(
−|r − r j |2

2λ2

)
, (41)

where {v j} are randomly chosen in the range [−s, s], with s
the strength of the disorder, {ri} are the random positions of
the potential centers, and λ is the potential range.

The weak disorder is obtained by first generating a random
potential with parameters λ = 2 nm and a very high density
of centers, 1014 cm−2, and then by renormalizing it to have
a root-mean-square value of 1 meV. The long-range disor-
der, superimposed to the weak disorder considered above, is
generated by setting λ = 10 nm, s = 150 meV, and impurity
density 7.5 × 1010 cm−2. A realization of the resulting poten-
tial is illustrated in Fig. 4(a).

The tight-binding-like Hamiltonian is obtained by dis-
cretizing the continuous effective mass Hamiltonian over a
square lattice with parameter a [33]:

H = |p|2
2m∗ →

∑
i

|φi〉(4t + Ui )〈φi| − t
∑
〈i j〉

|φi〉〈φ j |, (42)

where m∗ = 0.068 me is the electron effective mass, t =
h̄2/(2m∗a2) is the hopping parameter, {|φi〉} is an (incomplete)
basis of localized states at the sites {i} of the lattice, Ui is
the superimposed energy potential (including disorder and
contact electrostatic doping) at site i, and 〈i j〉 indicates that
the sum is limited to first-nearest-neighbor sites. We choose
a = 1 nm, which is a good compromise between accuracy (be-
cause it is smaller than the long-range disorder range and the
typical magnetic length here considered) and computational
burden.

The presence of a homogeneous orthogonal magnetic field
is considered according to the recipe of Eq. (22) and by tak-
ing into account the different orientations of the semi-infinite
terminals, i.e., a unit vector t oriented along the x axis for
contacts 1 and 2 and along the y axis for contacts 3, 4, 5, and 6.
We briefly recall the band structure of a periodic 2DEG ribbon
in a high magnetic field, which is shown in Fig. 4(b). First of
all, we observe flat LLs with energy En(B) = (n + 1/2)h̄ωc,
where ωc = eB/(m∗c) is the cyclotron frequency, and each
with degeneracy �(B)/�0, where �(B) is the magnetic flux
through the whole 2DEG. At energies between LLs, which
we call interlevel (IL) regions, dispersive bands are present,
which correspond to edge states. Such edge states are chiral, in
the sense that electrons flow along them in opposite directions
at opposite edges [34,35], as follows from the opposite slope
of the dispersive bands at opposite sides of the Brillouin zone.
In contrast to the bulk of the wire, which is an insulator since
there are no states in the IL energy regions, these states are
perfectly conducting as long as disorder is not strong enough
to couple states at opposite edges. This phenomenon is at the
origin of the Hall resistance quantization [36]. As mentioned
above and detailed below, disorder can induce localized states
around the impurities, which are illustratively represented by
the purple energy levels in Fig. 4(b).
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The Green’s function approach and the Landauer-Büttiker
formalism allow us to calculate, starting from the above
Hamiltonian, the transmission coefficients between the dif-
ferent terminals as a function of the electron energy in the
linear response regime [37] and the surface electron density
as a function of the chemical potential μ and the temper-
ature T [38]. In our simulations [39], the temperature just
entails a smearing of the Fermi-Dirac distribution function,
while no electron-phonon coupling is taken into account. We
set the average surface charge density in the Hall bar to
σ = 3 × 1013 e/cm2 and determine the chemical potential μ

