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The self-consistent evaluation of Hubbard parameters using linear-response theory is crucial for quantitatively
predictive calculations based on Hubbard-corrected density-functional theory. Here, we extend a recently
introduced approach based on density-functional perturbation theory (DFPT) for the calculation of the onsite
Hubbard U to also compute the intersite Hubbard V. DFPT allows us to reduce significantly computational
costs, improve numerical accuracy, and fully automate the calculation of the Hubbard parameters by recasting
the linear response of a localized perturbation into an array of monochromatic perturbations that can be calculated
in the primitive cell. In addition, here we generalize the entire formalism from norm-conserving to ultrasoft and
projector-augmented wave formulations, and to metallic ground states. After benchmarking DFPT against the
conventional real-space Hubbard linear response in a supercell, we demonstrate the effectiveness of the present
extended Hubbard formulation in determining the equilibrium crystal structure of Li,MnPO, (x = 0, 1) and the

subtle energetics of Li intercalation.
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I. INTRODUCTION

Exchange-correlation (xc) functionals based on the Hub-
bard extensions [1-3] to density-functional theory (DFT) [4,5]
have proven to be quite effective in describing complex sys-
tems, both solid-state and molecular (see, e.g., Refs. [6—12]).
As is well-known from the literature on DFT4+U and DFT
with dynamical mean-field theory (DFT4+DMFT) [13-17], a
reliable and consistent method to evaluate the Hubbard param-
eters is key to achieving quantitative predictions. Although the
empirical determination of these parameters is still common
practice, different methods to compute their value from first
principles have been introduced, including constrained DFT
(cDFT) [18-26], Hartree-Fock based approaches [27-32], and
the constrained random phase approximation (cRPA) [33-42].
A linear-response formulation of cDFT (LR-cDFT) was in-
troduced in Ref. [43] and generalized to the calculation of
the intersite Hubbard parameters V in Ref. [44] (see also
Refs. [45,46]). Recent work [47,48] involving some of the
present authors has highlighted the quantitative accuracy of
DFT+U+V calculations [44] with both onsite U and intersite
V effective parameters (here, V bridges the onsite Hubbard
manifold with the surrounding ligand ions) when based on
the self-consistent evaluation of the Hubbard parameters using
linear-response theory.

LR-cDFT has recently been recast via density-functional
perturbation theory (DFPT) [49], allowing us to overcome
several challenges of the supercell approach of Ref. [43]. In
fact, by constructing the response of the system to a localized
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perturbation through a series of independent monochromatic
perturbations to the primitive unit cell (rather than from
finite differences between calculations in supercells as in LR-
c¢DFT), it improves significantly the computational efficiency,
accuracy, user-friendliness, and automation [49], as also
demonstrated by several recent applications [47,48,50-52].
Key to this is indeed the capability to express perturbation
theory in reciprocal space [53-55]. It is important to mention
that the present formulation (be it in a LR-cDFT or DFPT
implementation) aims to correct the over-delocalization and
over-hybridization of the electrons in the localized Hubbard
manifold; for this reason, it is not appropriate to deal with
closed-shell systems, where the electrons are fully contained
in the localized manifold [56].

Encouraged by the significant improvement in flexibil-
ity and accuracy obtained with DFT4+U+V and spurred by
the need to calculate Hubbard parameters efficiently and
consistently, we present here a generalization of the DFPT
implementation to compute also the intersite Hubbard V in a
self-consistent fashion. In addition, we extend the formulation
to metallic systems [i.e., with fractionally occupied Kohn-
Sham (KS) states], to ultrasoft (US) pseudopotentials (PPs)
[57], and to the projector-augmented wave (PAW) method
[58,59]. These extensions are particularly useful for systems
in which transferability is paramount, magnetism arises, and
localized valence states are present (e.g., semicore states pro-
moted to valence or atomic states of the d or f kind in
transition-metal and rare-earth compounds), which require the
use of very high kinetic energy cutoffs in the plane-wave
expansion.

As a test case, we perform DFT+U and DFT+U+V
calculations with self-consistent first-principles Hubbard
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parameters U and V (determined using DFPT) to study the
structural properties and energetics (voltages) of a prototyp-
ical Li-ion cathode material Li,MnPO,4 (x = 0, 1). Notably,
the inclusion of the intersite Hubbard V improves the agree-
ment of computed lattice parameters and voltages compared
to the experimental values, as opposed to the case when only
U is taken into account.

The paper is organized as follows. Section II summa-
rizes the formulation of DFT+U+V [44]; Sec. III illustrates
the linear-response approach to the calculation of Hubbard
parameters U and V, starting from a real-space formula-
tion [43] (Sec. I A), reviewing its recent reciprocal-space
implementation based on DFPT (Sec. IIIB), and adapting
the latter to US and PAW formulations (Sec. III C); this is
the main methodological advancement of the present paper.
Section IV details a protocol designed to calculate the
Hubbard parameters self-consistently, Sec. V contains the
technical details of our calculations, and Sec. VI, after bench-
marking the Hubbard parameters of MnPO, and LiMnPO,
obtained from DFPT against those computed with LR-cDFT,
introduces a self-consistent procedure for the evaluations of
these parameters and discusses and contrasts the structural
properties and average voltages (versus Li/Li*) obtained us-
ing DFT+U and DFT+U+V. Finally, Sec. VII presents
our conclusive remarks. Some technical details regarding the
implementation of DFT4+U+4V with PAW and Bloch sums
are presented in Appendixes A and B, respectively. Hartree
atomic units are used throughout the paper. For consistency,
in this work we use notations as close as possible to those of
Refs. [49,60].

II. EXTENDED HUBBARD FUNCTIONALS:
DFT+U+V

In this section, we briefly review the formulation of
the extended DFT+U+V approach with norm-conserving
(NC) PPs (introduced in Ref. [44] and further discussed in
Refs. [46,47]), and then we discuss its generalizations to the
case of US PPs and the PAW method. This discussion will
highlight the differences with the standard DFT+4U func-
tional, with particular attention to the Hubbard potential that
enters the unperturbed KS Hamiltonian. This is, in fact, an
important ingredient for DFPT calculations of the Hubbard
parameters when a self-consistent evaluation is required.

As a generalization of DFT+U, DFT4+U+V is also
based on an additive correction to the approximate

DFT energy functional, modeled on the Hubbard
Hamiltonian [44]:
Eprryu+v = Eprr + Eyv. (1)

Here, Eppr represents the approximate DFT energy [con-
structed, e.g., within the local spin density approximation
(LSDA) or the spin-polarized generalized-gradient approxi-
mation (GGA)], while Ey v contains the additional Hubbard
term. At variance with the DFT+U approach, containing
only onsite interactions, DFT+U+V is based on the extended
Hubbard model including also intersite interactions between
an atom and its surrounding ligands. As first described in
Ref. [44], in the simplified rotationally invariant formulation

[3], the extended Hubbard term reads

1
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where I and J are atomic site indices, m; and m, are the
magnetic quantum numbers associated with a specific angular
momentum, U’ and V! are the onsite and intersite Hubbard
parameters, and the star in the sum denotes that for each atom
1, the index J covers all its neighbors up to a given distance
(or up to a given shell).

