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compounds with artificial neural networks

Johann Lüder *

Department of Materials and Optoelectronic Science, National Sun Yat-sen University, 70 Lien-Hai Rd.,
Kaohsiung 80424, Taiwan, Republic of China

and Center for Crystal Research, National Sun Yat-sen University, 70 Lien-Hai Rd.,
Kaohsiung 80424, Taiwan, Republic of China

(Received 19 November 2019; accepted 10 December 2020; published 29 January 2021)

X-ray absorption spectroscopy at the L-edge probes transitions of 2p electrons into unoccupied d states.
Applied to transition metal atoms, this experimental technique can provide valuable information about the
electronic structure of d states. However, multiplet effects, spin-orbit coupling, and a large number of possible
transitions can cause a rather involved nature of 2p XAS spectra, which can often complicate extracting of
information directly from them. Here, artificial neural networks trained on simulated spectra of a 2p XAS
model Hamiltonian are presented that can directly determine information about atomic properties and the
electronic configuration of d states from L-edge x-ray absorption spectra. Moreover, the adaptable nature of
artificial neural networks (ANNs) allows extending their capability to obtain information about the electronic
ground state and core hole lifetimes from 2p XAS spectra as well as to incorporate external factors, such
as temperature and experimental convolution that can affect details in spectral features. The effects of noise
and background contributions in spectra on the accuracy of ANNs are discussed and the method is vali-
dated on experimental spectra of transition metal compounds, including metal-organic molecules and metal
oxides.
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I. INTRODUCTION

X-ray spectroscopy (XS) is an important tool for many
branches of science and technology [1–3]. Since the discovery
of x rays, a large variety of specialized XS techniques have
been developed, and many of them are routinely used as scien-
tific tools, providing detailed information about properties of
materials that lead to accelerated technological and scientific
advancements [4–11]. Many technological applications, such
as environmental sensors, catalysts, and energy storage and
harvesting devices, can benefit from these insights, which
allow us to understand and optimize processes in materials,
e.g., involving details of nanostructures [12], charge transfer
effects [13], and chemical stability [14,15], that can be employ
to enhance their design and functionalization. One special-
ized technique is soft x-ray absorption spectroscopy (XAS)
at the L edge that employs tunable photon energies probing
energy-dependent transitions of electrons from occupied to
unoccupied states obeying dipole selection rules [16]. This
technique is element, state, and orientation selective. In light
transition metal (TM) atoms, this technique can probe electron
transitions from occupied 2p to unoccupied 3d states induced
by the absorption of photons and help to reveal the nature of
their 3d states.

For extensive analysis, experimental XAS results are fre-
quently combined with theoretical simulations [17–20]. Then,
experimental and computational insights can explain possible
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causes leading to changes in spectra. Detailed pictures can
be drawn from the underlying mechanisms, explaining the
role of the electronic and chemical structure and relate them
to changes in properties of materials [21–26]. However, the
independent particle methods, that are often used in other
branches of theoretical spectroscopy [27–29], cannot describe
2p XAS processes in TM ions, due to strong electron-hole
interactions, multiplet effects, and spin-orbit coupling (SOC)
[30,31]. These effects govern the electronic transitions in 2p
XAS and strongly affecting spectral shapes, including the
nontrivial branching ratio between peaks corresponding to
transitions from p3/2 and p1/2 semicore states. Several the-
oretical many-body methods have been developed to model
2p XAS spectra at the L edge, such as first-principle meth-
ods employing, e.g., the Bethe-Salpeter equation [32–35] and
configuration interaction related methods [36,37]. In con-
trast to first-principle methods, XAS model Hamiltonians
are computationally efficient and can yield very good agree-
ment with experiments [38,39], although their parametrization
can be challenging and time consuming. Recently, model
Hamiltonian approaches (MHA) were combined with DFT
results through extracting local properties using maximally lo-
calized Wannier functions [40] or extracting the parametriza-
tion from the hybridization function, which is known from the
dynamical mean-field theory [41]. Still, none of these methods
provides a direct way to determine electronic properties from
spectra, but rather require computing the electronic structure,
followed by comparing an obtained theoretical XAS spectrum
with the experimental spectrum. Additionally, the possibly
large number of transitions can lead to feature-rich spectra that
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are difficult to analyze. To directly analyze spectra, a func-
tion is needed that reverses the conventional computation of
L-edge XAS spectra performed with, e.g., a MHA. Then, the
model Hamiltonian can be used to determine physical prop-
erties such as the electronic configuration of the ground state
and, in principle, also the theoretical L-edge XAS spectrum
with the results given by the inverse function. This function
is, however, unknown.

Artificial neural networks (ANNs) have attracted much
attention in material science [42–44] because they can fit any
real-valued function with arbitrary accuracy [45] and allow
unbiased learning of fundamental relations from data. Em-
ploying ANNs may lead to solutions to complex problems,
as ANNs can accelerate computational methods and accel-
erate materials discovery [46–51]. For instance, ANNs are
frequently combined with density functional theory (DFT)
computations [52–54] to efficiently predict structures and
properties of compounds, which can be computationally ex-
pensive by DFT means [55–57]. With regard to 2p XAS spec-
troscopy, one question at hand is: Is it possible to construct
useful ANNs that represent this inversion and can obtain in-
formation about the electronic structure from experimental 2p
XAS spectra in the form of parameters used in, e.g., a MHA?