at temperature T = 77.36 K, corresponding to that of liquid
nitrogen, and for different magnetic fields up to 100 T. We
choose such a high electron surface density to be able to
explore the region ν > 2 at relatively high magnetic fields, for
which the magnetic length is comparable to or smaller than
the system size. The result is reported in Fig. 4(c) in terms
of the filling factor ν = �0σ/B. In the case of very weak
disorder (red line), we observe the typical oscillations of the
chemical potential, which jumps on different LLs when ν is a
multiple of 2 (we consider spin degeneracy) by rapidly filling
the edge states (regions indicated by IL01, IL12, and IL13 in
the figure). For different values of ν, the chemical potential is
roughly pinned to the LLs and increases almost linearly with
the magnetic field. These regions are indicated by LL0, LL1,
and LL2 for the first three LLs. The ν extension of IL regions
compared to that of the LL regions depends on the ratio of
the density of states corresponding to the edge states over that
corresponding to the bulk LLs. At larger ν, the width of the
semiclassical cyclotron orbit, and then of the edge states, is
larger, thus entailing an increased extension of the IL regions.
This is particularly visible in our small-size system. In the
case of stronger Gaussian disorder (blue line), the density of
states is expected to broaden due to the formation of localized
states. The result is that the transition between LLs is much
slower and the chemical potential stays in the IL regions,
where also chiral edge states are present, for a much wider
interval of magnetic field. We thus expect to observe wider
Hall resistance plateaus in disordered samples compared to
clean or very weakly disordered samples, as also observed
experimentally.

To verify this prediction, we plot in Figs. 4(d) and 4(e)
the longitudinal and Hall resistances as a function of ν. To
obtain them from the transport coefficients, we first determine
the terminal potentials {Vn} by imposing a source drain cur-
rent of Isd = 0.1 μA and a vanishing current on the voltage
probes. Then, we calculate the longitudinal resistance as RL =
(V6 − V5)/Isd and the Hall resistance as RL = (V6 − V4)/Isd.
In the case of clean graphene, Fig. 4(d) shows that the Hall
resistance is not quantized and that the longitudinal resistance
is rather small and only barely presents some dips in corre-
spondence of integer even ν. The quantum Hall effect is thus
not observable in this case and at the considered temperature
of 77.36 K. In contrast, for the disordered sample, Fig. 4(e)
clearly shows the Hall resistance plateau with value h/(2e2) ≈
12.9 k� for ν = 2, where the longitudinal resistance van-
ishes. For ν = 4, 6, . . . , only flexes of the Hall resistance
are observable at the considered temperature. However,
the longitudinal resistance clearly shows the corresponding
minima.

Finally, to provide a visual picture of the mechanisms at the
origin of resistance quantization and the pinning of the chemi-
cal potential at energies between the LLs, Fig. 4(f) reports the
surface density of electrons per unit of energy ρ at B = 70 T,
T = 77.36 K, and chemical potential μ = 96.15 meV; see
the dot at ν = 1.77 in Fig. 4(c). This quantity is obtained
by deriving the total electron density [38] with respect to
the chemical potential. We can clearly observe (i) a large
density of electrons on the doped region of the terminals,
(ii) chiral edge states at the edges of the bar, with indication
of the anticlockwise direction of their group velocity, which
is opposite at opposite edges (see the yellow arrows), and (iii)
the localized states in the insulating bulk, which turn around
the Gaussian impurities in clockwise or anticlockwise direc-
tion (depending on the impurity potential sign) and largely
contribute to the density of states and then to the Fermi level
pinning, but not to transport. This result completely agrees
with the edge state model proposed in Ref. [36]. Note that,
in the simple model here adopted, we did not consider edge
reconstruction or electron-electron or electron-phonon cou-
pling, which are out of the scope of the present paper.

C. Periodic bumped graphene superlattice

Bumps are often observed in graphene samples and can be
artificially induced, for example, by pinning graphene on pat-
terned substrates [40,41] or by thermally inducing a buckling
transition [42]. In the absence of magnetic field, such a system
has been widely investigated in the literature [43–47], with
focus on both electronic structure and transport properties in
2D graphene and graphene ribbons or dots. Here, we focus on
the case of periodic bumps with a Gaussian profile similar to
that of Ref. [43]:

z(r) =
{

h exp(−r2/b2 )−exp(−R2/b2 )
1−exp(−R2/b2 ) for r � R,

0 for r > R,
(43)

where r is the distance from the deformation center, h is the
maximum height of the deformation, b is the width param-
eter, and R = 3b/

√
2 is a cutoff radius, which contains the

99.7% of the Gaussian. Following Ref. [43], we choose h
within the range 0–2.5 nm, b = 2.9227 nm, and then R =
6.2 nm. We consider the smallest triangular unit cell multiple
of the graphene unit cell that contains the deformation. It
has translation vectors T1,2 = [12.5493,±7.2453, 0] nm and
contains 6962 carbon atoms. The resulting structure is shown
in Fig. 5(a) for h = 1 nm. With this choice, the Brillouin zone
keeps the original hexagonal shape and, in our specific case,
the original K and K ′ points turn out to be folded into the K
and K ′ of the new Brillouin zone.