The atomic occupation matrices nl/, —are based on a
generalized projection of the KS states on localized orbitals
¢}, (r) of neighbor atoms:

IJ pJ1
mﬁnz = Z Z OF UkU vko |szm| |1p1?ka)’ (3)

where v and o represent, respectively, the band and spin labels
of the KS states, k indicates points in the first Brillouin zone
(BZ), Nk is the number of k points in the first BZ, épyvk(, is
the occupation of the KS states ¥k, [61,62] (to account for
metals where these quantities can be fractional), and P,{é my 18
the generalized projector on the localized orbitals of neighbor
atoms:

é‘?’liml = |(prjm>(§0ml| (4)

Here, <,o,’n1 (r)= go,’,’,l(”(r — R;) are localized orbitals centered

on the /th atom of type y(I) at the position R;. Given their
importance for the calculation of the Hubbard parameters, it
is convenient to establish a short-hand notation for the onsite
terms of the quantities defined in Egs. (3) and (4):

lo — o
Momymy = Tnym, )
and
pl _ pll
Pmlmz = Pmlmz‘ (6)

The standard DFT+U approach corresponds to the first line
of Eq. (2). Based on the definitions above, it is quite straight-
forward to see from Eq. (2) that the two terms in the corrective
energy functional, proportional to the onsite (U) and in-
tersite (V!/) couplings, respectively, counteract each other.
In fact, while the onsite term favors localization on atomic
sites (typically suppressing hybridization), the intersite one
favors hybridized states with components on neighbor atoms.
Computing the value of the U’ and V' effective interaction
parameters is thus crucial to determine the degree of atomic
localization of d- and/or f-type electrons when the system
is in its ground state. The Hubbard manifold {go,’n](r)} can
be constructed from the nonorthogonalized atomic orbitals
(which are provided with PPs and which are orthonormal
within each atom), or from the orthogonalized atomic orbitals
(which are obtained by orthogonalizing the atomic orbitals
from different sites) [63], or using (maximally localized)
Wannier functions [64].

For the purpose of this work, it is important to study
the contribution to the KS potential stemming from the
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extended Hubbard correction. The action of this term on a
KS pseudo-wave-function can be easily obtained by taking the
functional derivative of Eppriy+yv [see Eq. (1)] with respect
to the complex conjugate of the same pseudo-wave-function
[44,65]. The term corresponding to this functional derivative
of Ey4v [see Eq. (2)] is

. 8
Fime = 3 S0 (Pl )P

1 mumy

-2 Z > VI B )

I JU#D) mim

In the following, we present the DFT+U +V formalism for
the case of US PPs and the PAW method. While many works
are based on the projection of KS states on projector func-
tions in the augmentation spheres [see Eq. (6) of Ref. [57]],
this work uses projections on orthogonalized atomic orbitals,
which are not restricted to the augmentation spheres. The
main modifications that various terms undergo when US PPs
or the PAW method is used are related to the fact that KS
pseudo-wave-functions are made “soft” by smoothing their
profiles in the core regions so that it becomes necessary to
augment the sum of their squares with the missing core-
localized “hard” parts in order to calculate the proper charge
density [66]:

g (1)

N
=22 Pk Wiy (OF
+ Z Z GF vko Z QV(I)(I‘

Inv

X (Voo | BLNBL Voo )- (8)

As evident from this equation, the augmentation of the charge
density is realized by adding localized augmentation charge
densities Qﬂﬁ )(r — R,) [that pertain to the pseudopotential of
the Ith atom, of type y (1) at position R;] through a projection
of KS states on appropriately constructed localized functions
,Bl’L(r) = ﬂ}:(”(r — R;) that vanish at and beyond an atom-
specific core radius [57] and that are labeled by atomic-state
indices p and v. Being deprived of the hard part around the
nuclei, the soft KS states must satisfy a generalized orthonor-
mality condition:

(Woro 181V on067) = SuuSkic 8oy )

where §' is an overlap operator,

S_1+Zq/’:(1) B,

Iy

(10)

based on the same g functions of Eq. (8) and on augmentation
charges defined as

g1 = / 07D (r) dr, (11
\%4

with V being the volume of the crystal. As a consequence, the
soft KS states are calculated by solving the generalized KS
equations [57,67]:

H1Vio) = £k SIViko ) (12)

where ¢, = are the KS energies, and
H; = HBFT,G + Vfcfub,o’ (13)

with I-?SFT‘U being the DFT Hamiltonian (LSDA or spin-
polarized GGA) and V{,’ubﬁ is the Hubbard potential given
by Eq. (7). The overlap operator of Eq. (10) has to be used
also as the kernel of all the scalar products between pseudo
KS wave functions, as already exemplified in the generalized
orthonormality condition, Eq. (9). The effective Hubbard cor-
rective potential, Eq. (7), can thus be effectively obtained from
the inclusion of the overlap operator in the expression of the
projector on atomic states, Eq. (4):

This generalized expression of the projector is sufficient to
obtain the atomic occupations as indicated in Eq. (3) using
“soft” (atomic and KS) wave functions and, consequently, the
generalization of the Hubbard energy, Eq. (2), and potential,
Eq. (7), to implementations based on US PPs. The same
generalized expression of the Hubbard functional obtained for
US PPs can actually be used also for PAW once augmentation
quantities are properly adapted [59,68] (see Sec. III C 2). This
point is discussed in more detail in Appendix A.

III. CALCULATION OF HUBBARD PARAMETERS
FROM LINEAR-RESPONSE THEORY

A. Definition of Hubbard parameters

The importance of the calculation of Hubbard parame-
ters from first-principles using linear-response theory stems
from the capability of the Hubbard corrections to remove the
residual electronic self-interactions from approximate energy
functionals, which manifests itself through an undesirable cur-
vature of the total energy as a function of atomic occupations
[43]. In fact, Hubbard effective interactions can be defined
as the second derivatives of the total energy with respect to
the total occupation of a given atom, i.e., with respect to
the trace of the occupation matrix defined in Eq. (5) [43];
with this definition, Hubbard corrections restore the desired
piecewise linearity of the total energy. This can be achieved
by perturbing the system with a shift in the potential acting on
the Hubbard states of a given atom, AV’ =/ 3" P/ and
then computing the response of all the atomic occupations.
Applying this to all the Hubbard atoms in the system al-
lows us to construct the bare and self-consistent susceptibility
matrices (obtained, in practical calculations, respectively, at
the beginning of the perturbed run and at its self-consistent
convergence):

dn), GO = dn'
an O T

From these, the effective Hubbard parameters can be readily
obtained [43]:

(X0 = (15)

U'=(x"' = x ")y (16)

vl — (XO—] . X—l)”‘ (17)

It is important to stress that the procedure outlined above
is based on isolated perturbations; therefore, it requires the
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use of large supercells (whose size has to be increased until
the convergence of U’ and V!’ is reached) that make the
computational cost and numerical noise increase rapidly [43].
However, DFPT allows us to largely reduce these issues [49].

