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Band structure and topological phases of Pb1−x−ySnxMnyTe by ab initio calculations
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A change in the composition of the Pb1−xSnxTe IV–VI semiconductor or in its lattice parameter can drive a
transition from a topologically trivial to a topological crystalline insulator (TCI), crossing a region where the
alloy is in the Weyl semimetal phase. Incorporation of the magnetic Mn ions induces strong perturbations of the
electronic structure, which act on both orbital and spin variables. Our first principles calculations show that the
presence of Mn shifts the TCI and the Weyl region towards higher Sn contents in Pb1−xSnxTe. When the Mn spin
polarization is finite, the spin perturbation, like the orbital part, induces changes in band energies comparable
to the bandgap, which widens the Weyl region. The effect opens the possibility of driving transitions between
various topological phases of the system by a magnetic field or by spontaneous Mn magnetization. We also
propose a new method to calculate topological indices for systems with a finite spin polarization defined based
on the concept of the Chern number. These valid topological characteristics enable the identification of the three
distinct topological phases of the Pb1−x−ySnxMnyTe alloy.
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I. INTRODUCTION

Pb1−xSnxTe and its selenide analog, Pb1−xSnxSe, are
IV–VI narrow-gap semiconductors known to undergo
chemical-composition-, pressure-, or temperature-driven band
inversion accompanied by a transition from the trivial in-
sulator to the topological crystalline insulator (TCI) phase
[1–4]. In contrast to (Bi, Sb)2(Te, Se)3 chalcogenide topo-
logical insulators, in TCIs it is the crystalline (mirror-plane)
symmetry, not the time-reversal symmetry, that warrants the
existence of Dirac-like states on specific high-symmetry crys-
tal facets of bulk rock-salt crystals. [1,5,6] Experimentally, the
TCI surface states were observed by angle- and spin-resolved
photoemission electron spectroscopy [2–4,7], scanning tun-
neling microscopy/spectroscopy [8], and magnetotransport
and magneto-optical quantum oscillatory effects [9–11]. The
band inversion and topological transition in Pb1−xSnxTe were
recently analyzed theoretically by ourselves [12] and oth-
ers [6,13,16,17] using the density functional theory, the
tight-binding approximation (TBA), the virtual crystal ap-
proximation (VCA), and the method of special quasirandom
structures (SQSs) developed [18] for the analysis of substitu-
tional alloys. Confirming the successful basic picture obtained
in early VCA calculations [6], the other methods accounted
for local chemical disorder, inevitably present in alloys. It was
discovered that due to the splitting of the bands induced by
locally varying crystal-field symmetry there exists a transition
region between the trivial and the TCI phase characterized
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by a zero-energy gap [12] with a possible Weyl semimetal
(WSM) type of energy band arrangement [13].

Other examples of topological transitions, although of a
different kind than those considered here, between a TCI and a
topological Z2 insulator are proposed in papers by Deng et al.
[14] and Safaei et al. [15].

In the quest for efficient ways of controlling topological
insulators and semimetals their alloying with other semi-
conductor materials proved very promising [5]. Particularly
interesting is the alloying of TCIs with magnetic semiconduc-
tors, like MnTe and MnSe, thus combing the topological and
magnetic properties of materials. Recent developments in the
field of topological materials showed rapid progress in ferro-
magnetic (FM) and antiferromagnetic (AFM) heterostructures
expected to exhibit the quantum anomalous Hall effect and
topological magnetoelectric effect [5,19,20]. There exist sev-
eral proposals for controlling topology in TCIs with nonzero
magnetization as well as for topological transition from the
TCI to the WSM state [21–24].

Pb1−xSnxTe with Mn is known as a IV–VI diluted magnetic
(semimagnetic) semiconductor exhibiting carrier-induced fer-
romagnetism driven by the Rudermann-Kittel-Kasuya-Yosida
indirect exchange interaction via holes [25,26]. As the sol-
ubility limit of Mn in bulk crystals of Pb1−x−ySnxMnyTe is
about 12 at%, the ferromagnetic transition temperature ob-
served in the bulk crystals is below 30 K [26–28]. For thin
epitaxial layers of the topologically nontrivial terminal alloy,
Sn1−xMnxTe, the solubility appears lower due to the lower
temperatures required for epitaxial growth, and the ferromag-
netic Curie temperature is below 10 K [24,29]. Importantly,
Mn in Pb1−xSnxTe substitutes Sn2+ or Pb2+ ions as the
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isoelectronic Mn2+ ion with the configuration 3d5 and mag-
netic moment of 5-Bohr magnetons, as verified by electron
paramagnetic resonance studies of both very diluted paramag-
netic crystals [30] and more concentrated ferromagnetic ones
[31]. The results in Refs. [32–38], as well as the results in
Sec. 3 of the Supplemental Material (SM) [39], demonstrate
that Mn is not a dopant in Pb1−xSnxTe. The incorporation of
Mn ions into a Pb1−xSnxTe crystalline matrix can be viewed
as an isoelectronic substitution of Mn2+ ions for Sn2+ or Pb2+