We adopt the same tight-binding Hamiltonian as for CNTs
with a single pz orbital per atom with first-nearest-neighbor
coupling:

H =
∑
〈i j〉

ti j |φi〉〈φ j |, (44)

where, to take into account the strain resulting from the defor-
mation, the hopping parameter ti j depends on the inter-atomic
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FIG. 5. (a) Graphene profile in the presence of the Gaussian deformation of Eq. (43) with h = 1 nm and b = 2.92 nm. The unit cell is
periodically repeated with translation vectors T1 and T2. The color scale indicates the local average value of the first-nearest-neighbor hopping
parameters for each atom according to Eq. (45). (b) Energy levels at the point K of the Brillouin zone as a function of the parameter h. (c) Fermi
velocity as a function of the parameter h. The inset shows the Dirac cones at the point K for h = 0, 1, and 2 nm. (d) Energy bands close to
E = 0 for h = 1 nm and B = 0. The first Brillouin zone is indicated by a black hexagon. (e) Same as (d) for h = 0 (no deformation) and
B = 22.74 T. The LLs are indicated. (f) Same as (d) for B = 22.74 T. The inset shows a zoom of the indicated area. (g) Probability density for
an eigenvector � of the Hamiltonian close to the K point of the Brillouin zone, for h = 1 nm and B = 0. (h) Same as (g) for h = 1 nm and
B = 22.74 T at the M point of the Brillouin zone, corresponding to the red dot in (f). (i) Same as (h) for a wave vector in the middle between
the K and the � points, corresponding to the blue dot in (f).

distance di j between the atoms i and j as [48]

ti j = t (di j ) = t0 exp

[
−β

(
di j

a
− 1

)]
, (45)

where t0 = −2.7 eV, a = 0.1418 nm is the unstrained inter-
atomic distance, and β = 3. Figure 5(a) shows the value of the
hopping parameter averaged over the three nearest-neighbor
couplings of each carbon atom. Graphene is almost unstrained
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on the tops of the bumps and at their bases, while it is max-
imally tensile strained on the sides of the bumps, where the
hopping parameter can be considerably decreased.

We first examine the effect of the deformation at the K
point. Figure 5(b) shows the eigenvalues of the Hamiltonian
as a function of the parameter h. Independently of it, an
E = 0 level is always present. This means that the Dirac point
is always at K and a gap does not open. The other energy
levels, which result from the folding of the original graphene
Brillouin zone into the new smaller one, are mainly observed
to decrease when increasing h, as a consequence of the av-
erage decrease of the hopping elements in the Hamiltonian.
However, a few levels are observed to increase. This behavior
might follow the rise of a pseudomagnetic field induced by the
strain [25]. Indeed, in the low-energy continuous approxima-
tion of graphene represented by a Dirac equation for each of
the two valleys, the strain effect encoded by Eq. (45) translates
into a pseudomagnetic field, which is opposite in the two
valleys in accordance with time-reversal symmetry. In the case
of a uniform pseudomagnetic field, generated by particular
strain profiles, pseudo-LLs are predicted [25] and experimen-
tally observed [26] to rise. In our case, the pseudomagnetic
field is inhomogeneous with a trigonal symmetry [44] due to
the spatially varying strain. However, the increased value of
the pseudomagnetic field for large deformations can justify
the condensation of eigenvalues in the E = 0 level and in
higher-energy pseudo-LLs, as discussed in Ref. [43].

As shown in Fig. 5(c), the increase of h also entails a non-
linear decrease of the Fermi velocity vF, which corresponds
to an increase of the Dirac cone angle at K and K ′; see the
inset. The complete low-energy band structure for h = 1 nm
and B = 0 is shown in Fig. 5(d). The Dirac cones at the
corners of the Brillouin zone, indicated by a black hexagon,
as well as the folding of the original Brillouin zone are clearly
visible. The presence of weakly dispersive energy band re-
gions is interesting for the possible observation of the effects
of electron-electron interactions, as discussed in Ref. [42].
Figure 5(g) reports the probability density for an eigenvector
of the Hamiltonian with wave vector close to the K point. As
already observed in the literature [44], a flower-like structure
appears on the side of the bump, which reflects the trigonal
symmetry of the geometry and where the petals can be shown
to be alternatively polarized on the two graphene sublattices.