B. DFPT with norm-conserving PPs: Extension to V
and to metallic systems

To overcome the difficulties alluded to in Sec. III A, we
have recently introduced an implementation of the LR ap-
proach outlined above using DFPT [49]. The scope of this
section is to discuss the extension of this formalism to metal-
lic systems and to the calculation of the intersite interaction
parameters V. For the sake of simplicity, this discussion is
based on a NC PP implementation; the generalization to US
PPs and the PAW method is discussed in Sec. III C. Within
the framework of the DFPT implementation, the response of
the KS wave functions to a small perturbation of the atomic
potential [that induces a variation of the atomic occupations
defined in Eq. (15)] is obtained as the solution of the pertur-
bative problem resulting from a first-order variation of the KS
equations:

(Hy — €55 )

vko

d kaa
dx’

_ dVch,a dé‘vkcf A
= o "o TV

)Ilﬂvkg> (18)

dv
where V7 Hxe.o

=Y, P/ is the perturbing potential, and

pen d}»" )
d;l'x”‘;", and djj\‘}” are the response Hartree and xc (Hxc) po-

tentials, the response KS wave functions, and the response
KS energies, respectively [49]. As detailed in Refs. [49,55],
the problem has to be solved self-consistently because the
response of the KS eigenvalues and of the Hxc potential
appearing on the right-hand side of Eq. (18) depend on the
response of the KS wave functions, obtained from the solu-
tion of the perturbative problem in the equation above. Once
convergence is achieved, the variation of the diagonal (with
respect to atomic sites) atomic occupation matrices [that de-
fine the self-consistent susceptibility matrix in Eq. (15)] is
obtained [69]:

dn lo dl/f
mlmz _ Al vko
T Z Z OF vke |:< Viko P'"zml drJ >
dl/f ko | A o
+ < d;:j lfqzml kaz7>i|

déF,vka R
+ZZ dn Wio 1Pl Vi) (19)

The last term on the right-hand side of Eq. (19) comes from
the derivative of the occupations of KS states appearing in

Eq. (3) [60]:
déF,vka — 15 Ep — 831“, dﬂ _ dgvk(r , (20)
dr’ n n dr’ dr’
where 8(g) = df(e)/de is a smooth approximation to the

Dirac’s é function, 1 is a broadening parameter, and ¢r and

der.
dan’

Ref. [55]). Obviously, the term dF %o is absent for semicon-
ductors and insulators as their KS state occupations are either
Oorl.

It is important to remark that, when LR calculations are
based on the DFT+U+V ground state (for self-consistent
evaluations of the Hubbard parameters [47,48,52]), the Hub-
bard correction enters the unperturbed Hamiltonian H¢ in
Eq. (18), with the Hubbard potential given in Eq. (7). How-
ever, as was pointed out in Ref. [49], the response of the
Hubbard potential is not present in Eq. (18), so that the
Hubbard parameters are obtained, consistently with their def-
inition, as second derivatives of the DFT part only of the total
energy.

The major advantage offered by the DFPT reformulation
of LR-cDFT consists in the possibility to obtain the varia-
tion of atomic occupations as a sum of wave-vector-specific
contributions that can be computed independently from one
another (thus leading to better scaling of the computational
cost [49]) using the primitive cell of the system. In fact, the
Fourier spectrum of a perturbation that has the periodicity of a
supercell (as needed to eliminate the interactions with periodic
replicas) only contains fundamental vectors of its reciprocal
lattice that map into a corresponding q points grid within the
Brillouin zone corresponding to the primitive cell [49]. The
total response of atomic occupations can thus be written as
[see Eq. (42) in Ref. [49]]

are the Fermi energy and its shift (see Sec. IIC4 of

dsla
Mnim R,—Ry =
DT = Ze"“' DA @D

where the atomic site indices / and J have been decomposed
as I = (I,s) and J = (I', s'), indicating, respectively, the cell
the atom belongs to (I and {’) and its position within the
cell (s and s). Here, Ng is the number of q points in the
first BZ (note that the dimension of the q point grid re-
flects directly the dimension of the supercell of which it is
the reciprocal-space image). Afl i,y Tepresents the lattice-
periodic response (hence the overbar) of the occupation matrix
to a monochromatic perturbation with a wave vector q, and it
can be linked to the lattice-periodic variations of the KS wave
functions as follows [49]:

Ne N
Afl ;Sn(fmz = Z Z vka my,my,K, k+q|A uka)
+ (i, Uyko |PV:H my,k k+q’Af1 a”"")]
Ne M
Foua g 200 (T )ader
< vka' my,my,K, k|ﬁ5k(r>' (22)
Here, iz}, . and Af{ﬁvkg are the lattice-periodic parts of the un-

perturbed and linear-response monochromatic q component
of the KS wave functions, respectively (see Appendixes 1
and 3 in Ref. [49]). In the derivation of Eq. (22), we used
the expression % = NLqAB,EF, where Af,/ gr 1s the shift of
the Fermi energy that occurs when applying a macroscopic
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perturbation (i.e., ¢ = 0) to the s'th atom in the reference
primitive cell [70]. The lattice-periodic part of the projec-
tor on the Hubbard manifold, which appears in Eq. (22),
reads [49]

PS

my,my Kk T

= @ (@ - (23)

The functions @, , are defined in the same way as in
Appendix 1 of Ref. [49] The first two terms on the right-hand
side of Eq. (22) were made to look similar (except for the
inversion in the order of indices m; and mj;) by the use of
time-reversal symmetry. As was mentioned above, due to the
linear character of the perturbative problem [Eq. (18)], the
lattice-periodic components of the response KS wave func-
tions at different q can be computed independently from one
another as solutions of q-specific Sternheimer equations [49]:

Eoo) | AL ioko)

,Pj k.k+q,0 (A VHXC o + V pert,k+q, k) |l'tvkzr> (24)

where the perturbing potential is constructed from a general-
ization of the projector in Eq. (23):