ions with no free carriers generated.
The influence of Mn ions on the band structure of the qua-

ternary system Pb1−x−ySnxMnyTe and corresponding terminal
ternary alloys Pb1−xMnxTe and Sn1−xMnxTe was studied to
explain their very good thermoelectric parameters as well
as their FM properties. It was found, both theoretically and
experimentally, that the key role is played by the band of
heavy holes (� band) and the position of its top with re-
spect to the top of the highest valence band located at the L
point in the Brillouin zone (BZ) [32–38]. A good agreement
was achieved between theoretical predictions and optical and
thermoelectric data for the topologically trivial Pb1−xMnxTe
alloy: with increasing Mn content the main gap at the L point
increases while the energy separation between the L and the
� bands decreases [32–34]. Theoretical studies of the band
structure of the TCI Sn1−xMnxTe agreed on the decreasing
energy separation of the L and � bands but provided con-
flicting predictions for the main gap at the L point, finding
either its increase [35–37] or its decrease [38] with increasing
Mn content. The band structure of Pb1−x−ySnxMnyTe in the
band inversion region was not studied theoretically with ab
initio methods. In the early model analysis of the temperature,
composition, and carrier concentration dependence of the
thermoelectric power of Pb1−x−ySnxMnyTe it was assumed
that the main gap at the L point increases with increasing
Mn content [40], as typically observed in known II–VI and
IV–VI diluted magnetic (semimagnetic) semiconductor mate-
rials.

In the present work, we employ first principles calculations
to study the influence of Mn ions on the electronic structure
of Pb1−x−ySnxMnyTe. Incorporation of magnetic Mn ions into
such crystals, apart from the changes in chemical composition
and local crystal symmetry, leads in general to breaking of
the time-reversal symmetry. A finite spin polarization of the
Mn sublattice induces large spin splittings of the band states,
which can be comparable to the bandgap energy.

By analyzing the band structure, topological indices, and
charges, as well as the Weyl’s nodes we demonstrate how
changes in the chemical composition or in the lattice parame-
ter (by pressure or strain) induce a transition from the trivial to
the TCI phase of Pb1−x−ySnxMnyTe. Typically, the transition
passes through an intermediate region characterized by a zero-
energy gap, corresponding to the WSM phase. Importantly,
we predict that the transition from the trivial to the Weyl
phase can be driven by the magnetic field or by spontaneous
magnetization.

The response of a band extremum to the perturbation in-
duced by Mn depends on its symmetry, and it is different for
the states derived from the L+

6 - and the L−
6 -band extrema of

PbTe and SnTe. This holds for both the spin and the orbital
perturbation. We trace this effect to the symmetry-dependent

hybridization between the p(Te) and the s(Mn) and d(Mn)
orbitals.

The presence of the Mn ions leads to an increase in the
bandgap in the trivial region but to a decrease in the absolute
value of the inverted gap in the TCI phase. This result is in
agreement with experimental observations available for the
trivial phase, e.g., in Pb1−xMnxTe [41]. The calculated impact
of Mn on the inverted gap in the TCI phase is particularly
relevant. Indeed, in this case analysis of experimental data
(see, e.g., Ref. [40]) is obscured by contradictory theoretical
predictions [35–37], and the conclusions depend on the spe-
cific band structure models adopted in the interpretation.

II. TECHNICAL DETAILS OF CALCULATIONS

A. Modeling of disordered Pb1−x−ySnxMnyTe crystals

Infinite Pb1−x−ySnxMnyTe random mixed crystals are mod-
eled by 2 × 2 × 2 supercells containing 64 atoms: 32 Te
anions and 32 Pb, Sn, or Mn cations. In the following, instead
of Pb1−x−ySnxMnyTe with the specified x and y we often use
the notation PbkSnlMnmTe32, where k, l , and m (k + l + m =
32) are the numbers of Pb, Sn, and Mn atoms in the 64-atom
supercell, respectively. The most important problem is the
choice of the spatial distribution of cations in the supercell,
because, as we showed in Ref. [12] for Pb1−xSnxTe, the band
structure and, in particular, the energy gap Egap strongly de-
pend on the cation configuration.

To solve this problem, we applied the SQS approach [18].
The aim of this approach is to find positions of different
cations in the supercell such that their distribution resembles a
random distribution of cations in the infinite alloy as much as
possible for several coordination spheres. However, for three
cations in the supercell, Pb, Sn, and Mn, the number of their
possible configurations is much larger than in the case of Pb
and Sn only, thus the probability of finding the best possible
SQSs is much lower. In spite of this, as shown in the fol-
lowing, although the calculated dependencies of energy gaps
on the Sn concentrations are not perfectly smooth, general
trends can be easily resolved. This issue is discussed in some
detail in the Supplemental Material, Sec. 2 [39], where we
show the results obtained for different relative positions of
Mn atoms (Fig. SM2 [39]) and for random distributions of
cations in the supercell (Fig. SM3 [39]). Although the results
differ somewhat from those using the SQS approach, neither
the qualitative picture nor the conclusions change.