We now include an orthogonal magnetic field by making
use of the recipe of Eq. (36) or, equivalently, Eq. (37). Given
the size of the unit cell, the minimum magnetic field we can
consider along the z direction is B = 22.7424 T. Note that,
for the sake of simplicity, we consider spin degeneracy and
do not include the Zeeman Hamiltonian term. In the absence
of deformation, i.e., for h = 0, Fig. 5(e) shows that flat LLs
appear with the expected energy [49]

En = ±3
√

3
a|t |√
�0

√
B
√

n = ±
√

2eh̄vF

√
B
√

n

≈ ±31.6565
√

B(T )
√

n meV. (46)

Each level is fourfold degenerate as a consequence of valley
and spin degeneracy, and of the fact that the flux of the
magnetic field through the unit cell is exactly �0 [50]. Fig-
ure 5(f) shows the energy bands in the presence of periodic

deformations with h = 1 nm. While the LL0 is still at E = 0,
the other LLs have an average lower energy compared to the
case h = 0 due to the average decrease of the Fermi velocity
[see Fig. 5(b)], which enters Eq. (46). Except for LL0, the
other LLs are not flat due to the local variation of the hopping
energy (or Fermi velocity) over a spatial range comparable to
the magnetic length � ≈ 5 nm. As a consequence, the energy
will be higher when the eigenstates are mainly located in
the unstrained areas, and lower when the eigenstates are also
located on the sides of the Gaussian bumps. To corroborate
this explanation, Figs. 5(h) and 5(i) show the density proba-
bility for two eigenstates corresponding to a minimum and a
maximum of the third band, indicated by the red and blue dots,
respectively, in Fig. 5(f). Figure 5(h) confirms that the state
with higher energy is mainly located in the regions within the
bumps, where the strain is small. Conversely, Fig. 5(i) shows
that the state with lower energy is also distributed on the sides
of the bumps, where the strain is larger.

Finally, the inset of Fig. 5(f) reveals that the valley degen-
eracy is lifted. This is consequence of the combined action of
magnetic and pseudomagnetic fields [51]. Indeed, while the
magnetic field is the same for the two valleys, the pseudo-
magnetic field is opposite. Their vector sum is thus different
in the two valleys, which corresponds to a different effective
magnetic field and then to different energy levels.

V. CONCLUSIONS

We provided explicit and practical recipes for the Peierls
phase factors to introduce in tight-binding-like Hamiltonians
in order to account for a homogeneous magnetic field. A
proper choice of the gauge allowed us to obtain Eq. (22)
for quasi-1D periodic systems, including Hall bars with dif-
ferently oriented terminals, and Eqs. (36) and (33) for 2D
periodic systems.

We illustrated some simple but relevant examples of ap-
plication of the formulas. In particular, we investigated the
impact of a high magnetic field on the electronic structure
of a metallic CNT. Different angles between the magnetic
field and the nanotube axis revealed a rich physics ranging
from Landau states to the Aharonov-Bohm effect. Then, we
simulated the integer quantum Hall effect in 2DEG bars. We
highlighted the role of disorder in allowing the observation of
resistance plateaus. Finally, we considered the case of peri-
odic 2D graphene with Gaussian bumps, where the strain was
found to make LLs dispersive and to lift the valley degeneracy.

Our results represent a practical tool for the simulation of
electronic and transport properties of mesoscopic systems in
the presence of magnetic fields.