Z m,m,k+q,k* (25)

m

( k+qo + 2 Okiq,0 —

perl k+q.k —

The quantities Hlf .0

lattice-periodic parts of the unperturbed Hamiltonian I-IV(S
(which contains the Hubbard corrective potential with onsite
U and intersite V') and the response Hxc potential for a specific
q. The latter quantity depends on the Tesponse spln charge

and Af{VHXC’a are, respectively, the

density at the same q. The operators Ok+q o and PU Kkt
are the lattice-periodic parts of generalized projectors on th e
valence and conduction manifolds, respectively [55,60],

Ny
O = D linciqo) g (26)
v/
and
Ny
a2 T ~ _ _
,Puﬁk,k-&-q,a = QF,uka - Z Yvko, vk+qo |u3/k+qg><u3/k+qo' |s
o
(27)
with

Yvko, vk+qo = QF,vka kac, vk+qo + 9F,v’k+qa 0v’k+qa, vko

o Otk IR e (28)
Eoko 8v’k+qa
In Egs. (24) and (28), a = ¢ + 3n —min[e;, 1, where
min[ey, ] is the lowest KS energy at the considered k point,
and Ouko, vko = Ol(ey, — Epis)/N] 18 @ (smooth) steplike
function chosen to be equal to the rescaled complementary er-
ror function, 6 (e) = erfc(—e)/2 [71]. The summation over the
electronic band index v’ in Egs. (26) and (27) [and over v in
Eq. (22)] is limited to the (either full or partially occupied) N,
states that are below e + 31 [61], thus conveniently avoiding
sumfnations over the entire empty-states manifold. The opera-
tor Ok q,0 is inserted on the left-hand side of Eq. (24) in order
to avoid singularity issues during the iterative solution; at the

same time, the operator 77 kktqo avoids very expensive sums
over numerous empty states [49 55,72]. Note that due to the

presence of the projector Pv Kk+q , in Eq. (24), the derivative
of the KS eigenvalues dlsappears from the right-hand side of
Eq. (24) in comparison to Eq. (18) (see also Ref. [49]). All
the operators in Eq. (24) appear with a specific q component
as a result of recasting Eq. (18) in reciprocal space through
the Bloch sums of all the quantities appearing in there (this is
discussed in detail in Ref. [49]). The potential terms appearing
on the right-hand side of Eq. (24) represent the lattice-periodic
components of the corresponding potential variations at the
indicated wave vector q. Once these equations are solved
(self-consistently) for all the wave vectors, Egs. (21) and (22)
are used to compute the susceptibility matrices using Eq. (15),
from which the Hubbard interaction parameters are readily
obtained as indicated in Eqgs. (16) and (17).

C. Extension of DFPT to ultrasoft PPs and PAW

After reviewing the DFPT formalism for the calculation of
the Hubbard parameters, we specialize it here to US PPs and
the PAW method. We stress that only Hubbard-related terms
will be discussed. The reader who is interested in a general
discussion of DFPT with US PPs or PAW is encouraged to
review the existing literature on the topic [60,73].

1. Ultrasoft pseudopotentials

The Sternheimer equations that are solved in DFPT must
be generalized to the US PPs case. After extensive but
straightforward mathematical manipulations, it can be shown
that the final form of Eq. (24) in the US PPs case becomes

(I:Ilerq o + aOkJrq.a - Egkg Sk+q) |AS ﬁvka)

7511 Kk+q,0 (A Verr, k+qko T v pert,k+q, 1) s )
(29)

where Ok+q - and are generalized as [74]

Oktao = ) Skrallnigo) lyn g0 1Sk (30)
~

and

-y

¥ 2
Pv,k,k_‘_q,o’ - QF,ka

Ny
- § Yvko, vk+qo

% Sicral Bncsqo ) Eoncrqo 31)

In Egs. (29) and (30), §k+q is the lattice-periodic part of the
overlap operator S, which reads

Sk+q =1+ qu) |ﬂ;,k+q><Bi,k+qi’ (32)
SV
and the orthonormality condition (9) now reads

(u vkolSk|uv ko ) = Sy, Where the inner product is
computed via integration over the volume of the primitive unit
cell. In Eq. (29), the effective response potential A‘; ‘fo,kﬂ_k,(,
is defined as a sum of the standard Hxc response potential
Afl’\ﬁch,(, [as in Eq. (24), but which depends on the US PPs
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augmented response spin charge density [60]] plus an extra
US PP specific term, namely

B -3 - -
A Verrkrqko = Ay Vineo + Y (D gl Ad Viixeo)

SV

| Bl ko) (Brk |- (33)

The quantities appearing in Eqgs. (32) and (33) are defined in
Appendix B.

Various terms of the Hubbard correction undergo a similar
generalization when US PPs are used. The HubbardApotential
that is included in the unperturbed Hamiltonian H; qo Of
Eq. (29) has the following expression:

5o 2 :E : mimy s
VHub,k+q,a v’ < - m1m2>Pml my, k+q,k+q

s mpmy
* *
-2 2 v
s s'(s'#s) Ry =Ry mymy

sis'l'o psls'l
X n1111m2 Pml,mz,k+q,k+q’ (34)

where

oy = 3 ZZema (e 1BSIS) i) (35)

In analogy with Eq. (30), the periodic, k-specific projector is
generalized as follows:

= MRS g a@n e G6)

where the phase factor accounts for the possibility that the two
atomic wave functions belong to neighbor cells. In the first
term of Eq. (34), n3?,, corresponds to n3!5!? and P

mymy my,mp K,k
corresponds to P3!S | | (note, ny7, and P3| do not de-
pend on the index 7). In Eq. (34), s and s’ run over the number
of atoms in the cell they belong to (/ and ', respectively), and
the sum over R, — R; runs over the number of cells (including
the original cell, i.e., I’ = I) that are constructed to generate
pairs of sites interacting with the intersite Hubbard V!5
parameter.

An analogous generalization also has to be applied to the
(site-diagonal) perturbing potential, Eq. (25), appearing on the
right-hand side of Eq. (29). Its expression now corresponds to
the trace of a projector that generalizes Eq. (36) (with s = )
to the case with q # 0:

PS’ sl

mzmlkk

Pl’;;z my k+q.k — §k+‘1|¢fng,k+q)<¢fnhk|§k' (37)

Finally, the same generalized expression of the lattice-
periodic projector on atomic states has to be used in the
calculation of monochromatic, q-dependent components of
the linear-response occupation matrices, Eq. (22), which are
then employed to calculate the values of the Hubbard U and
V parameters using Eqs. (15)-(17).

2. PAW

The calculation of the Hubbard parameters with the PAW
method is very similar to the one reviewed above for US PPs.
This is so because there are many similarities between US
and PAW formalisms, as discussed in detail in Refs. [59,68].

However, there are a few points that must be clarified. All the
equations presented above for US PPs are valid also in the
case of PAW, after taking into account the following changes:
(i) The augmentation functions Q}i(v]) and projector functions

,BL must be replaced by the ones from the PAW method, (ii) in

Eq. (29) the terms I-?lf .0 and Afl/\sz,kﬂ,k'g have extra con-
tributions (from standard DFPT with PAW) that are defined
inside of the augmentation spheres centered about atoms [73].

