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Direct observation of phonon Anderson localization in Si/Ge aperiodic superlattices
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Phonon Anderson localization has been receiving increasing interest in creating unique thermal transport
properties. However, due to challenges to resolve and track the mode-specific transmission, the existence of
phonon Anderson localization has only been inferred from the decay of overall thermal conductivity versus
device length. In this work, we present direct evidence of phonon Anderson localization using the exponential
decay of their mode-resolved transmissions. We clearly capture localized modes in different structures, even with
a monotonically upward thermal conductivity trend.
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I. INTRODUCTION

Anderson localization [1], a captivating phenomenon that
was discovered more than half a century ago, never fails to fas-
cinate researchers. It is now known that Anderson localization
is a ubiquitous wave effect [2]. Besides being proposed in the
electronic system, this phenomenon has been demonstrated
in light [3,4], ultrasound [5,6], and ultracold atoms [7,8].
Thermal phonons, as quasiparticles, have both particle and
wave natures. While the particle pictures have been exten-
sively studied using the phonon Boltzmann transport equation,
the wave picture is much less investigated. Phonon Anderson
localization, originating from the wave interference, could
potentially offer a new basis to minimize the thermal con-
ductivity. For isotope-disordered nanotubes, the localization
effects were not observable by a direct thermal conductivity
measurement [9]. For aperiodic superlattices, the existence of
phonon Anderson localization were inferred from the overall
thermal conductivity behaviors. One criterion used to judge
the existence of Anderson localization is the decreasing trend
of the overall thermal conductivity as a function of device
length [10–12]. A recent study [13] used machine learning to
maximize Anderson localization for minimum thermal con-
ductivity. These studies suggested the existence of phonon
Anderson localization and inspired us to look deeper into the
direct, mode-level proof of phonon Anderson localization.

In this work, we use the hallmark of Anderson localiza-
tion to unambiguously demonstrate the existence of phonon
Anderson localization at the mode level. To achieve this,
we select materials with weak anharmonicity to minimize
the decoherence from phonon-phonon interactions, leverage
a recent development in the atomistic Green’s function (AGF)
method [14] to calculate the mode-specific transmission, and
design a specific way to track the history of phonon trans-
mission as we enlarge the device length. In Si/Ge aperiodic
superlattices (ap-SLs), we observe the exponential decay of
mode-resolved transmission vs SL length with an r-squared
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value larger than 0.99. From the exponential decay, we are
able to determine the mode-resolved localization lengths
and show their spread at the same frequency. Moreover, we
demonstrate that even when the thermal conductivity does
not decrease with device length, vast localized modes could
still exist. In other words, the macroscopic criterion based on
overall thermal conductivity is a sufficient but not necessary
condition for the existence of phonon Anderson localization.

Meanwhile, the mode-level analysis allows us to pin
down three categories of modes—localized, propagating, and
ballistic modes—and uncovers otherwise-buried information
about different mode behaviors. We introduce the color-
coded accumulative thermal conductivity curve to visualize
the contributions from these three types of modes to thermal
conductivity and their frequency distribution. We find that
there is not a clean frequency cutoff between localized and de-
localized modes and we could only define the onset frequency
of the localization-dominant regime, which is related to the
acoustic modes at the folded zone boundary. Our discovery of-
fers insights into phonon Anderson localization and provides
clear guidelines to identify the phonon localization. It can
help the design of materials for technological areas where low
thermal conductivity is required, including thermoelectrics,
thermal insulation materials, and thermal barrier coatings,
while guiding high-thermal-conductivity applications to avoid
the localization.

II. METHOD

We apply AGF to calculate mode-resolved transmission.
The traditional AGF [15–19] can only give frequency-
dependent transmission. Because there can be multiple modes
at a given frequency with distinct behaviors (as shown later),
the frequency-dependent transmission cannot be used to iden-
tify mode localization. Thanks to the recent developments
[14,20], we can now resolve the transmission at the mode
level. We use Si/Ge periodic SL (p-SL) [Fig. 1(a)] as a bench-
mark for ap-SLs [Fig. 1(b)]. Unlike the previous studies, we
particularly employ periodic Si/Ge SL as the leads, so that
phonon modes entering the central region are all allowable
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FIG. 1. Schematic of AGF setup. Left (L) and right (R) leads are
comprised of Si/Ge p-SL and the central (C) region is the device of
our interest. (a) p-SL and (b) ap-SL systems in the central region
with one superperiod length. Blue and red refer to Si and Ge atoms,
respectively.

modes in the p-SLs and the evanescent waves are minimized
compared with using Si or Ge as the leads. The force constants
for AGF inputs are obtained from first-principles calculations.
The period length of p-SL is 2a, where a is the lattice con-
stant. Note that we intentionally select a small period length
to have large enough disorder for ap-SL and the small dis-
tance between interfaces (smaller than the phonon coherence
length) is critical to sustaining coherent interference. The
details of the mode-specific AGF method could be found in
Appendix A.