For a given distribution of cations, the starting point of
our analysis is the density functional theory calculations per-
formed with the open-source OpenMX package [42]. The
calculations were done using the local density approximations
with the Ceperly-Alder [43] exchange-correlation functional.
For Sn and Mn we used pseudopotentials distributed with
OpenMX (version 2013), and for Pb and Te we used pseu-
dopotentials with four and six valence electrons, respectively,
generated previously using the program ADPACK distributed
with OpenMX. All the input parameters for calculations of
pseudopotentials for Pb and Te are described in Ref. [32].

To improve the accuracy of calculations based on ap-
proximate density functionals, the +U corrections are often
included [44]. We performed test calculations with U (Mn) =
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1.5 eV. This value was assessed for Mn in ZnO [45]. The
results are presented in Sec. 3 of the Supplemental Material
[39]. They demonstrate that the changes of all properties stud-
ied here are practically not affected by using U (Mn) = 1.5 eV
instead of the U = 0 assumed in our calculations. One can
also observe that the d(Mn) states form a peak in the density
of states about 4 eV below the VBM, somewhat sharper for
U (Mn) = 1.5 eV than for U (Mn) = 0. Nevertheless, the peak
energy is in excellent agreement with the resonant photoe-
mission measurements for Sn1−xMnxTe [46] but a detailed
comparison with experiment is beyond the scope of this work.

In the calculations we assume the experimental depen-
dence of the lattice parameter on the chemical composition
[47]:

a = 6.460 − 0.145x − 0.558y Å. (1)

The experimental equilibrium Mn-Te bond length, dMn-Te ≈
2.96 Å, is much smaller than dPb-Te ≈ 3.23 Å and dSn-Te ≈
3.16 Å [48]. Consequently, the ions in the alloy do not occupy
perfect NaCl lattice sites, and the internal distortions are of
importance when considering the alloy bandgap. We show
below that the hybridization between 3d(Mn), 4s(Mn), and
5p(Te) orbitals has an important influence on the energy gap.
This effect depends on the distance between Mn and Te,
making the geometry optimization necessary.

The energy gaps presented in the figures are the minimal
direct energy gaps in the [111] direction in the three-
dimensional BZ. However, one should keep in mind that,
contrary to PbTe or SnTe, due to the lack of Oh local symmetry
in most of the considered systems the smallest energy gaps are
not, in general, placed in this direction (see the next section for
an example).

The calculations are mostly done for systems containing
even numbers of Mn ions in the supercell. With this choice
one can study the impact of Mn doping on Pb1−xSnxTe in
the paramagnetic case, by assuming AFM spin configura-
tions with the vanishing total spin, and separate the effects
of spin polarization, modeled by assuming FM spin configu-
rations. In the latter case, the valence and conduction bands
are spin-split, which in turn significantly affects the energy
gaps, particularly when they are very small. Both situations
are accessible experimentally, since the Curie temperature in
the p-doped tin tellurides is of the order of 10 K.

B. Calculations of topological indices

The OpenMX package enables us to obtain TBA param-
eters for the TBA Hamiltonian. Using these parameters we
calculate the necessary topological indices: the Chern num-
bers, the spin Chern numbers, and the numbers Cs+ and Cs−
[49]. The method of calculation of Cs+ and Cs− is described in
Ref. [12]. In short, the idea is to divide the valence band states
for every k in the BZ into two sets, P+(k) and P−(k). In P+(k)
[P−(k)] there are states with positive [negative] average spin.
Taking the sums over k we obtain two vector bundles, P+ =
⊕kP+(k) and P− = ⊕kP−(k). Calculating the Chern numbers
for these bundles we obtain Cs+ and Cs−. The spin Chern
number SCN = (Cs+ − Cs−)/2. The method of calculation of
Cs± is based on the approach proposed by Fukui et al. [50].

The microscopic Hamiltonian, i.e., the Pauli-Schrödinger
Hamiltonian for electrons in Pb1−x−ySnxMnyTe, is time re-
versal invariant. However, after the density functional theory
calculations the time-reversal invariance is broken. The result-
ing spins of ions are finite and consequently the resulting TBA
Hamiltonians have no time-reversal symmetry. This feature
was directly checked in a number of cases. Therefore, the
general theorem that the Chern number calculated for a given
two-dimensional plane in the three-dimensional BZ should be
0 is not valid.

The BZ of our supercells is a cube. In the calculations of
topological indices we use the (001) plane crossing the k =
(0, 0, 0) � point. This point corresponds to the L points of the
unfolded BZ, and the main energy gap is situated at � or in its
close vicinity.