It is important to remark that our implementation is dif-
ferent from most implementations for DFT4+U with PAW
(see, e.g., Refs. [75,76]), because our formalism is based on
projecting KS wave functions on (orthogonalized) atomic or-
bitals ¢ rather than on projector functions 8 (the latter being
localized inside the augmentation spheres). One advantage of
our formalism is that it allows DFT4+U+V to be extended
easily to PAW [Egs. (7) and (14)].

IV. SELF-CONSISTENT CALCULATION
OF HUBBARD PARAMETERS

The increased computational efficiency, the higher level
of automation, and the user-friendliness promoted by the use
of DFPT in the calculation of the Hubbard parameters [49]
can also be exploited to make this calculation fully “self-
consistent” and to obtain Hubbard parameters that are fully
consistent with both the electronic structure of the system and,
in addition, with the crystal structure. The idea is to recompute
the effective U and V parameters from a DFT+U+V ground
state until the values obtained from the DFPT calculation (U,
and Vo) coincide (within a fixed precision A) with those used
in determining the ground state that DFPT is based on (Uj, and
Vin):

[Uout — Unn| < A, (38)

|V0ul - V1n| < A. (39)

The convergence (typically in a few cycles) of the iterative
procedure in most cases is guaranteed by the observed smooth
and monotonic dependence of output interaction parameters
(Uout> Vour) on the input ones (Uj, and V;,). This iterative pro-
cedure yields the final “self-consistent” values of the Hubbard
interactions, labeled Uss and V.

The idea to compute the Hubbard parameters self-
consistently has been explored several times in the literature.
The first attempt, to the best of our knowledge, was made
in Ref. [7] (also involving some of us) where an extrapola-
tion of the linear behavior of Uy (computed from LR-cDFT
[43]) as a function of Uj, was used to determine the self-
consistent value of the Hubbard U through the elimination
of the second derivative of the Hubbard correction, consistent
with the idea that Ugs should correspond to the curvature
of the DFT part only of the total energy. In later works
[11,26,30-32,44,46,47,77], the self-consistent evaluation of
the Hubbard parameters was based on an iterative recalcula-
tion of their values, each step using the parameters determined
at the previous one (or a linear combination of those com-
puted at previous steps). The use of LR-cDFT (or DFPT)
to recalculate iteratively the Hubbard parameters until self-
consistency is straightforward. However, in order to prevent
the Hubbard correction from responding to the perturbation,
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DFT+Uyu ¢tV oyt Struct. optimization
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IVout - le <A

Self-consistent structure
and Uger & Vet

FIG. 1. A protocol for the calculation of self-consistent Hubbard
parameters Uy (onsite) and V¢ (intersite).

thus spuriously contributing to the calculation of the total
energy curvature [43], it is important to maintain the Hubbard
potential unchanged (and equal to its self-consistent unper-
turbed value) during the iterative solution of linear-response
equations [49], as was discussed above. This is the reason why
no Hubbard response potential is included on the right-hand
side of Sternheimer Eqgs. (18), (24), and (29).

The procedure described up to this point obtains the self-
consistent values of U and V for a given crystal structure.
When structural optimization is necessary, it is also important
to obtain consistency of the final Hubbard parameters with
the crystal geometry as well, so one can envision an overall
iterative procedure, as illustrated by the flowchart diagram
in Fig. 1. The importance of the consistency of the Hubbard
parameters with the crystal structure has already been high-
lighted in some recent work involving the authors [47,48,50].
In fact, the evaluation of the Hellmann-Feynman forces and
stresses contains Pulay (Hubbard) terms that are computed at
a fixed geometry and by assuming that U and V do not depend
on the atomic positions and on the strain. However, as shown
in Ref. [78], Hubbard parameters can depend on atomic posi-
tions, and this should be taken into account when computing
U and V self-consistently with the crystal structure. So, the
workflow of Fig. 1 drives the system to a global minimum
also with respect to the changes in the Hubbard parameters
(this will be discussed in more detail elsewhere).

In summary, the procedure to compute Uy and Vi is as
follows:

Step 1. Set up the initial crystal structure for the system of
interest and choose the initial values for U and V (possibly
Zero).

Step 2. Perform a self-consistent field (SCF) ground-state
calculation using DFT+U +V with the current input values of
Hubbard parameters (i.e., U, and Vi,).

Step 3. Perform a DFPT calculation to determine the new
values of the Hubbard parameters (U, and Vo).

Step 4. Perform a structural optimization using
DFT4+U+V with the current values of U and V (i.e.,
Upur and Viyy).

Step 5. Return to Step 2 with updated values of the Hubbard
parameters (i.e., Uy, = Uy and Vi, = Vi) and iterate the
procedure until the point when the variations of the Hubbard
parameters [see Egs. (38) and (39)] and of the crystal structure
are both within fixed thresholds.

In view of the fact that the DFT+U (+V) electronic ground
state is often qualitatively different from the DFT one, it is
usually a good idea to start the self-consistent loop in Fig. 1
from finite U;, and V, to avoid oscillations in their value
during the initial steps of their calculations. Since U and V
depend on the Hubbard manifold on which they act, a reason-
able guess of U;, and V;, can only come from a calculation
done for a similar material and the same pseudopotential. Of
course, it is always possible to start with U;, and Vj, set to O (as
done here for demonstration purposes). In systems with mul-
tiple (meta)stable states (e.g., spin-polarized molecules), the
converged values of the Hubbard parameters will be different
(albeit often only slightly) depending on the specific minimum
that is reached. We also note in passing that the actual mini-
mum that is reached will depend more on the symmetry of
the system, the initial magnetization, or the starting atomic
occupations than the actual chosen values of Uj, and Vi, [79].

The current workflow for the calculation of Ugs and
Vief can be easily implemented and automatized. Since the
Hubbard parameters depend on many computational details
(chemical composition, choice of localized functions for pro-
jectors, xc functional, pseudopotentials, oxidation state, etc.),
having a fully automated workflow for calculation of Uy
and Vi is indispensable for the high-throughput materials’
screening.

V. TECHNICAL DETAILS

To exemplify and benchmark the application of the DFPT
approach described here, we chose MnPO, and LiMnPO, as
test cases. In this section, we review the technical settings
of these calculations. The DFPT approach for calculations of
Hubbard parameters with US PPs and PAW discussed here has
been implemented in the QUANTUM ESPRESSO distribution
[80-82] and has been released starting with version 6.6 [83].