APPENDIX A: MATHEMATICAL DETAILS OF THE
PEIERLS PHASE DERIVATION

In this Appendix, following Ref. [11], we provide the
mathematical details of the approximation ∇Gn(r) ≈ A(r)
used in Sec. II for the derivation of Eq. (11). We start by
introducing the vectorial calculus identity

∇(a · b) = (a · ∇ )b + (b · ∇ )a + a × (∇ × b)

+ b × (∇ × a), (A1)
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which can be verified by direct inspection:

∂xi a jb j = a j∂x j bi + b j∂x j ai + εi jkεkmna j∂xm bn + εi jkεkmnb j∂xm an (A2)

= a j∂x j bi + b j∂x j ai + (δmiδn j − δm jδni )a j∂xm bn + (δmiδn j − δm jδni )b j∂xm an (A3)

=���aj∂x j bi +���b j∂x j ai + a j∂xi b j −���a j∂x j bi + b j∂xi a j −���b j∂x j ai, (A4)

where we assume the sum over repeated indices, exploit the identity [a × b]i = εi jka jbk , with εi jk the Levi-Civita antisymmetric
symbol, and consider that εi jkεkmn = δmiδn j − δm jδni. By making the correspondence a → r − Rn and b → A(Rn + (r − Rn) λ)
in Eq. (4), we have

∇Gn(r) =
∫ 1

0
dλ [(r − Rn) · ∇]A(Rn + (r − Rn) λ) +

∫ 1

0
dλ [A(Rn + (r − Rn) λ) · ∇](r − Rn) (A5)

+
∫ 1

0
dλ (r − Rn) × [∇ × A(Rn + (r − Rn) λ)] +

∫ 1

0
dλ A(Rn + (r − Rn) λ) × [∇ × (r − Rn)]. (A6)

If now we consider that

∇ × A(Rn + (r − Rn) λ) = λ B(Rn + (r − Rn) λ)

∇ × (r − Rn) = 0, (A7)

[A(Rn + (r − Rn) λ) · ∇](r − Rn) = A(Rn + (r − Rn) λ),

we have

∇Gn(r) =
∫ 1

0
dλ [(r − Rn) · ∇]A(Rn + (r − Rn) λ) +

∫ 1

0
dλ A(Rn + (r − Rn) λ) +

∫ 1

0
dλ λ(r − Rn) × B(Rn + (r − Rn) λ).

(A8)

The second term on the right-hand side can be integrated by parts,∫ 1

0
dλ A(Rn + (r − Rn) λ) = λA(Rn + (r − Rn) λ)

∣∣∣∣
1

0

−
∫ 1

0
dλ λ

d

dλ
A(Rn + (r − Rn) λ)

= A(r) −
∫ 1

0
dλ λ [(r − Rn) · ∇]A(Rn + (r − Rn) λ), (A9)

and finally

∇Gn(r) = A(r) +
∫ 1

0
dλ λ(r − Rn) × B(Rn + (r − Rn) λ). (A10)

Since the basis is localized, we can consider r ≈ Rn and then the second term on the right-hand side of the above equation
approximately vanishes and we finally obtain ∇Gn(r) ≈ A(r), as we wanted to demonstrate.

APPENDIX B: PROPERTIES OF THE VECTOR POTENTIAL FOR ONE-DIMENSIONAL PERIODIC SYSTEMS

In this Appendix, we illustrate the properties of the vector potential of Eq. (15) with the gauge of Eq. (21). Starting from

χ (r) = 1

2
r · t r · (t × B) → ∇χ (r) = r · (t × B)

2
t + r · t

2
t × B, (B1)

it follows that

A(r) = 1

2
B × r + ∇χ (r) = 1

2
B × r + r · (t × B)

2
t + r · t

2
t × B = M(B, t) r, (B2)

where

M(B, t) ≡ 1

2

⎛
⎜⎝

−2txtzBy + 2txtyBz txtzBx − tytzBy + (
t2
y − t2

x − 1
)

Bz −txtyBx + (
1 + t2

x − t2
z

)
By + tytzBz

txtzBx − tytzBy + (
1 + t2

y − t2
x

)
Bz 2tytzBx − 2txtyBz

(
t2
z − t2

y − 1
)
Bx + txtyBy − txtzBz

−txtyBx + (
t2
x − t2

z − 1
)
By + tytzBz

(
1 + t2

z − t2
y

)
Bx + txtyBy − txtzBz −2tytzBx + 2txtzBy

⎞
⎟⎠.