The procedure for calculation of spin Chern numbers de-
scribed previously [12] can be applied directly to the systems
without magnetic ions or those containing an even number of
magnetic ions in the supercell, arranged in such a way that
their total magnetic moment vanishes. Then the dimensions
n±(k) of P±(k) are equal, n+(k) = n−(k). In the case where
the total spin of the system is nonzero the procedure must be
modified. In general, n+(k) ≡ n+ and n+(k) ≡ n− are inde-
pendent of k, and they are related by n+(k) = n−(k) + NS ,
where NS = 5(NMn↑ − NMn↓); exceptions are discussed be-
low. Here NMn↑ and NMn↓ are the numbers of Mn atoms in the
supercell with spin-up and -down, respectively, and the factor
5 is related to the number of unpaired spins on the 3d(Mn)
shell. Thus,

n− = (nval − NS )/2, n+ = (nval + NS )/2, (2)

where nval is the number of occupied states. This is related to
the exchange polarization of the bands due to nonvanishing
net magnetization caused by Mn ions. Next, we divide the
valence states into two subspaces and calculate the Chern
numbers Cs+ and Cs−.

This procedure was applied successfully in a vast major-
ity of cases, however, for completeness, one should mention
possible problems. Sometimes, the calculated Cs+ and Cs− are
noninteger. For example, for Pb31−nSnnMn1Te32 meaningful
results (integer Cs±) are obtained only for trivial and nontriv-
ial regions, n � 9 and n � 17, respectively. In the transition
region 10 � n � 16, where the values of the energy gaps are
nearly 0, the procedure fails. This is related to the fact that
in such cases there are a few points in the two-dimensional
plane of the BZ where the numbers of states with positive
and negative average spins are not equal to n+ and n− as in
Eq. (2) but equal to n+ + 1 and n− − 1, respectively. Thus
it is impossible to build two vector bundles P+ and P− of
dimensions n+ and n−, respectively, and to calculate the cor-
responding Cs+ and Cs−. The reason for these problems is
the practically vanishing Egap. A detailed analysis shows that
in the transition region the system is in the Weyl semimetal
phase, and sometimes the Weyl’s nodes are on the plane in k
space used to calculate Cs+ and Cs−. Of course, for systems
with Egap = 0 the calculations of Chern numbers do not make
sense. The example of Pb15Sn16Mn1Te32 is discussed in the
next section.
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FIG. 1. Schematic of the composition dependence of the relevant
physical parameters of the Pb1−xSnxTe alloy. n is the number of
Sn atoms in the Pb32−nSnnTe32 supercell. (a) Energy gap calculated
within the supercell method (solid line) and with the VCA (dashed
line). (b) Splittings of the energy levels at the � point for the supercell
BZ. The energies of L−

6 - and L+
6 -derived states are between the solid

red and the dashed blue lines, respectively. (c) Spin Chern number
for the trivial and the TCI phase separated by the Weyl semimetal
phase.

C. Calculations for the Weyl semimetal region

Analysis of the Weyl semimetal phase is not an easy nu-
merical task because the zero-energy gap points are grouped
in the close vicinity of the � point in the supercell BZ. In the
studied cases, all the Weyl nodes are contained in a cube of
dimension 0.02 Å−1. In a few cases we identified the points in
the BZ where Egap = 0. However, in most cases we applied a
much faster, although less accurate method. Namely, a cube
with the edge of 0.02 Å−1 was divided into 1000 smaller
cubes with edges of 0.002 Å−1. Next, for all small cubes we
calculated the Berry flux through their faces. Of course, in
this procedure we miss the cases where a pair of Weyl nodes
of opposite charges is present inside a small cube.

III. RESULTS AND DISCUSSION

We begin with a brief summary of the main features char-
acterizing the electronic structure of Pb1−xSnxTe [12] without
Mn ions. Energy bands of PbTe and SnTe are presented in
Fig. SM1 [39]. Figure 1 schematically shows the composition
dependence of the bandgap, together with the relevant ener-
gies of the valence and conduction bands at the � point of the
supercell BZ and the topological indices.

With increasing Sn content, Egap changes character from
positive in PbTe to negative in SnTe [Fig. 1(a)], driving the
system from topologically trivial to a TCI, which is also re-
flected in the nonvanishing spin Chern numbers in the Sn-rich
Pb1−xSnxTe. Qualitatively different characters of the transi-

tion are obtained in the VCA and in the supercell method used
in this paper.

In the VCA, the chemical disorder of an alloy is absent, and
the system retains both the Oh point symmetry and the trans-
lational symmetry of the rock salt structure. As a result, the
transition between topologically trivial and nontrivial phases
is sharp and takes place at a well-defined critical composi-
tion. In the supercell method, the alloy is simulated by the
repeated supercells. The L points of the PbTe (or SnTe) BZ
are folded to the � point of our 64-atom supercell BZ. After
the folding, both the L+

6 - and the L−
6 -derived bands of pure

PbTe are eightfold degenerate. These degeneracies are lifted
in the presence of two types of cations because of the different
chemical nature of Pb and Sn and because of the disorder
in their spatial distribution. This splitting is schematically
shown in Fig. 1(b). The magnitude of splittings and possible
final degeneracies (e.g., double degeneracies in systems with
inversion symmetry discussed below) depend on the actual
distribution of Pb and Sn in the supercell. Consequently, in
the supercell approach the trivial-TCI transition is smeared,
there is a relatively wide composition window in which the
bandgap between occupied and unoccupied states vanishes,
and the system is in the WSM phase [13], where topological
indices are in general not defined.