All calculations are performed using the plane-wave (PW)
pseudopotential method, and the xc functional is constructed
using spin-polarized GGA with the PBEsol prescription [84].
Pseudopotentials are chosen based on the SSSP library 1.1
(efficiency) [85,86]: we have used US PPs and PAW [87]
from the Pslibrary 0.3.1 and 1.0.0 [88,89] and the GBRV
library 1.2 and 1.5 [90]. The crystal structure is optimized
at three levels of theory (DFT, DFT+U, and DFT+U+V)
using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algo-
rithm [91], with a convergence threshold for the total energy
of 5x10~% Ry and for forces of 5x 10~> Ry/Bohr. We used an
antiferromagnetic ordering for both materials (labeled “AF;”
in Ref. [47]). To construct the projectors ¢’ of the Hubbard
manifold [see Eq. (14)] we have used atomic orbitals which
are orthogonalized using Lowdin’s method [92,93]; structural
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TABLE I. Comparison of the Hubbard parameters U and V (in eV) computed using LR-cDFT and DFPT for MnPO, and LiMnPO,. The
parameters were computed in a “one-shot” fashion (i.e., no self-consistency described in Fig. 1), using orthogonalized atomic orbitals, and
starting from the DFT ground state on top of the DFT optimized geometry.

Hubbard MnPO, LiMnPOy4
Method parameters LR-cDFT DFPT LR-cDFT DFPT
DFT+U U(Mn) 5.619 5.619 5.073 5.072
U (Mn) 6.215 6.214 5.401 5.400
V(Mn-Oy) 1.193 1.193 0.638 0.638
DFT+U+V V(Mn-0O,) 1.214 1.214 0.907 0.907
V(Mn-03) 1.090 1.090 0.926 0.926
V(Mn-Oy) 0.666 0.666 0.539 0.539

optimizations using DFT+U and DFT+U+V are performed
using orthogonalized atomic orbitals as described in detail
in Ref. [63]. KS pseudo-wave-functions and potentials are
expanded in PWs up to a kinetic-energy cutoff of 90 and 1080
Ry, respectively, for structural optimization, and of 65 and 780
Ry, respectively, for calculation of Hubbard parameters and
voltages.

The olivines MnPO, and LiMnPO,4 have an orthorhombic
crystal structure; the theoretical values of the lattice parame-
ters are compared with the experimental values in Sec. VIC.
The Mn atoms are coordinated by six O atoms forming an oc-
tahedron (indicated as MnQOg) of which it occupies the center.
The P atoms are instead at the center of PO, tetrahedra that
they form with neighboring oxygens. The three-dimensional
structure of the crystal can be understood as being based on
a network of corner-sharing MnOg octahedra further linked
by “interstitial” POy tetrahedra that act as structural reinforcer
[avoiding excessive volume variations upon Li (de-)insertion]
and chemical stabilizers (useful to avoid oxygen escapes).
Lithium ions reside within octahedral channels along the
intermediate-length side (b) of the cell. The reader is referred
to Ref. [47] for more details.

The DFPT calculations of Hubbard parameters (for
production purposes) are performed using the uniform I'-
centered k and q point meshes of size 3x4x5 and 1x2x3,
respectively, which give an accuracy of 0.01 eV for the com-
puted values of U and V. Unit cells with four formula units are
used, containing 24 atoms in the case of MnPO, and 28 atoms
in the case of LiMnPOy [47]. The linear-response KS Eq. (29)
are solved using the conjugate-gradient algorithm [94] and the
mixing scheme of Ref. [95] for the response potential to speed
up convergence.

The DFPT calculations of Hubbard parameters (for bench-
marking purposes) are performed using uniform I'-centered
k- and q-point meshes of size 3x4x6 and 1x2x3, re-
spectively, and the same unit cells as described above. The
equivalent LR-cDFT calculations of U and V were performed
using finite differences on 1x2x3 supercells (resulting in 144
and 168 atoms for MnPOy and LiMnPOy, respectively) whose
Brillouin zone was sampled using a correspondingly coarser
I'-centered 3x2x2 k point mesh. For LR-cDFT, the strength
of the perturbation is chosen to be +0.05 eV (see Ref. [43] for
more details).

The data used to produce the results of this work are avail-
able in the Materials Cloud Archive [96].

VI. RESULTS AND DISCUSSION
A. Benchmark of DFPT versus LR-cDFT

In this section, we present a validation of the analytical
formulas for DFPT presented in Sec. III and their numerical
implementation, in the framework of US PPs and PAW. For
this purpose, we make a comparison with the calculations
performed using the well-established LR-cDFT approach of
Ref. [43].

As described in Sec. V, DFPT and LR-cDFT calculations
are set up under equivalent conditions so that they ought to
give the same values of U and V. For more details about
the equivalence between these two methods, we refer the
reader to Ref. [49]. Table I shows the comparison of Hubbard
parameters computed from these two approaches for MnPQO4
and LiMnPOy. The calculations are performed in a “one-shot”
fashion, i.e., without performing the self-consistency loop as
described in Sec. IV—our goal here is not to compute U and
V self-consistently (this will be discussed in Sec. VI B) but to
validate the extension of the DFPT formalism to US PPs and
PAW. DFPT and LR-cDFT calculations are performed starting
from the DFT ground state and using the geometry that was
optimized also at the DFT level (this is a typical starting point
in the protocol described in Sec. IV).

As can be seen from Table I, the agreement between
Hubbard parameters U and V computed using DFPT and LR-
cDFT is excellent for both cases, and in line with the bench-
mark for the NC PPs implementation discussed in Ref. [49].
The onsite U for Mn(3d) and the intersite V between Mn(3d)
and O(2p) states agree within 1072 eV. The level of agreement
could be improved even further by reducing the numerical
noise through tighter convergence parameters; however, such
accuracy on Hubbard parameters is not needed for any prac-
tical application where one wants parameters converged to
0.01-0.1 eV. It is worth noting that in MnPO,4 and LiMnPO,
there are four inequivalent types of oxygen atoms (we label
them as Oj, O, O3, and Oy4), and this is the reason why we
obtain four values of intersite Hubbard V parameters between
those and the neighbor transition-metal center (Mn atom).
For different pairs of atoms, the Hubbard V' parameters are
different due to variation in interatomic distances and local
chemical environment (electronic screening), reminding us of
the importance of locally sensitive Hubbard parameters.

Even though the systems used here for benchmark pur-
poses are insulating (even at the DFT level), the extension
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FIG. 2. Convergence of the Hubbard parameters U and V during their self-consistent evaluation from DFPT calculations based on DFT+U
and DFTH+U+V. Results are presented for both MnPO, (left column) and LiMnPO, (right column). Onsite U refers to Mn(3d) states
while intersite V’s are used between nearest-neighbor pairs of Mn(3d) and O(2p) states (each Mn being coordinated by four inequivalent
O neighbors). All calculations are based on a basis set of orthogonalized atomic orbitals for the Hubbard manifold.

of DFPT to metals is needed for systems that are metallic
(and possibly become insulating after the application of the
Hubbard corrections). Such a benchmark will not be discussed
here, but it has also been investigated in detail, finding excel-
lent agreement between DFPT and LR-cDFT.