We introduce the concept of the superperiod to track the
transmission of a given mode. For p-SL, eight periods are used
to construct a superperiod of 16a. For ap-SL, the length of
each superperiod is 16a and the number of interfaces is kept at
15 within every superperiod, and within every superperiod the
interfaces are randomly placed. We keep the same interface
density for p-SL and ap-SL to have a fair comparison between
them. To enlarge the central region, we attach new superpe-
riods to the existing central region. We use the superperiod
instead of completely randomly placed interfaces in the whole
central region to make sure that we track modes with the same
historical path as the length enlarges. We study two types
of ap-SLs: mild and wild. If we set the constraint of only
allowing the random displacement of interfaces within one
atomic layer away from the corresponding p-SL interfaces,
it is regarded as mild ap-SL; if the positions of interfaces
are completely random within each superperiod, it is called
wild ap-SL. The randomness of mild ap-SL and wild ap-SL
structures are totally different (see the Supplemental Mate-
rial [21]). We use 1a×1a in the transverse direction with
10×10 transverse k points after the convergence check (see
the Supplemental Material [21]). As we use perfect interfaces,
larger lateral size is not needed because the denser transverse
k points can be translated to a larger cross section in the real
space [14].

To classify the mode-level information, we define the fol-
lowing criteria to distinguish different types of modes via their
transmission behaviors. If the transmission values of a mode at
all the lengths are larger than 0.95, it is identified as a ballistic

mode. To find the localized modes, we use an exponential
function to fit the transmission value versus the length of the
central region. We set the threshold of the r-squared value at
0.99 for the fitting to be on the very conservative side and
the majority of exponential decay modes have the r-squared
value of 0.99 or larger (see the Supplemental Material [21]).
Considering that not every mode starts the exponential de-
cay from the first superperiod (see Appendix B), we search
the decay start position from the first (L = 8.75 nm) to the
tenth superperiod (L = 87.5 nm). We use at least three data
points to make the fitting robust. The remaining modes, whose
transmission values cannot be fitted by an exponential curve,
are regarded as propagating modes. Both propagating and
ballistic modes are heat conducting modes.

III. RESULTS

We first test mode decomposition on Si/Ge p-SL. The
mode transmission in p-SL keeps at 1 with increasing length
(Fig. S3 of the Supplemental Material [21]), which clearly
shows ballistic transport in the p-SL case because the interfer-
ence from coherent phonons forms a new dispersion for p-SL
as if it is a homogenous material with the unit cell of a period
[22]. Then we turn to the ap-SL case. At the extremely low-
frequency region (<0.7 THz), we could observe the existence
of ballistic modes [Figs. 2(a) and 2(d)], just as those in the
p-SL case, but with slight fluctuations. These long-wavelength
phonons do not sense much of the disorder. For propagat-
ing modes, the transmission of propagating modes shows
irregular, oscillating features [Figs. 2(b) and 2(e)]. Their trans-
mission differs from the p-SL because the elastic scattering at
the random interfaces disturb the ballistic transport. But we do
not think these modes undergo the Fabry-Perot oscillation (see
the Supplemental Material [21]). Most strikingly, we observed
the hallmark of Anderson localization—the exponential decay
of transmission with respect to the central region length—in
both mild and wild ap-SLs [Figs. 2(c) and 2(f)]. This is direct
evidence of phonon Anderson localization.