Here, an ANN method is presented that obtains infor-
mation on the TM ion’s local electronic structure from
experimental L-edge XAS spectra in the form of parameters
used in a MHA. The MHA is the basis of the ANN method.
The ANN can obtain relative energy levels of the d states in
a TM ion and screening factors of Slater-Condon integrals.
Furthermore, extensions of the method provide estimations
of core-hole lifetimes and can consider external factors such
as temperature and experimental broadening, as well as pre-
dictions of expectation values of the MHA, including spin
state and orbital occupations. Several ANN architectures were
tested to demonstrate limitations, capabilities, and accuracy
dependencies. The method is applied to and tested with previ-
ously published experimental 2p XAS spectra of well-studied
systems of transition metal monoxides and transition metal-
organic complexes.

II. METHODS

In the following, an ANN approach is described that can
extract information about the local electronic structure of
transition metal ions such as relative d-level positions and
d-state occupations from 2p XAS spectra with high accuracy.
Then, the influence of external factors such as temperature
and experimental convolution as well as expectation values
prediction (EP) is included through extensions of the method.
The ANNs are constructed and trained on simulated 2p XAS
spectra, the so-called reference spectra, computed for light
TM ions. The employed 2p XAS MHA is based on crystal-
field multiplet theory (CMT) while charge transfer (CT)
effects are neglected. Since 2p XAS spectra of light transition
metal have large energy separations (i.e., spectroscopic fin-
gerprint), the approach works with specialized ANNs for each
element. The trained ANNs can be applied to experimental
spectra to extract sets of parameters (that are atomic and
ligand field parameters in the language of CMT) describing

characteristic electronic properties. Then, the determined
parameters allow recomputing any spectrum with the same
theoretical framework as the reference spectra to estimate
the accuracy of the method directly. In the following, CMT
and the ANN implementations are briefly explained. Then,
the performance of different ANN types is compared and the
influence of noise and background in spectra is discussed
before the method is applied to experimental spectra.

A. A 2p XAS model Hamiltonian

For TM complexes with partly filled 3d shell, a CMT based
approach is used to build a database of computed L-edge
XAS spectra for Ni2+, Co2+, Fe2+, and Mn2+ ions. CMT
considers a central metal ion described by valence 3d states
and 2p semicore states. The TM ion is placed in a crystal
field (CF) representing the chemical surrounding, leading to
the lifting of the degeneracy of 3d states. The strength of
the CF is described by optical parameters, for instance, in
Ballhausen notation [58]. The d-level splitting is then given
for D4h symmetry by

εda1g
= 6Dq − 2Ds − 6Dt

εdb1g
= 6Dq + 2Ds − Dt

εdb2g
= −4Dq + 2Ds − Dt

εdeg
= −4Dq − Ds + 4Dt , (1)

where Dq, Ds, and Dt are Ballhausen parameters for low
symmetry CFs. For Oh symmetries, the d-level split reads as

εdeg
= 6 · Dq

εdt2g
= −4 · Dq. (2)

Negative values of Dq in Eq. (2) yield a C4 symmetric CF [58].
The L-edge XAS model Hamiltonian [40] is

Ĥ =
∑
i, j

εdi, j d̂
†
i d̂ j +

∑
i, j

εp p̂†
i p̂ j

+ ζd

∑
i, j

〈di|�l · �s|d j〉 d̂†
i d̂ j + ζp

∑
i, j

〈pi|�l · �s|p j〉 p̂†
i p̂ j

+
∑

i, j,k,l

U dd
i jkl d̂

†
i d̂†

j d̂l d̂k +
∑

i, j,k,l

U d p
i jkl d̂

†
i p̂†

j p̂l d̂k . (3)

In Eq. (3), the nonrelativistic single-electron d- and p-state
energies are given by εd and εp, respectively. The correspond-
ing d̂ j (d̂†

j ), and p̂ j ( p̂†
j) operators annihilate (create) states.

Spin-orbit coupling constants are ζd for d states and ζp for
p states. They are linked by the vector product �l · �s with
the angular-momentum operator (�l) and the spin operator (�s).
The onsite Coulomb interaction between d electrons can be
described by Slater-Condon integrals F 0

dd , F 2
dd , and F 4

dd . Like-
wise, the interaction between d electrons and p-core hole are
described by F 0

pd , F 2
pd , F 4

pd , G1
pd , and G3

pd [31]. The monopole
terms between 3d electrons, i.e., F 0

dd , and between 3d and
2p electrons, i.e., F 0

pd , are expressed through U dd
i jkl , F 2

dd , and

F 4
dd and U d p

i jkl , G1
pd , and G3

pd , respectively [59], where U ’s are
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Hubbard-U parameters; they read

Udd = F 0
dd − 2

63

(
F 2

dd + F 4
dd

)
(4)

and

Upd = F 0
pd − 1

15 G1
pd − 3

70 G3
pd . (5)

The values of the Slater-Condon integrals other than F 0
dd

(F 0
pd ) are taken from atomic calculations [59]. The F k (Gk)

integral values representing direct (exchange) Coulomb inter-
actions are scaled by a factor S1 (S2) that is usually about 0.8
to account for correlation effects and electronic screening in
solids [31]. In CMT, the effects of Upd and Udd are canceled
out between ground and excited states since the total number
of electrons does not change [59].