All the results discussed above lead us to conclude that
the DFPT formalism is correctly extended to US PPs and
PAW, and it can be reliably used for the calculations of
both onsite U and intersite V. Now we can proceed to the
self-consistent evaluation of Hubbard parameters using the
protocol described in Sec. IV.

B. Self-consistent calculation of the Hubbard parameters

In this section, we showcase the self-consistent evaluation
of Hubbard parameters U and V for MnPO,4 and LiMnPOy4
using the workflow described in Sec. IV. The results are
shown in Fig. 2.

We can see that after just a few iterations (typically two or
three), the Hubbard parameters are already within 0.1 eV from
the converged value. We remind the reader that each iteration
requires a structural optimization, a ground-state calculation,
and a calculation of Hubbard parameters using DFPT. The
first iteration is based on an uncorrected DFT calculation
(U =V =0) of the equilibrium structure, while in all sub-
sequent steps the DFPT evaluation of the Hubbard parameters

is based on DFT+4-U or DFT4-U+-V calculations with U and
V determined in the previous step.

As can be seen in Fig. 2, the variations of both U and
V are in general nonmonotonic, and the converged values
can be either higher or lower than their values obtained at
the first iteration, i.e., obtained from the uncorrected ground
state. More specifically, the converged U for LiMnPOy is
about 1 eV smaller than its value at the first iteration, while
the variation for MnPOy is less pronounced (especially with
DFT+U+V). On the other hand, Hubbard V presents much
smaller variations—typically within 0.2 eV of their value at
the first iteration—and, in addition, V for different pairs of
Mn and O atoms typically show a similar convergence trend.

The structural optimization included in the self-consistent
procedure (see Fig. 1) is of crucial importance for determining
the final values of the Hubbard parameters. This certainly
enhances the variation of U and V during the self-consistent
cycle due to their sensitivity to the local chemical environment
of the Hubbard atoms [78] and to the consequent dependence
on the interatomic distances, lattice parameters, cell geometry,
and symmetry. As can be seen in Figs. 2(c) and 2(f), the
Hubbard V parameters are very similar for some couples of
Mn and O atoms (see the magenta and green lines)—this is
due to the fact that interatomic distances (after the structural
optimization) are very similar for these couples. We argue
that including the structural optimization step is crucial to
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TABLE II. The equilibrium lattice parameters (LP) a, b, and ¢
(in Bohr) of LiMnPO, and MnPO, computed using DFT, DFT+U,
and DFT+U+V with Uys and Vi determined as explained in
Sec. VIB. The experimental data are from Ref. [97] (superscript a)
and Ref. [98] (superscript b).

Material LP DFT DFT+U DFT+U+V Expt.

LiMnPO;, a 1961  19.80 19.79 19.76,* 19.71°
b/a 058 058 0.58 0.58%
c/a 046 045 0.45 0.45%b
MnPO, a 1840 18.52 18.46 18.31°
b/a 061 06l 0.61 0.61°
c/a 050 050 0.50 0.49°

obtaining Hubbard U and V, which are fully consistent with
the crystal structure.

The self-consistent Hubbard parameters Uss and Vi are
indicated in Figs. 2(a)-2(f) (at iteration 4), and these values
will be used in the next section for the discussion of structural
properties of MnPO,4 and LiMnPOy, and for the evaluation of
the voltage of a Li,MnPQOy-based cathode versus a standard
Li/Li* reference.

C. Structural properties and energetics

The detailed investigation of structural, electronic, and
magnetic properties of MnPO, and LiMnPO,4 was already
performed in great detail by some of us in a previous study
[47]. Here, we will discuss some improvements that we ob-
tained thanks mainly to a more accurate evaluation of the
Hubbard parameters achieved with the DFPT implementa-
tion, and a more consistent way to perform the structural
optimization.

In fact, in Ref. [47] the calculation of Hubbard parameters
was performed using LR-cDFT with orthogonalized atomic
orbitals, while structural optimizations were performed us-
ing nonorthogonalized atomic orbitals, due to the lack of
implementation of Hubbard forces and stresses with orthog-
onalized atomic orbitals. Although good agreement with
experiments was obtained for various properties using the
DFT+U+V functional, the use of different Hubbard mani-
folds for the calculation of U and V on the one hand and for
the structural optimization on the other hand is not completely
justified. Here, instead, we make use of a recent extension
and implementation of Hubbard forces and stresses based
on orthogonalized atomic orbitals [63]. Moreover, instead of
LR-cDFT as in Ref. [47], we use DFPT for the calculation of
the Hubbard U and V parameters using orthogonalized atomic
orbitals that, while equivalent to LR-cDFT (see Sec. VI A and
Ref. [49]), offer a better control of the numerical accuracy and
the convergence of the Hubbard parameters. While the above-
mentioned advancements in the computational procedure are
certainly relevant, it is important to note that the differences
between the present results and those of Ref. [47] are also due
to the use of different pseudopotentials and the consequent
adoption of different computational parameters.

Table II shows the lattice parameters of LiMnPO4 and
MnPOQO, using DFT, DFT+U, and DFT+U +V, based on our
refined procedure. For LiMnPO,4, DFT and DFT+U+V re-

Voltages (V)

4.6

4.2

s
~
+
[
=
a

FIG. 3. Voltages ¢ (in V) in Li,MnPO, (versus Li/Li*) com-
puted using DFT, DFT+U, and DFT+U+V with Uy and Vi
determined in Sec. VI B. The experimental data are from Ref. [99].

sults are in very good agreement with Ref. [47], while our
DFT+U calculations give a = 19.80 Bohr and in Ref. [47]
DFT+U gave a = 19.94 Bohr. Thus, our DFT+U a is much
closer to our DFT+U+V a, which is likely due to the fact
that in our calculations the structure is optimized more accu-
rately including the effect of changes in the orbital overlap
matrix and respective changes in Hubbard parameters. For
MnPOQy, the difference between our lattice parameters and
those of Ref. [47] is more pronounced. We now obtain a much
better agreement with experimental lattice parameters (for
both DFT4+U and DFT+U+V) than was achieved before,
although, surprisingly, we still find standard DFT predictions
to be the closest to the experimental data.