The energy of the L−
6 - relative to the L+

6 -band extremum
can also be reduced by application of the hydrostatic pressure.
This closes the positive gap of PbTe, opens the negative gap of
SnTe, and can drive the pressure-induced transition from the
trivial to the TCI phase in Pb1−xSnxTe. Again, the splitting of
the energy levels leads to a smeared character of the transition,
which proceeds through the Weyl phase (see Ref. [13] for
details). In the VCA the transition is sharp, and the WSM
phase is absent. Remarkably, the existence of a semimetal
region in Pb1−xSnxTe was proposed based on recent experi-
mental studies of temperature and composition dependence of
conductivity [51].

A. Comparison of Pb30Sn2Te32 and Pb30Mn2Te32

Mn ions in Pb1−xSnxTe are magnetic and assume the
high-spin state S = 5/2. The substitution of Mn for a cation
introduces a perturbation acting on both the orbital and the
spin variables, which in the following are referred to as the
chemical and the spin part of perturbation, respectively. Both
effects are analyzed here. The spin perturbation affects the
band structure only when the Mn sublattice is spin-polarized.
Accordingly, we assume a finite spin polarization of Mn
(present in the FM phase or induced by a weak magnetic
field), but its influence on the orbital motion (including the
Landau quantization) is neglected, because it requires a dif-
ferent approach to the band structure calculations, such as the
effective mass model.

We first neglect the spin perturbation and compare the
impact of doping PbTe with Sn and Mn. The comparison
reveals the main features also present in the remaining cases.
The results, obtained for a 64-atom PbTe supercell containing
two Sn ions and one containing two Mn ions with antiparallel
spins, are presented in Fig. 2. The figure shows the effect of
hydrostatic pressure (monitored by the decrease in a) on the
electronic structure. The positions of Sn and Mn atoms in
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FIG. 2. Dependence on the lattice parameter a of (a, b) the en-
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point of the supercell BZ, and (e, f) the Chern numbers Cs+, Cs−. Left
panels, Pb30Sn2Te32; right panels, Pb30Mn2Te32. a0 is the equilibrium
lattice parameter of PbTe.

the supercells are the same, and the internal relaxations are
neglected.

From Figs. 2(a) and 2(b) it follows that the incorporation of
Mn ions into PbTe at equilibrium a = a0 = 6.46 Å leads to an
increase in the bandgap from 0.20 eV for PbTe to 0.214 eV for
Pb30Mn2Te32, while the incorporation of Sn decreases Egap to
0.16 eV in Pb30Sn2Te32 in accord with measurements [52,53].
Considering the pressure dependence of the bandgap we find
that for both Pb30Sn2Te32 and Pb30Mn2Te32, Egap decreases
with the decreasing lattice constant a (i.e., with the increasing
hydrostatic pressure) and eventually changes sign to negative,
again in agreement with experiment [41,52–54].

The pressure dependence of Egap shows regions where the
bandgap practically vanishes, and both systems are in the
WSM phase. This effect was pointed out above and is related
to the alloy broadening, i.e., to the splitting of energy bands
in mixed crystals. The splitting is shown in some detail in
Figs. 2(c) and 2(d). At the � point of our 64-atom super-
cell BZ, the L+

6 - as well as the L−
6 -derived bands of PbTe

are eightfold degenerate. These degeneracies are lifted in the
presence of the Sn or Mn ions. Comparing the results for
Pb30Sn2Te32 and Pb30Mn2Te32 we see that the level splittings,
and thus the alloy broadening of the energy spectrum, are
much larger in the latter case. This is because the substitu-
tion of Pb by a group II Mn ion generates a stronger crystal
and electronic perturbation than the substitution of Pb by the
isoelectronic Sn.

Finally, Figs. 2(e) and 2(f) show the topological indices for
the two alloys. The sign of the energy gaps in Figs. 2(a) and
2(b) is determined by zero or nonzero values of the spin Chern
number. Again, in agreement with Figs. 2(c) and 2(d), the
Weyl region between the TCI and the trivial phases is broader
in Pb30Mn2Te32, although it is less clear in Figs. 2(a) and 2(b).
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FIG. 3. Energy levels of the highest valence and the lowest con-
duction bands at the � point of the supercell BZ for (a) PbTe and
(b) SnTe with two Mn ions. The consecutive steps correspond to
the adjustment of the lattice parameter, the introduction of Mn with
antiparallel spins without (I) and with (II) lattice relaxation, and the
FM spin arrangement.