For the overall thermal conductivity, we confirm that the
thermal conductivity of p-SL increases linearly with increas-
ing length [Fig. 3(a)] due to the ballistic phonon transport.
We plot the semilog version to better show the behavior of
ap-SL and the linear plot can be found in the Supplemental
Material [21]. In both ap-SL systems, a tremendous reduction
of thermal conductivity is observed at every length compared
to the p-SL. If we apply the previous criterion [10–12]—a
reduction of thermal conductivity as a function of SL length
after a critical size—only the wild ap-SL satisfies it. The
mild ap-SL exhibits a generally increasing trend in its thermal
conductivity, but it indeed has many localized modes. In other
words, the macroscopic criterion is not a necessary condition
to find phonon localization. Note that although we restricted
the layer positions for the randomness to take place in mild
ap-SL, there is a high interface density (15 interfaces in 16a)
as mentioned earlier. Thus, the disorder can be strong enough
to generate Anderson localization in the mild case. In addi-
tion, three configurations of both mild and wild ap-SLs show
a similar trend regardless of the exact placement of Si/Ge
interfaces. This phenomenon shows that phonon Anderson
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FIG. 2. The typical transmission pattern of (a) ballistic mode, (b) propagating mode, and (c) localized mode in mild ap-SL and (d) ballistic
mode, (e) propagating mode, and (f) localized mode in wild ap-SL in the normal incident case.

localization is ubiquitous when the central region is suffi-
ciently long and strongly disordered.

To gain a better insight, we separate the total thermal
conductivity into three parts: contributions from ballistic,

propagating, and localized modes. In both mild and wild ap-
SL cases, the thermal conductivity of localized modes has a
similar decreasing trend with comparable values but the trends
of conducting modes (ballistic and propagating modes) are

FIG. 3. (a) Thermal conductivities of Si/Ge p-SL and ap-SLs at 300 K. The red and blue dashed lines are the thermal conductivity of mild
and wild ap-SLs averaged over three configurations, respectively. Panels (b) and (c) are the comparison of thermal conductivity contribution
from all the modes, ballistic modes, propagating modes, and localized modes in mild ap-SL and wild ap-SL at 300 K, respectively. (d)
Accumulative thermal conductivities vs frequency for p-SL and ap-SLs at 12th superperiod at 300 K. Phonon dispersion of p-SL along Gamma
(G) to X with different types of modes at the normal incidence projected on it for (e) mild ap-SL and (f) wild ap-SL. Green and gray dash lines
are the onset of the localization-dominant region of mild and wild ap-SL, respectively.
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rather different [Figs. 3(b) and 3(c)]. In the mild ap-SL case,
conducting modes have larger values and steeper increase
than those in the wild ap-SL, which eventually overshadow
the localized modes and make the overall trend of the total
thermal conductivity upward. The mode-level contribution
of different mode types to thermal conductivity is included
in the Supplemental Material [21]. Notably, although the
overall contribution of localized modes is masked from the
total thermal conductivity trend in mild ap-SL, the mode-
resolved transmission in this study allows us to capture those
otherwise-buried localized modes.

To observe the mode distribution across the frequency
range, we introduce color-coded thermal conductivity accu-
mulation curves, as shown in Fig. 3(d). We use different colors
to represent the averaged mode type at a given frequency
among 100 k points. We digitize the ballistic modes with a
given value of 0.01, propagating modes with a value of 0.5
and localized modes with a value of 0.99. Red suggests mostly
localized modes at that frequency, blue suggests that ballistic
modes dominate, and green marks propagating modes. While
p-SL has a clean blue curve with all ballistic modes, ap-SLs
show a gradual color change from cold to warm as the fre-
quency increases. Due to different numbers of ballistic modes,
we could barely see blue color in wild ap-SL but mild ap-SL
has noticeable blue color in the lowest frequency range. We
observe flat regions in the accumulative thermal conductiv-
ities in Fig. 3(d), indicating localized modes are dominant.
The onsets of the localization-dominant regime are 2.5 and
1.5 THz for mild ap-SLs and wild ap-SLs, respectively.

To understand these different behaviors, we map the dif-
ferent modes onto the phonon dispersion of p-SL. Note that
we use the dispersion of the bulk leads (periodic Si/Ge SL)
rather than the central region to track the incident modes
from the left lead. Due to the lack of periodicity, the phonon
dispersion of ap-SLs cannot be defined. We discovered that
in both ap-SLs, the vast majority of conducting modes con-
centrate on the acoustic branches and those onset frequencies
for localization-dominant regimes approximately correspond
to the frequency of LA branch and TA branch at the folded
Brillouin zone boundaries, respectively [Figs. 3(e) and 3(f)].
It is interesting that only the lowest acoustic branches mat-
ter and even the higher-frequency-folded acoustic branches
show very distinct mode characteristics. This is similar to
a previous finding that the cutoff frequency of the totally
coherent region of rough SLs is the lowest acoustic branch
in the folded Brillouin zone [19]. The possible reasons are
that phonons are easier to be localized near the band gap
[11] and the lower frequency modes are less likely to be in-
fluenced by elastic interface scattering [10]. Comparing mild
vs wild ap-SLs, the stronger disorder in wild ap-SL pushes
the localization-dominant region to start at a lower frequency.
While the previous works [23–25] showed the co-existence of
different types of modes in a given system, a frequency cutoff
was often defined between localized and delocalized modes.
In other words, only one type of modes exists in a given
frequency range in the traditional picture. However, Figs. 3(e)
and 3(f) demonstrate that different types of modes co-exist
either below or above the onset frequency. The mode-level