Figure 3 shows a comparison of voltages as measured in
the experiments and computed in this work using the funda-
mental thermodynamic definition [100]:

EMHPO4

Lt Livnpo i
¢ = _;[E M DFT+U+V — Eéi?T]’ (40)

DFT+U+V —

: : : LiMnPO,
where ¢ is the voltage, e is the electronic charge, Eppr 1y

and E[l;/l;ffi‘, v are the total energies of LiMnPO4 and MnPO4
computed at the DFT4+U+V level of theory using self-
consistent values of U and V (see Sec. VIB), and EJl;. is the
DFT total energy of bulk Li. It is important to note that the
total energies entering in Eq. (40) refer to the same amount
of formula units, and E5L. represents the total energy of an
equivalent number of Li atoms in bulk Li. We find that our
DFT and DFTH+U+V results are consistent with those of
Ref. [47], while our DFT+U voltage is 4.6 V versus 5.1 V of
Ref. [47]. This latter result is a consequence of the difference
in the values of U, and of the consistent calculation of forces
and stresses using the orthogonalized atomic manifold that has
significantly refined the prediction of the equilibrium crystal
structure in this work.

VII. CONCLUSIONS

We have presented a generalization of density-functional
perturbation theory to the linear-response calculation of both
onsite U and intersite V Hubbard parameters, using ultrasoft
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pseudopotentials and the projector-augmented wave method.
This formalism is applicable to both insulating and metallic
ground states, and it does not require the use of compu-
tationally expensive supercells with localized perturbations;
instead, it is based on calculating the linear response of
systems to monochromatic (i.e., wavelength-specific) pertur-
bations inexpensively applied to primitive unit cells [49]. The
work also discusses and applies an iterative procedure to com-
pute the Hubbard parameters in full consistency with both
the electronic and crystal structures. Moreover, the level of
consistency is improved compared to previous works by the
application of a recently developed algorithm [63] for the cal-
culation of Hubbard forces and stresses using orthogonalized
atomic orbitals as a basis set for the Hubbard manifold.

The new extension of DFPT to US PPs and PAW has
been benchmarked against the supercell LR-cDFT approach
for LiMnPO,4 and MnPOy: the fully lithiated and delithiated
members of a cathode material for Li-ion batteries. An ex-
cellent agreement is achieved for the Hubbard parameters U
and V between the two equivalent techniques, which validates
the correctness of the derivation and implementation of the
present extension of the DFPT approach to the calculation of
Hubbard parameters. The equilibrium lattice parameters and
average voltages computed with the DFT4-U 4V approach are
in good agreement with experiments, as in Ref. [47], while
those obtained with DFT+U are sensibly improved with re-
spect to the previous study. This latter outcome is the result
of the consistency achieved between Hubbard parameters and
the crystal structure due to the calculation of atomic forces
and stresses on a Hubbard manifold of orthogonalized atomic
orbitals [63].

What are the reasons for the accuracy of DFT4+U+4V in
describing complex materials? This approach does not actu-
ally cure correlation shortcomings—strong correlations are
really challenging. What it does, very well, is to cure major
shortcomings in the energetics that many strongly correlated
systems have, originating in strong self-interaction errors
driven by very localized d and f electrons. In this respect,
DFT+U and DFT4+U+V correct self-interactions in similar
ways to hybrid functionals [2], but with a strength that is,
thanks to the linear-response approach adopted, sensitive to
the electronic-structure environment of the system at hand,
and thus ultimately both accurate and efficient. Incidentally,
for these reasons these Hubbard functionals can also be ap-
plied to molecular systems [7,45] where there is only a single
transition-metal atom, and thus no multisite correlations.

Finally, it is important to mention that the new frame-
work based on DFPT is implemented in the open-source
QuaNTUM ESPRESSO distribution [80-82] and is publicly
available to the community at large. This approach, simple
and accurate, allows one to perform simulations for com-
plex transition-metal and rare-earth compounds, which are
challenging for standard DFT. Notably, it can be easily in-
corporated in high-throughput workflows for simulations of
thousands of materials, which could even be used to machine-
learn Hubbard parameters, with straightforward applications
for data-driven material modeling. Ultimately, we believe that
this approach allows reliable, robust, and computationally
affordable simulations to understand, predict, design, and dis-
cover novel materials.
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APPENDIX A: DFT+U+V USING THE PAW METHOD

In this Appendix, we discuss in more detail how
DFT+U+V is used within the PAW method and its similari-
ties to the case when US PPs are used.

In the PAW method, the KS all-electron wave functions
Wo. . are reconstructed from the KS pseudo wave functions
WS as [58]

vko

Wi, (1) = Yo, 0+ Y [6h) — g1 (B[ Vi,). (AD

Ju

where ¢{L and 43/4 are the all-electron and pseudo partial waves
(coinciding outside augmentation spheres), respectively, ob-
tained from the PAW PPs. A similar expression holds for the
all-electron atomic wave functions @’ that are obtained from
the atomic pseudo wave functions ¢!, as

o) = ¢l (+ > [gh0) — FLO](BLleL). (A

Ju

From these expressions, it is easy to compute (keeping in mind
that (B/,|¢]) = 8,8, within the augmentation spheres [58])
the scalar product between the all-electron KS and atomic
wave functions:

(ko | 1) = (Vo ) + Z (Ve |B2)
x[(%00) — (@] 180180 e0)

= (Voo IS|0h), (A3)

where § is the overlap operator defined in Eq. (10), with the

coefficients ¢, given by (¢!, |¢]) — (@, I1).
The generalized occupation matrices thus result,

Nk

ni‘l/l(;ﬂz = Z Z éF’Uk” (qjl?k(f |q>‘f]ﬂz ><q)£n| |\Ij5k0>
k v

Ny
= Z Z éF*”k‘T (wska |131;/1§m1 |w3ka>’ (A4)
k v

where the projector P’/ | is expressed in exactly the same way

as for US PPs [see Eq (14)] but with § defined in terms of
augmentation and projector functions from the PAW scheme.
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APPENDIX B: BLOCH SUMS

Similarly to Appendix 1 of Ref. [49], we define here
Bloch sums and inverse Bloch sums of projector functions as,
respectively,

s 1 & k-R; ps
Bl () = J_N_k;[em Bi(r —R)) (B1)
and
AL
B.(r —R;) = Wi Xk: e MR B (D). (B2)

The functions B;,k(r) are Bloch-like functions, and hence
they can be written as

s 1 ikr 3s
(D) = T B (1), (B3)
where
Bl@) = e T Brie — 1)), (B4)

The augmentation functions, QiLf) (r)= fw (r — R)), can also
be represented using Bloch sums and inverse Bloch sums,
respectively, as

Nk
~ 1 .
k() = Y e Mo r—R) (B3
k R,
and
1
L —R) = o e Rg (@), (BO)
k

Similarly to Bli.k(r) [see Eq. (B3)], the functions wa’k(r) are
Bloch-like functions, and therefore they can be written as

~ 1 N
05,k (r) = We““Q;U,km, (B7)
k
where
Qi (1) = e Q0L (r — 7). (BS)
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