B. Influence of Mn on the band structure
of Pb30Mn2Te32 and Sn30Mn2Te32

The influence of Mn ions on the band structure of PbTe and
SnTe is analyzed in Fig. 3, which shows the energy position
of the eight highest valence bands and the eight lowest con-
duction bands. As before, we use supercells with the lattice
parameters taken according to Eq. (1) and containing two Mn
ions. The Mn ions are placed at (0, 0, 0) and a0(1, 1, 1) in
a perfect rock salt lattice neglecting the internal distortions.
Thus, the Mn ions form a cubic body centered lattice, and the
system has Oh symmetry. With this choice the wave functions
are either even or odd with respect to inversion (like the wave
functions of the L6-band extrema in PbTe and SnTe), which
makes the analysis more transparent. We mention that the
calculated bandgaps differ from those obtained with the SQS
method, which reflects the dependence of Egap on the Mn
distribution. More details are provided in Sec. 2 of the SM
[39]. The choice of supercells with an even number of Mn ions
allows for separation of the effects induced by the chemical
and the spin perturbation, which is achieved by comparing the
FM and AFM spin configurations.

The final band structure of both systems is achieved in
four steps. In the first step, the pure compound is dilated or
compressed to the appropriate lattice constant. In the second
step, Mn ions are introduced to the supercell in the AFM spin
configuration, but the atoms are not allowed to relax, which
is denoted configuration I. We see that for both systems the
Mn chemical perturbation induces splittings of the eightfold
degenerate band extrema by 0.1–0.3 eV, which is comparable
to Egap of the PbTe and SnTe hosts.

In the third step, atoms relax to configuration II, in which
the nearest Te neighbors are moved towards the Mn ions along
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the bond directions, so that the Mn-Te bonds are reduced from
3.23 to 2.95 Å. The latter value is equal to that obtained after
the geometry optimization and, in the case of Sn1−xMnxTe,
is very close to the experimental one [48]. This effect leads
to small changes in band energies. In the last step we assume
the FM spin arrangement. Inclusion of the spin polarization
reduces Egap. In both PbTe and SnTe, the spin splittings are
large, showing that the spin and the chemical perturbation are
equally important and can be comparable to the bandgap.

Interestingly, as follows from Fig. 3, the response to the Mn
perturbation depends on the band symmetry. In particular, the
spin splittings are considerably more pronounced in the case
of the bands derived from L+

6 than those derived from the L−
6 -

band extrema, independent of the host and of the valence or
conduction band character. We relate this result to the atomic
orbital composition of the corresponding wave functions. In
the case of Pb30Mn2Te32, the wave functions of the VBM are
even with respect to the inversion symmetry operation. They
contain contributions from the 3d(Mn) orbitals, and these
contributions are larger for configuration II than for config-
uration I. This is due to the stronger hybridization of 3d(Mn)
with p(Te) after lattice relaxation, when the Mn-Te bonds
are shorter. The wave functions of the L−

6 -derived conduction
levels are odd with respect to the inversion and practically do
not contain Mn orbitals and do not respond to the presence
of Mn. The situation is different in Sn30Mn2Te32. The wave
functions of the three highest valence levels shown in Fig. 3
are odd with respect to inversion and contain contributions
from neither the 4s(Mn) nor the 3d(Mn) orbitals, while the
lowest level is even and contains the contribution from 4s(Mn)
orbitals.

C. Supercells with zero, two, or four manganese ions

In this section we analyze the dependence of the energy
gap and topological properties of Pb1−x−ySnxMnyTe on the
Sn concentration. The impact of Mn is revealed by comparing
three cases—that with no Mn, y = 0, that with y = 0.0625,
and that with y = 0.125—which correspond to 0, 2, and 4 Mn
atoms at the cation sites of a 64-atom supercell, respectively.
We begin with the antiferromagnetic configuration of Mn
spins. In Fig. 4 we show Egap and the corresponding topologi-
cal indices as a function of the Sn concentration. The increase
in Egap with increasing Mn content in PbTe was analyzed
above. As we pointed out, doping PbTe with Mn lowers the
energy of the L+

6 band relative to the L−
6 band, thus increasing

the bandgap. In SnTe this effect takes place as well, but in this
case it decreases the inverted Egap. As follows from Fig. 4, this
effect of Mn persists also in the Pb1−x−ySnxMnyTe alloy over
the whole composition range.

While the decrease in energy of L+
6 relative to L−

6 induced
by two and four Mn ions in the supercells is clear for all
Sn concentrations, it is not always possible to distinguish the
results for two and four Mn ions. This problem stems from
the fact that the differences in band energies, in particular, the
bandgap itself, are smaller than the fluctuations inherent to
our approach. Indeed, they could be eliminated by averaging
over a substantially larger number of atomic configurations
in the supercells. Apparently, in this specific case, the SQS
approximation is not accurate enough.
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FIG. 4. Dependence on the number of Sn ions in the su-
percell of (a) the energy gaps and (b) the spin Chern number
Cs− for Pb32−nSnnTe32 (circles), Pb30−nSnnMn2Te32 (triangles), and
Pb28−nSnnMn4Te32 (asterisks).