(B3)
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FIG. 6. (a) Some A(r) field vectors and lines in the case B =
(0, 0, B) (blue line) and t = (1, 1, 1)/

√
3 (black line). The vector

potential lies on planes (as the yellow one) that are orthogonal to
h = B(−1,−1, 2)/3 (red line), and turns around the intersection zero
points along the direction identified by t, as indicated by a black
dot in the example of the figure. (b) A(r) field vectors in the case
of orthogonal B = (0, 0, B) and t = (1, 1, 0)/

√
2 (black line). The

vector potential is oriented along the direction identified by t and
therefore lies on planes orthogonal to B, as in the represented yellow
plane.

The eigenvalues of M are λ = 0, ±iB · t/2. The eigenvalue
λ = 0 corresponds to the invariance of A(r) along the direc-
tion identified by the unit vector t, which belongs to the kernel
of the matrix M, i.e., A(r = αt) = 0 with α ∈ R. The other
two complex eigenvalues correspond to closed field lines,

which lie on a plane orthogonal to the vector h = B − (B ·
t)/2 t. This can be verified by expressing a generic vector
h = αt + βB + γ t × B in terms of its components parallel
to t, B, and their orthogonal direction t × B. By imposing
h · A = 0, we obtain γ = 0 and α = −βB · t/2.

Figure 6(a) shows an example for B = (0, 0, B) along the
z direction (blue line) and periodicity along the direction
t = (1, 1, 1)/

√
3 (black line). The vector potential A vanishes

along the direction t, and it lies on planes that are orthogonal
to direction identified by the vector h = B(−1,−1, 2)/3 (red
line), such as the yellow plane in the figure. The field lines
(cyan lines) are closed and the field vectors (black arrows)
turn around the point (in black) at the intersection between
the plane and the direction identified by t.

If the magnetic field and the periodicity direction are or-
thogonal, i.e., B · t = 0, then, after some algebra, we obtain
A(r) = r · (t × B)t. Therefore, the vector potential is oriented
along t and has a length given by the projection of r along
t × B. In particular, if B = (0, 0, B) and t = (1, 0, 0), as men-
tioned in Sec. III and as in one of the cases considered for
the carbon nanotubes in Sec. IV A, we obtain the first Landau
gauge A = (−By, 0, 0). Note that when B · t = 0, the three
eigenvalues of M are identically 0. This confirms that the field
lines, which are parallel lines oriented as t, do not close on
themselves. Figure 6(b) shows an example for B = (0, 0, B)
along the z direction (blue line) and along the direction t =
(1, 1, 0)/

√
2 (black line).

APPENDIX C: FROM TWO-DIMENSIONAL TO
ONE-DIMENSIONAL SYSTEMS

In this Appendix, we show how the Peierls phase factors of
Eq. (22) for periodic 1D systems can be obtained from that
of Eq. (36) for periodic 2D systems. Starting from the 2D
system, we can pass to the 1D system by considering T1 = T,
m1 = m, n1 = n, and m2 = n2 = 0. We can also arbitrarily set
T2//B, so that T1, T2, and B are coplanar and we can make
use of Eq. (38) without conditions on the magnetic field value.
It follows that

ϕi,m; j,n ≡ ϕi,m,0; j,n,0 = π

�0
B · [di × d j + (di + d j )

× (n − m)T + χ j00 − χi00], (C1)

where we reintroduce the gauge {χi00}, which previously was
arbitrarily set to 0 in Eq. (35). We now demonstrate that
Eq. (C1) is equivalent to Eq. (22). To do this, we consider
a periodic 1D system or subsystem where the basis states are
identified by the positions Rim = di + mT. From Eq. (22), we
have

ϕi,m; j,n = π

�0
B ·

[
(di + mT) × (d j + nT) + (d j + nT) · T

|T| (d j + nT) × T
|T| − (di + mT) · T

|T| (di + mT) × T
|T|

]

= π

�0
B ·

[
di × d j + (di + d j ) × (n − m)T + d j · T

|T| d j × T
|T| − di · T

|T| di × T
|T|

]
. (C2)

Equations (C1) and (C2) are exactly the same provided we make the gauge choice χi00 = (di · T/|T|) di × T/|T|.
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