The XAS spectra can be obtained with the solutions of
Eq. (3) yielding eigenstates |ψi〉 as a sum of Slater determi-
nants with eigenenergy Ei

Ĥ |ψi〉 = Ei |ψi〉 . (6)

Then, the XAS spectrum can be obtained from

I (ω) = − 1

Z

∑
i

�
(

〈ψi|D̂† 1

ω − Ĥ + Ei + ı�/2
D̂|ψi〉

)

× exp(−βEi ), (7)

where ω represents the excitation energy, and D̂ is the dipole
operator describing a p-electron excitation into an unoccupied
d state. Equation (7) results in a Lorentzian broadening of the
transition intensities through the imaginary shift � from the
real axis, with β being the inverse temperature representing
10 K (if not stated otherwise) and Z is the partition function.
The broadening of computed transition intensities, frequently
performed to facilitate comparison with experimental spectra
[22–24,60,61], employs a Gaussian broadening (GB) for ex-
perimental convolution factors additionally to the Lorentzian
broadening (LB) for lifetime broadening. GB is character-
ized by a constant factor, i.e., a full width at half maximum
(FWHM). The LB based convolution depends on the core-
hole lifetime. Generally, the lifetimes of holes in p3/2 and
p1/2 states differ, leading to differences in peak widths in the
L3 and L2 features, respectively. It is common to employ an
energy-dependent stepwise function that uses two broadening
factors �1 for L3 and �2’ for L2 features before and after an
energy window defined by E1 and E2, and a linear function
within the energy window that starts at �1 and ends at �2’
[61,62]. If not stated otherwise, the core hole lifetimes in
the tested TM ions were estimated to correspond to values
of � between 0.3 to 0.5 eV with increasing values from Mn
to Ni. Gaussian convolution of 0.1 eV accounted for other
effects leading to broadening of the experimental spectra. The
solutions of Eq. (6) and the consecutive convolution of the
transition intensities were obtained with the Quanty code [40]
which performs a Lanczos algorithm on a random dn configu-
ration generated by the tridiagonal Krylov bases to determine
the electronic ground state.

B. Artificial neural networks

In the presented method, an ANN replaces the unknown
inverse function, i.e., it can reconstruct the parametrization
of a 2p XAS model Hamiltonian from a spectrum. That is
to say; it allows reading the parametrization of Eq. (3) from a
spectrum, including the consecutively applied convolution of
transition intensities and external factors.

For accurate results, the ANN needs a suitable network
architecture and effective training, indicated by a positive
evaluation of test data, before it can provide reliable results.
The smallest building block of an ANN is an artificial neuron
or node, which is a weighted processing unit with a simple
mathematical representation. The activation function f de-
scribes how a neuron evaluates given information. Besides
widely used sigmoidal functions [63,64], the rectified linear
unit (RELU) function is a common choice in ANN supported
computational materials science [65–67]. Individual neurons
are collected in layers. In a fully connected (so-called dense)
ANN, each neuron in a layer is connected to all neurons in
neighboring layers. This allows passing information in one
direction from layer to layer by so-called forward propagation.
In an ANN, a single layer with DN neurons taking input from
Di neurons in a previous layer is represented as

y j =
DN∑
p=0

wp f

(
Di∑

i=0

w ji xi + bp

)
, (8)

where neurons process the input xi through the activation
function f , weights w j,p, and bias bp. This process starts at
the input layer, i.e., the descriptor vector, and continuous to
subsequent hidden layers until it reaches the last layer, the so-
called output layer, representing the output vector or feature
vector. Then, complex relations can be learned from reference
data constructing complex functions through a series of layers
and neurons with adaptable weights. For multilayer ANNs
with N hidden layers, a general form is given by

y j = fo

(
DN∑

kN =0

w
(N )
j,kN

fN−1,kN−1

(
DN−1∑

kN −1=0

w
(N−1)
kN ,kN−1

fN−2,kN−2

× ...

(
D1∑

k1=0

w
(2)
k2,k1

f1,k1

(
Di∑

i=0

w
(1)
k1,i

xi

))))
(9)

omitting any bias term. The last activation function fo, which
yields the output y, employs, in general, a linear function for
regression tasks.

The ANN architecture describes the connection patterns
between neurons within a network. This affects how neurons
pass information through the network. The width is the num-
ber of neurons in a layer and the depth refers to the number
of layers. Both width and depths are hyperparameters of the
ANN in addition to learning rates and, e.g., momentum used
in some optimizers.

During training, a randomly selected subset of reference
data, i.e., training data, is used to optimize the weights in
the ANN through back propagation employing the gradient
of a cost function. The cost function compares and penalizes
differences between predicted value (yp), i.e., values com-
puted by the ANN through passing the input vector through
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the network, and the actual value (ya). Common choices of
cost functions for regression tasks are, for instance, the mean
absolute error (MAE) or the root mean square error (RMSE).