In spite of that problem, two qualitative effects should be
noted. First, we find that as a result of the Mn-induced change
in Egap in Pb1−x−ySnxMnyTe the trivial-to-nontrivial transition
region is shifted to higher concentrations of Sn. Our calcula-
tions indicate that for Pb1−xSnxTe the energy gap vanishes for
x ≈ 0.35, which corresponds quite well with the experimental
value x ≈ 0.4. For Pb1−x−ySnxMnyTe with y ≈ 0.06, Egap = 0
for a higher x ≈ 0.5, but the precise experimental value is not
known.

Second, since adding Mn enhances alloy broadening, one
would expect that the region of the Weyl phase is wider
in Pb1−x−ySnxMnyTe than in Pb1−xSnxTe. Paradoxically, the
calculated Egap(x) dependence exhibits an opposite effect, and
in the case of four Mn ions in the supercell the Weyl phase is
practically absent. This effect is ascribed to the fact that the
splittings of both the VBM and the CBM significantly increase
with increasing Mn concentration. This is illustrated in Fig. 5,
which presents the energies of the eight highest valence states
and the eight lowest conduction states at � as a function of the
Sn concentration in Pb1−xSnxTe with zero, two, and four Mn
ions in the supercell. Indeed, in the case of Pb1−xSnxTe the
spread is the smallest, and the levels are almost degenerate,
which is reflected in the wide composition window of the
Weyl phase. On the other hand, in the case of four Mn ions
the spread of the levels is substantial, their energies are well
resolved, and the transition is sharp.

The strong chemical disorder may also explain why the
Weyl phase is usually not observed in experiments, with the
exception of one work [55], in which crystals with extremely
low carrier concentrations were used. In actual alloys, apart
from the chemical disorder, there are also native defects,
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those dominated by cation p orbitals (L−

6 -derived states). Thick black lines show the energy positions of the VBM.

mostly vacancies, which increase the disorder and can lead
to larger band splittings.

We now turn to the impact of spin polarization on the
energy levels in Pb1−x−ySnxMnyTe. It is shown in detail in
Fig. 3 for PbTe and SnTe with two Mn ions constituting
the BCC lattice. Figure 6 compares the composition depen-
dence of the bandgap for different spin configurations for
Pb1−x−ySnxMnyTe containing two and four manganese atoms
in the supercells. In the FM configuration, the spin splittings
of the VBM and CBM induce a considerable reduction in the
absolute value of Egap. As a consequence of spin polarization,
in the case of alloys with two Mn ions the Weyl region charac-
terized by Egap = 0 is three times wider than that in the AFM
case. In the case of four Mn in the supercells, the effect is
even more dramatic, since Egap vanishes for all compositions
with x > 0.25. Indeed, this is in sharp contrast with the very
narrow composition window calculated in the absence of spin
polarization. These results are in qualitative agreement with
those in Ref. [21], which also finds that the width of the
Weyl region increases with the spin polarization of magnetic
ions.

The above results, together with those for the supercells
with three spin-up and one spin-down Mn ions, allow for a few
quasiquantitative conclusions. Namely, in the case of PbTe,
incorporation of two Mn ions in the AFM state increases
Egap by 0.03 eV, while their spin polarization lowers Egap by
about the same amount. Thus, the presence of two Mn ions in
the FM configuration leaves the bandgap unchanged, which
illustrates well our earlier conclusion that the chemical and the
spin perturbations are equally important. The analogous result
holds in the case of four Mn ions in supercells. The results for

the intermediate case of four Mn ions, three spin-up and one
spin-down, are fully consistent with this picture.

In previous works, the trivial-to-TCI phase transition was
induced either by a change in composition of Pb1−xSnxTe or
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n
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FIG. 6. Dependence of the energy gap on the spin polarization
for supercells containing (a) two Mn and (b) four Mn atoms. Orien-
tations of Mn spins and spin configurations are shown by arrows.
Thick horizontal lines denote the regions of the Weyl semimetal
phase (WSM) where the number of Weyl nodes is nonzero. n is the
number of Sn atoms in the supercell.
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TABLE I. Weyl points (kx,y,z ) in the BZ of a 64-atom su-
percell, calculated energy gaps (Eg), corresponding topological
charges (TCs), and energy positions of the Weyl’s nodes for
Pb15Sn16Mn1Te32.

kx (Å−1) ky (Å−1) kz (Å−1) Eg (eV) TC Eval (eV)

0.003539 0.001528 0.000406 6.41 × 10−7 −1 −4.2753
0.000002 −0.005624 0.002274 6.75 × 10−7 1 −4.2780
−0.002882 0.002512 −0.003221 3.70 × 10−7 1 −4.2761
0.000131 −0.005761 −0.002160 1.07 × 10−6 −1 −4.2782

by hydrostatic pressure. The results in Figs. 4 and 6 point
to the very interesting possibility of driving the transition by
applying a magnetic field. Indeed, in the case of Pb1−xSnxTe
with composition x = 0.25 with four Mn ions, Egap = 0.1 eV
in the paramagnetic case, i.e., in the AFM configuration, but
vanishes in the FM configuration. Such a scenario is also
discussed in Ref. [21].