FIG. 4. Localization length of different modes (gray) and their frequency average (orange) in (a) mild and (b) wild ap-SL and the mode-
level distribution of localization length in normal incident case of (c) mild and (d) wild ap-SL.
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analysis reveals that there is not a clean cutoff frequency
for different types of modes, although they tend to cluster in
certain frequency ranges.

Localization length is the characteristic length that the
transmission shrinks to 1/e of the initial transmission value.
Note that previous studies used the fitting curve of the average
frequency-dependent transmission of ap-SL to estimate the
localization length [10,12]. Here the localization length is
extracted directly from the exponential decay of the mode-
specific transmission. We unveil that at a given frequency,
the localization length has a spread among different modes
[Figs. 4(a) and 4(b)]. Only the localized modes in the low-
frequency range have longer localization lengths and the
majority of the modes have localization lengths between 1 and
10 nm. The averaged localized lengths at a given frequency
decrease quickly with increasing frequency and then flatten
out. The trend is similar to the average localization length
observed before [12] and these values are generally below
the mean free path of Si or Ge at 300 K [26]. It further
supports that anharmonic effects in Si/Ge SLs are negligible
for Anderson localization at 300 K and below. It may seem
counterintuitive that the largest average localization length of
16 nm exists in wild ap-SL instead of the mild one. But if
we take a closer look at the normal incidence [Figs. 4(c) and
4(d)], wild ap-SL has its largest localization lengths in the
low-frequency region (<0.7 THz), where mild ap-SL does not
even have localized modes.

IV. CONCLUSION

We provide the direct observation of phonon Anderson
localization at the mode level using the exponential decay of
mode-resolved transmission. The Anderson localized modes
could even be found when there is not a collective reduction
of the overall thermal conductivity with respect to the device
length. This finding reiterates the power of the mode-level
analysis that enables us to uncover the hallmark of Ander-
son localization, with proper selection of the material system
and careful design of transmission tracking. Meanwhile, the
mode-level localization lengths are directly extracted from
the exponential decay functions, which suggests that there
is a span at a given frequency and in Si/Ge ap-SLs most of
the localized modes have a localization length between 1 and
10 nm. There is no clean cutoff frequency for different types
of modes and the onset frequency of localization-dominant
region corresponds to acoustic modes at the folded zone
boundary. Our proof of phonon Anderson localization as
well as the knowledge enabled by the detailed mode analysis
are helpful to advance our understanding of thermal trans-
port in highly disordered materials and to enable controlling
heat flow by leveraging or minimizing Anderson phonon
localization for diverse thermal applications, ranging from
thermoelectrics and thermal barrier coatings to thermal man-
agement.
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APPENDIX A: SIMULATION METHOD

Atomistic Green’s function (AGF) is powerful to in-
vestigate interfacial thermal transport [15–17]. It has been
extensively used on single Si/Ge interfaces to investigate
phonon transport with the effect of strain [16], roughness [18],
and lattice mismatch [27], but the application of that on Si/Ge
superlattice is rare [19,22]. The (retarded) Green’s function of
the central region is

G(ω) = [ω2I − HC − �L(ω) − �R(ω)]−1. (A1)

Here, HC is the dynamic matrix of the central region,
which equals the harmonic force constants divided by mass,
�i (i = L, R) is the self-energy of both leads, which reflects
the coupling between leads and central region, and I is the
identity matrix that has the same size as Hc. We use QUANTUM

ESPRESSO [28,29] along with PHONOPY [30] to calculate the
force constants for the cubic unit cell of Si. The lattice con-
stant for Si is a = 0.547 nm. For Ge atoms, we use the same
lattice constant and force constants as Si but the mass of Ge.
The frequency-dependent phonon transmission is given as

�(ω) = Tr[�L(ω)G(ω)�R(ω)G†(ω)], (A2)

where �i = i(�i − �
†
i ) is the level-width function which in-

dicates the leakage of phonons from leads and † means the
conjugated transpose. Using the Landauer formula, the ther-
mal conductivity per unit area would be

κ = L

S
× 1

2π

∫ ∞

0
h̄ω

∂ f (ω, T )

∂T
�(ω)dω. (A3)

Here, L and S are the length and cross-section area of the
central region, respectively. f is the Bose-Einstein distribu-
tion.