Each ANN can be optimized with respect to hyperparame-
ters, which are different from parameters, e.g., the weights,
in the ANN. In contrast to trainable weights of ANNs,
hyperparameters must be optimized outside the training of
ANNs. A validation dataset containing different data from the
training dataset can be used to evaluate the ANN performance
concerning hyperparameters besides detecting overfitting.
With adjusted weights and hyperparameters, the ANN is
tested on an independent dataset, i.e., test dataset, that was
used for neither training nor validation.

C. Artificial neural network design

The input for an ANN is a reference (for training, test, and
evaluation of the ANN) or an experimental (for application)
spectrum. The output is a set of features that describe the
local electronic properties of the central TM ion. Here, three
types of ANNs are tested. The first ANN type, labeled A2pX,
can determine d-level positions described by Ballhausen pa-
rameters and screening factors in the model Hamiltonian
Eq. (3), while lifetime broadening factors are taken from
literature [68], the experimental broadening is estimated with
an FWHM of 0.1 eV and a temperature of T = 10 K.

Temperature (T ) can influence the appearance of 2p XAS
spectra due to the thermal occupation of electronic states at
higher energies. The effect is known to lead to noticeable
2p XAS spectral changes in, for instance, Co2+ ions, but
also Ni2+ ions [69,70]. This is expressed in Eq. (7) by the β

factor leading to a weighted contribution to an XAS spectrum
from electronic states different from the ground state. In the
second ANN type (labeled as A2pX-T2), temperature and
the experimental convolution by a Gaussian function with a
specific FWHM are taken as an external factor and therefore
included in the input vector. In addition, lifetime broadening
factors are part of the output vector, allowing estimations of
2p core hole lifetimes.

The third ANN type (A2pX-T2EP) can additionally pre-
dict expectation values of the 2p XAS MHA, such as the
spin state and the occupation of d states in the ground state
configuration. This could allow avoiding computing solutions
of Eq. (6). While the latter is not computationally expensive,
including the EP in the ANN has to be explored for automated
analysis and characterization of 2p XAS spectra. It should be
noted, A2pX-T2EP serves two purposes. One is to analyze a
spectrum by reconstructing a representative 2p XAS model
Hamiltonian. Here, the ANN is said to analyze a spectrum in
this case. The other purpose is obtaining the same ground-
state properties (or expectation values) as a solution to the
former Hamiltonian. Then, the ANN predicts parts of the
solutions of the model Hamiltonian, such as the spin state and
occupation numbers.

Here, recomputed spectra refer to simulated spectra em-
ploying the 2p XAS MAH with the parameters determined by
an ANN. Any difference between recomputed and reference
spectrum (and other properties) measures the impact of errors
in parameter estimations on the spectrum.

For the datasets of A2pX, reference spectra are computed
at 1000 data points in an energy range of 30 eV, including
a 5 eV pre-edge window. Datasets containing 60 000 spectra
were created with randomly generated parameters for each of
the tested TM ions. The intervals of the optical parameters
were Dq = [0.0, 0.2], Dq = [−0.2, 0.0] eV and for Oh and
C4 CFs, respectively, and Dq = [0.0, 0.2], Dt = [−0.2, 0.2],
and Ds = [−0.2, 0.2] eV for D4h CFs. The screening param-
eters were between 0.6 and 1.0. The features of the descriptor
vector are reference spectra. The optical and screening param-
eters are the features of the target vector to be determined by
the ANNs.

For A2pX-T2(EP), separate databases are required that
contain additionally information needed for the input and
output vectors. The extended databases include T from 1
to 1000 K, the FWHM of the Gaussian broadening in a
range from 0.05 to 0.25 eV. The lifetime broadening factors
intervals are [0.3,0.7] eV for �1 and [0.0, 0.2] eV with �2

with �′
2 = �1 + �2. The input vector size increases by two

features, which are T and FWHM, and the output vector size
increases from 5 to 15 features for A2pX-T2EP. The output
vector includes lifetime broadening factors for L2 and L3,
expectation values for J2, Jz, L2, and S2, the occupations of
a1g, b1g, b2g, and eg states, besides the already introduced
parameters used in the simpler ANN (A2pX) that are the
screening factors S1 and S2, and the description of the d-level
splitting through Dq, Ds, and Dt . The increasing number of
features in the output vector can decrease the accuracy of
the ANN due to the increased complexity of the learning
problem [71]. Hence, the number of reference spectra was
also increased. Databases containing 360 000 spectra were
created for each of the tested TM ions, from which 10 000
spectra were randomly selected for testing. Details are given
in Table I.

D. Dataset split and training details

Before ANN training, a dataset of a TM in a CF symmetry
was split into three different subsets for training, validation,
and testing. Besides, all features of the input and output vec-
tors, i.e., parameters and spectra, were normalized in [0,1]
intervals (from here on referred to as box normalization).
For A2pX, for instance, the first 2000 spectra were randomly
selected as test datasets. Then, the remaining data (not in-
cluding the test dataset) was used to construct several subsets
with sizes of N between 250 and 35 000 spectra. This allows
probing the required dataset size (DSS) for ANN training.
The latter subset were randomly split into training and vali-
dation datasets with a ratio of 80% to 20%, respectively. For
A2pX-T2(EP), N (N <= 350 000) of the remaining spectra
were randomly selected and also divided into training and
validation datasets with a ratio of 80:20. This follows the same
approach as for the A2pX dataset splitting. An overview of
the computational setup and used parameters for these cases
is given in the first data column of Table I.