D. The Weyl semimetal phase

A detailed characterization of the Weyl semimetal phase
is provided in Table I, where we list the positions of
Weyl’s nodes in the k space, the corresponding energy gaps,
the topological charges, and the energies of the nodes for
Pb15Sn16Mn1Te32. The vanishing Egap makes it impossible to
calculate the topological indices, as discussed in Sec. II.

As shown in Fig. 7, the analysis of Weyl’s nodes helps to
define more precisely the transition region between the trivial
and the TCI phase. In the case of four Mn ions in the supercell
we find only one Sn concentration, n = 18, for which the
number of Weyl’s nodes is nonzero. This confirms the fact
that for higher concentrations of Mn the Weyl region is very
narrow or is just absent.

Finally, as an additional example, we analyzed the number
of Weyl’s nodes as a function of the lattice parameter for
Pb1−x−ySnxMnyTe containing one Mn ion in the supercell.
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FIG. 7. (a) Energy gaps and (b) topological indices Cs+ and
number of Weyl nodes (NWNs) for two Mn ions set up antiferro-
magnetically in Pb30−nSnnMn2Te32.
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FIG. 8. (a) Energy gap and (b) number of Weyl nodes (NWNs)
for Pb23Sn8Mn1Te32 as a function of the lattice parameter. a0 is the
equilibrium lattice parameter of PbTe.

The results are presented in Fig. 8. They show that the number
of Weyl’s nodes provides a precise measure of the width of the
Weyl region.

IV. CONCLUSIONS

With increasing Sn content in the Pb1−xSnxTe alloy, a
transition from the topologically trivial to the nontrivial topo-
logical crystalline insulator phase takes place. The transition
is smeared, because there is a wide composition window, in
which the alloy has a zero bandgap and remains in the Weyl
semimetal phase. The calculated critical Sn concentration cor-
responding to the onset of the transition of Pb1−xSnxTe to
the Weyl phase, x = 0.3, is reasonably close to that observed
experimentally. The Weyl phase extends from 0.3 to 0.5, and
for higher x the alloy assumes the TCI phase.

Using ab initio calculations we investigate the conse-
quences of alloying Pb1−xSnxTe with Mn. Group II Mn is
chemically different from the Pb and Sn group IV cations,
and thus it introduces a strong chemical perturbation of
the Pb1−xSnxTe electronic structure. Next, since Mn in the
IV–VI compounds is in the high-spin state, perturbation act-
ing on spin variables of band carriers is present when the
macroscopic spin polarization of Mn ions is finite. The main
conclusions are as follows.

(1) At higher temperatures, the system is paramagnetic
with vanishing spin polarization. In this case, the incorpora-
tion of Mn ions into Pb1−xSnxTe leads to an increase in Egap

on the PbTe side and its decrease on the SnTe side, which
modifies the composition window of the Weyl phase. At suffi-
ciently low temperatures the Mn system in Pb1−x−ySnxMnyTe
can be spin-polarized, and the spin splittings of the CBM and
the VBM are comparable to the bandgap, again considerably
widening the Weyl region. For example, in the presence of
y ≈ 0.06 Mn, the Weyl region shifts from 0.3 < x < 0.5 in
Pb1−xSnxTe to 0.5 < x < 0.8. When the Mn ions are fully
spin-polarized, the Weyl region extends from y = 0.5 to y =
1.0.

(2) The strong impact of the spin polarization on the en-
ergy bands opens the interesting possibility of inducing a
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transition from the trivial to the Weyl phase by a magnetic
field or by spontaneous magnetization. The effect is expected
to occur for x > 0.35.

(3) Pb1−x−ySnxMnyTe alloys can be characterized by
topological indices, which are based on the concept of the
Chern number. If the total spin polarization of the Mn ions
vanishes, the spin Chern number constitutes the appropriate
topological index. In other cases, the alloy can be charac-
terized by two indices, Cs+ and Cs−. The dependencies of
Egap on the Sn content or on the lattice parameter agree very
well with the corresponding dependencies of our topological
indices. Thus, they constitute a valid characteristic of the sys-
tem, and in particular, they reveal whether Egap is positive or
negative.

(4) In the semimetal Weyl phase, the Weyl’s nodes are
placed very close in the k space (∼0.02 Å−1), thus the ob-
servation of the splitting of Dirac cones using the ARPES
technique is not possible at present.
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