To resolve the transmission at the mode level, we follow
Ref. [14] and use the Bloch matrices, which could be pre-
sented as

F adv
L (−)−1 = [

H10
L gret

L

]†
, (A4a)

F ret
R (+) = gret

R H10
R , (A4b)

where gret
L,R is the retarded surface Green’s function of left/right

lead, H10
L,R is the dynamical matrix between two adjacent Si/Ge

periods in the left or the right lead, and η is the infinitesimal
value to represent phonon leakage from leads. The + and −
signs denote the infinite extension to the right and left direc-
tions, respectively.

To gain the mode-specific information of the leads, we
need mode decomposition:

F adv
L (±)U adv

L (±) = U adv
L (±)
adv

L (±), (A5a)

F ret
R (±)U ret

R (±) = U ret
R (±)
ret

R (±). (A5b)

Here, U adv
L and U ret

R are the normalized eigenstates in the
left and right leads, respectively.
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FIG. 5. The statistics of the localized modes and their decay start point in terms of superperiods in (a) mild ap-SL and (b) wild ap-SL and
the mode-level information for normal incidence case in (c) mild ap-SL and (d) wild ap-SL.

Another necessary component is the velocity matrix of the
leads,

VL(−) = aL

2ω
U adv

L (−)†�LU adv
L (−), (A6a)

VR(+) = aR

2ω
U ret

R (+)†�RU ret
R (+), (A6b)

where aL,R is the superperiod length of the left/right lead.
The transmission between individual phonon modes in the

left lead and in the right lead is

t = 2iω√
(aLaR)

[VR(+)]1/2U ret
R (+)Gret

RL

[
U adv

L (−)†
]
[VL(−)]1/2.

(A7)
All the mode-level transmission in this work is based on

Eq. (A7).
We choose Si/Ge for the following reasons. Because the

phonon-phonon scattering can lead to phase decoherence and
destroy the Anderson localization, systems with weak anhar-
monicity is desired to probe the existence of localization. We
meanwhile want to stay with the popular superlattice systems
that have been mostly studied. Therefore, we compare Si/Ge
and GaAs/AlAs SLs. The average Grüneisen parameters of Si,
Ge, AlAs, and GaAs, at 300 K are 0.48, 0.75, 0.8, and 1.1, re-
spectively [31,32]. The thermal conductivity of Si/Ge ap-SLs
showed the Anderson localization behaviors at room temper-
ature with anharmonicity included in MD simulations [12],
which means the anharmonic effect is too weak to destroy
the coherence at 300 K. GaAs/AlAs SLs doped with ErAs,
on the other hand, showed thermal conductivity maximum

only below 100 K [10], which means that at room tempera-
ture the anharmonic effect leads to delocalization. Therefore,
Si/Ge should have weaker anharmonicity than GaAs/AlAs.
We should also note that the AGF is applied under the har-
monic regime in this work. Despite our recent development on
anharmonic AGF for 3D structures [33], it is still formidable
to apply it to SLs with very long central regions and the mode
decomposition has not been developed under the anharmonic
AGF framework. But if we select a system with weak anhar-
monic effect that does not overshadow the phonon Anderson
localization up to the room temperature, the harmonic calcu-
lation could in fact serve as a clean platform to observe the
localization while largely representing the actual system.

APPENDIX B: DELOCALIZATION-LOCALIZATION
TRANSITION

As mentioned in main text, not all the exponential de-
cays start from the first superperiod and some modes might
take longer to cultivate the localization behaviors. Therefore,
we track the positions where the exponential decay starts as
shown in Fig. 5. Most of the localized modes start their decay
from the first superperiod but a few modes experience the
delocalization-to-localization transition. At the mode level,
low-frequency modes are more likely to start the decaying at
a further place in general but at the same frequency, different
modes start their decay at different places (Fig. 5). This reiter-
ates the importance of resolving mode-level information that
can be masked by frequency-dependent quantities.
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