The validation data were not used to train the model but
to monitor the training progress, including the detection of
over- and underfitting by comparing the evolution of the cost
function values of training and validation datasets. Further-
more, the validation datasets were employed to optimize and

045140-4



DETERMINING ELECTRONIC PROPERTIES FROM … PHYSICAL REVIEW B 103, 045140 (2021)

TABLE I. Overview of parameters and parameter ranges used to generate the reference dataset, employed in descriptor vector and in output
vector of the ANNs, as well as the sizes of the used datasets.

A2pX A2pX-T2 A2pX-T2EP

T (K) 10 10 [1,1000]
FWHM (eV) 0.1 0.1 [0.05,0.25]

Descriptor vector [[spectrum]] [[T,FWHM,spectrum]] [[T,FWHM,spectrum]]

Dq (eV) [0.0,0.2]a [0.0,0.2] [0.0,0.2]
Ds (eV) [−0.2,0.2] [−0.1,1.4] [−0.1,1.4]
Dt (eV) [−0.2,0.2] [−0.6,0.6] [−0.6,0.6]
S1 [0.60,1.00] [0.60,1.00] [0.60,1.00]
S2 [0.60,1.00] [0.60,1.00] [0.60,1.00]
�1 (eV) element specificb [0.3,0.7] [0.3,0.7]
�2 = �2’-�1 (eV) element specificc [0.0,0.2] [0.0,0.2]

Output vector [[Dq, Ds, Dt , S1, S2]] [[Dq, Ds, Dt , S1, S2, �1, �2]] [[Dq, Ds, Dt , S1, S2, �1, �2,
J2, Jz, S2, L2,

n(a1g), n(b1g), n(b2g), n(eg)]]

Reference DSS 60 k 360 k 360 k
Tested subset sizes (DSS) N [250,2.5 k,12.5 k, 25 k,37.5 k] [50 k,100 k,200 k,300 k] [50 k,100 k,200 k,300 k]
Training dataset size 80% of DSS 80% of DSS 80% of DSS
Validation dataset size 20% of DSS 20% of DSS 20% of DSS
Test dataset size 2 k 10 k 10 k

aExcept for C4 and Oh symmetry cases in which the Dq ranges were [−0.2,0.2] eV and for the CoPc case with the parameter ranges being
increased (see text).
bNi:0.48; Fe:0.36; Co:0.43; Mn:0.32 eV.
cNi:0.52; Fe:0.37; Co:0.43; Mn:0.34 eV.

validate hyperparameters. The tested hyperparameters include
the initial learning rates, choice of the neuron activation func-
tions in each layer, as well as layer width and ANN depth. A
grid search was undertaken to find optimal learning rates and
a Monte Carlo search for different combinations of activation
functions in the HLs that included sigmoidal functions, the
exponential linear unit, and the RELU. As a result of the grid
search, the RELU activation function was used in the input
and each hidden layer because no other combination of acti-
vation functions yielded equally accurate or significantly im-
proved results. The tested ANNs consisted of fully connected
layers of neurons. A manual search was performed with nine
selected cases with different depths and widths and ANN
architectures included one, three, and six hidden layers. The
number of neurons in the hidden layers is given in Table II for
narrow, medium, and wide ANNs. Details on input and output
layer sizes and features are given in Table I. All ANNs were
implemented with the high-level neural network API Keras
[72]. A stochastic gradient descent method [73] iteratively
optimized the weights of the ANNs in 250 epochs in the train-
ing phase. The learning rates were reduced by a factor of 0.2
to fine tune the optimization when ten consecutive iterations

(so-called epochs) did not result in improvement of the cost
function value taken as MAE between ya and yp. In addition,
the mean squared error (MSE) and the RMSE are reported.

III. RESULTS AND DISCUSSION

In the following, the capabilities of ANNs applied to spec-
tra of Co2+, Ni2+, Fe2+, and Mn2+ central ions are discussed.
Details are presented for Co2+ (if not stated otherwise), while
further information about other TM ions is in the Appendix.

A. Training, validation, and testing

Figure 1 (Fig. S1) shows the MAE (MSE) for the trained
ANNs with one, three, and six hidden layers for different
training dataset sizes. The figure shows the results for Ni2+,
Co2+, Fe2+, and Mn2+ ions in a CF with D4h symmetry. MAE
and MSE decrease with increasing dataset size. There is little
to no improvement for ANNs with only a few neurons or for
narrow ANNs. Wide ANN architectures with one hidden layer
can already achieve some agreement between predicted and
actual data. Comparatively, the MSE drastically increased for
Ni2+ with only one HL at large dataset sizes. For most cases of

TABLE II. Number of neurons in the hidden layers (HL) for narrow, medium, and wide ANN architectures. Layer widths decrease with
proximity to the output layer.

Narrow Medium Wide

1HL 16 256 2048
3HL 16;16;8 256;256;64 2048;2048;1024
6HL 16;16;8;8;8;8 256;256;64;64;32;32 2048;2048;1024;1024;512;512
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FIG. 1. The MAE of validation data on trained ANNs with different architectures with one, three, and six HLs for (from left to right) Ni2+,
Co2+, Fe2+, and Mn2+ in D4h CF as a function of dataset size.

ANNs consisting of several hidden layers, training on datasets
larger than 20 000 spectra yielded very accurate predictions
of optical and screening parameters. MSEs of less than 10−3

(MAE of less than 10−2) were achieved for the medium and
wide ANNs. The analysis of the trained ANNs for Oh and
C4 CFs (shown in Fig. S2) results in similar trends that are: (i)
often accuracy increases with increasing training dataset size
and (ii) deeper ANNs with more neurons (i.e., wider) obtain
smaller MSE/MAE. For Oh symmetry, the reduced parameter
space causes MSE and MAE to be approximately one order of
magnitude smaller at large dataset sizes. In general, the results
suggest to use wide ANN with three to six HLs—the latter will
be the basis for the remaining discussion.

Figure 2 shows a comparison of the actual and the
predicted orbital energies (evaluated with the predicted Ball-
hausen parameters) as well as the screening parameters of the
Slater-Condon integrals. The results are given for Ni2+, Co2+,
Fe2+, and Mn2+ in a D4h CF. The orbital energies have a range
from −1.8 eV to 2.8 eV. For all tested elements, the ANNs
accurately detect the screening parameters. However, there are
noticeable differences in accuracy of orbital energies. Energy
predictions of db1g and db2g are less accurate than for da1g and
deg states. This is particularly obvious for db2g in Ni2+ and for
db1g in Mn2+. The effect is strongest for orbital energies close

to 0 eV, suggesting that those computed spectra are similar to
each other and that the contributions from db1g and db2g states
to these XAS spectra are not significantly different from being
detected with high accuracy. On the other hand, da1g and deg

are more accurately determined for all tested elements.
Table III provides MAEs and RMSEs obtained with A2pX

(wide and six HL) on the test data for the TM ions in D4h

symmetric CFs. The MAE (less than 2%) and RMSE (less
than 5%) are of similar magnitude but slightly larger than
those given in Fig. 1 for the validation data demonstrating
effective training and potentially useful ANNs. Large errors
are in Dq and Ds (RMSEs of 1.0 to 4.5%), while the screening
parameters and Dt results are more accurate (0.8 to 2.4%). A
corresponding table (Table S1) for Oh symmetry is in SI. The
errors for this case are smaller (less than 0.5%), reflecting a
decrease in complexity by a reduced parameter space, which
also benefited the training results.

For A2pX-T2 and A2pX-T2EP, the same generic hidden
layer architecture, as used in A2pX containing up to six dense
HL, can obtain comparable accuracy. Initial tests indicated
that modifications in training, architecture design, and opti-
mization approaches lead to similar outcomes as those seen
by A2pX. The common trends are: (i) wide and deep (six HL)
ANNs perform better than narrow and flat (one HL and three
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FIG. 2. From top to bottom: Actual vs predicted (pred.) relative positions of d-orbital energies ε for da1g, db1g, db2g, deg and screening
parameters (S1 and S2), and from left to right: Ni2+, Co2+, Fe2+, and Mn2+ in wide ANNs with six HLs. Data are computed with the validation
dataset on the trained ANNs (A2pX).
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TABLE III. RMSE (MAE) of normalized Dq, Ds, Dt , S1, and S2 determined on the normalized test datasets (2000 spectra) for Mn2+, Fe2+,
Co2+, and Ni2+ with A2pX (wide six HL). Values given in percent.

Mn2+ Fe2+ Co2+ Ni2+

Dq 4.28 (1.96) 2.52 (1.25) 3.77 (1.86) 2.54 (1.29)
Ds 4.48 (1.72) 3.39 (1.44) 0.95 (0.57) 3.68 (1.53)
Dt 2.44 (1.20) 1.77 (0.89) 1.19 (0.75) 1.80 (0.94)
S1 1.30 (0.76) 1.19 (0.75) 2.43 (1.26) 1.18 (0.77)
S2 0.84 (0.61) 0.86 (0.59) 1.35 (0.87) 0.68 (0.48)

HL) architectures, (ii) RELU as the activation function for
all layers provides similar or better accuracy than different
combinations of other activation functions of the HL, and
(iii) a small number of training data can limit the accuracy.
However, an increased number of training data is required to
achieve similar accuracy between A2pX and A2pX-T2(EP).
The number of training data increased from ca. 5000 spectra
per feature in the output vector in A2pX to more than 15 000
spectra per feature. This reflects the increased complexity
the method faces when T and the FWHM are part of the
descriptor vector.

Table IV gives a summary of RMSEs and MAEs for A2pX-
T2. Performance details of A2pX-T2EP are in Table V, for
which Fig. 3 presents corresponding details for Co2+ and Figs.
S3, S4, and S5 in the Appendix show the data for Ni, Fe, and
Mn for D4h cases, respectively. For the Co2+ ion, the RMSE
values are less than 5% for all parameters but for �2 (6.0%).
The average RMSEs for parameter determination (2–3%) are
comparable for A2pXT2 and A2pX-T2EP. The ANN deter-
mines Dt and Ds more accurately than Dq. Besides �2, S1 also
has a relatively large error with ca. 2%. Regarding EP, the
ANN yields RMSE of less than 2% for all expectation values
but 〈Jz〉 (2.4%). For the other ions, the trends are similar to
those seen for Co2+. Concerning the determination of the 2p
XAS parameters, the RMSEs and MAEs among the tested
elements are comparable but, in general, larger for Ni and
Fe than for Co. In systems with Oh symmetry, this trend is
similar, but errors are generally smaller, due to reduced com-
plexity. Details are given in Tables IV and V for D4h CF and
in Tables S2 and S3 for Oh/Cv CF for A2pX-T2 and Ap2X-
T2EP, respectively. However, individual output features can
show significantly larger deviations. Most significant RMSEs
are seen in �2, that is 5 to 9% in A2pX-T2(EP) followed
by either �1 (1 to 3%) or S1 (1.7 to 2.4%) and depend on
element and CF symmetry. Among Ballhausen parameters
in D4h systems, the largest errors are in Dq. For A2pX, the

RMSEs are between 3 and 5%, while they are 2 to 3% for
A2pX-T2(EP). The RMSEs of other parameters are smaller,
which confirms a relative insensitivity of computed spectra
regarding small changes of Dq as pointed out by previous
studies [69].

For a quantitative analysis of ANN performance with more
features in the output vector, i.e., A2pX-T2 and A2pX-T2EP,
an additional measure for quantifying errors in the output vec-
tor associated with spectral features is introduced. Here, the
mean absolute percentage error (MAPE) of recomputed spec-
tra is taken with respect to the normalized superposition of the
recomputed and reference spectrum. The MAPE, here called
the spectrum error (SE), is employed to relate the influence of
feature errors in normalized output vector (yp − ya), labeled
as �, in the corresponding spectra. SEs are evaluated for all
spectra in test datasets and their corresponding recomputed
spectra. Examples comparing recomputed and test spectra for
A2pX-T2EP covering the whole range from smallest to largest
SE are given in Figs. S9, S10, S11, and S12 for Ni2+, Fe2+,
Co2+, and Mn2+ (D4h), respectively. The figures compare test
spectra (black curve) with recomputed spectra (dashed red)
and are ordered according to their SE.

By visual inspection, a SE of less than 3% gives excellent
agreement, while SE of 4 to 7% seems still acceptable to some
degree. At larger values, differences between recomputed and
reference spectra can become significant. This can be ob-
served in, e.g., additional/missing features that appear more
frequently. At SE of 10% and larger values, mismatches in the
spectra and overall different spectral shapes are common. In
some cases, a small shift, for instance, can cause SEs between
10 and 16%. For all tested ions, ca. 90% of the recomputed
test spectra have a SE of less than 3%. The 7% threshold
is reached for 97.6, 98.4, 98.4, and 97.6% of all test spectra
for Ni2+, Mn2+, Fe2+, and Co2+, respectively. The largest SE
is noticeable larger for Ni2+ (34%) than for other elements
(ca. 30%), while Mn2+ has a max. SE of only 24%. This

TABLE IV. RMSE (MAE) of normalized Dq, Ds, Dt , S1, S2, �1, and �2 determined on the normalized test datasets (10 000 spectra) for
Mn2+, Fe2+, Co2+, and Ni2+ with A2pX-T2. Values given in percent.

Mn2+ Fe2+ Co2+ Ni2+

Dq 2.86 (1.71) 2.76 (1.53) 1.93 (1.14) 2.69 (1.37)
Ds 1.11 (0.73) 1.37 (0.84) 1.59 (1.01) 3.01 (1.55)
Dt 0.97 (0.63) 1.06 (0.69) 1.35 (0.83) 2.37 (1.36)
S1 1.83 (1.20) 2.00 (1.33) 2.43 (1.60) 2.21 (1.44)
S2 1.46 (1.00) 1.48 (1.02) 1.48 (1.01) 1.19 (0.83)
�1 2.83 (1.94) 2.84 (1.91) 1.95 (1.39) 1.39 (0.98)
�2 8.63 (5.64) 7.96 (5.13) 6.88 (4.18) 5.77 (3.53)
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TABLE V. RMSE (MAE) of normalized Dq, Ds, Dt , S1, S2, �1, and �2, and predicted the electronic configuration determined on the test
datasets for Mn2+, Fe2+, Co2+, and Ni2+ with A2pX-T2EP. Values given in percent.

Mn2+ Fe2+ Co2+ Ni2+

Dq 2.95 (1.71) 2.10 (1.27) 1.70 (1.00) 2.75 (1.29)
Ds 0.99 (0.67) 1.08 (0.70) 1.36 (0.84) 3.07 (1.52)
Dt 0.94 (0.60) 1.00 (0.59) 1.11 (0.67) 2.46 (1.34)
S1 1.73 (1.16) 1.80 (1.19) 2.12 (1.39) 2.27 (1.40)
S2 1.40 (0.93) 1.40 (0.93) 1.33 (0.89) 1.21 (0.80)
�1 2.60 (1.76) 2.49 (1.65) 1.70 (1.21) 1.33 (0.92)
�2 7.94 (5.09) 7.14 (4.48) 6.03 (3.61) 5.34 (3.19)

〈J2〉 1.49 (0.35) 1.46 (0.39) 0.93 (0.39) 1.35 (0.34)
〈Jz〉 4.93 (1.11) 3.14 (0.44) 2.35 (0.52) 3.05 (0.31)
〈S2〉 1.49 (0.23) 1.22 (0.25) 1.97 (0.29) 1.65 (0.21)
〈L2〉 1.42 (0.23) 1.17 (0.24) 1.26 (0.28) 1.57 (0.27)

n(a1g) 1.36 (0.23) 1.74 (0.33) 1.39 (0.26) 1.68 (0.19)
n(b1g) 1.83 (0.38) 1.18 (0.24) 1.30 (0.21) 1.04 (0.28)
n(b2g) 1.25 (0.26) 1.69 (0.29) 1.51 (0.35) 2.11 (0.44)
n(eg) 0.80 (0.16) 0.96 (0.18) 1.25 (0.22) 1.30 (0.25)

demonstrates that for simulated 2p XAS signals, the ANNs
can reliably reproduce parametrizations.

The main purpose of extending A2pX-T2 to A2pX-T2EP is
to estimate expectation values of electronic states such as mo-
mentum and orbital occupations. As seen above, A2pX-T2EP
and A2pX-T2 obtain similarly accurate outcomes for the test
spectra. Hence, both are equally capable of determining the
parametrization of the 2p XAS model Hamiltonian. Hence,
the following discussion will focus on A2pX-T2EP.

For A2pX-T2EP, Fig. 3 shows the predicted (yp) and actual
values (ya) of Ballhausen parameters, as well as screening
and broadening factors at variable temperature and FWHM
evaluated for the test dataset in normalized form for Co2+.
The distribution of SEs is given in histograms in Fig. 3 for
Co2+ and in Figs. S3, S4, and S5 for Ni2+, Fe2+, and Mn2+,
respectively. The latter three figures contain also the distribu-
tion of yp and ya. The 21 bins in each histogram are the basis
for sizes and shading of data points in the other subplots. In
addition, the Pearson correlation between SE and the residuals
(�), given as c�, or the relative values of ya, given as ca,
are indicated for each parameter. The correlation factors are
small and reach only in a few cases, values being marginally
larger than 2%: that is S1 for Fe and Dt for Mn ions. Overall,
the results show acceptable accuracy for the majority of test
cases. Comparing yp and ya, only a few SE outliers (i.e., large
SE values) are present and most of them are very close to the
diagonal. The largest SE in the Co2+ test dataset is partly due
to a miscalculation of �2. Given also these cases, it supports
that an output vector with several small feature errors can
cause large SEs.

Among the tested ions, the Dq distributions of actual vs
predicted data points have a slightly larger number of sig-
nificant outliers among Ballhausen parameters (also given by
larger RMSE/MAE values). In contrast, there is a somewhat
wider spread of data points near the diagonal for Ds. �2 is
difficult to determine for all ANNs and shows therefore the
widest distributions. The plots reveal that, in some cases, data
points with large SEs are forming clusters in certain ya ranges.
Clustering in positive/negative regions of ya correlates with

negative/positive values of ca. At small values of Dq, S1, and
�1 or large values of Ds, differences between recomputed and
reference spectra increase for Co2+. For the Mn2+ and Fe2+

ions, there are clusters of large SE in Dt . Other parameters and
the results for Ni, in general, show weaker indications of SE
clusters.

Note that in some cases, atomic parameters can have large
�s. Despite this disagreement, those data points show a rea-
sonable resemblance between the recomputed and reference
spectrum (SE of less than 7%) in many instances. This is seen,
for instance, in Dq and Dt for Ni2+ in Fig. S3. Hence, not
every single-parameter estimation error results in large SEs.
In contrast, spectra with large SEs can be very close to the
diagonal. This implies that reasonably accurate estimates of
most parameters still can result in significant SEs for a few
instances. This intrinsically limits the accuracy of the ANN-
based method. In contrast, large mismatches in single or few
features do not necessarily yield in large SEs. Consequently,
small changes in spectra could result in noticeable �s for
single or a few parameters in a limited number of cases.

Figure 4 compares yp and ya of selected EP, including J2,
Jz, L2, S2, and d-state occupations in a Co2+ ion in D4h CFs.
The same datapoint scale as in Fig. 3 applies. In addition,
histograms of the residuals on a logarithmic count scale are
overlayed. Figures S6, S7, and S8 in SI show the results
for Ni2+, Fe2+, and Mn2+, respectively. The corresponding
RMSEs and MAEs are summarized in Table V for D4h and in
Table S3 for Oh/C4v systems. Overall, the errors are compa-
rable but slightly larger (with the exception of the broadening
factors) for EP than for analyzed parameters. This is partly
caused by a few data points with very large �s, which can
be 50 to 100%, for a few EP features. RMSEs of less than
2% were yielded for 〈J2〉, 〈L2〉, and 〈S2〉. Prediction of Jz

expectation values shows the largest uncertainties in all cases;
this includes elements as well as ligand-field symmetry. For
this parameter, the RMSEs are between 2 to 5% for D4h and
2 to 11% for Oh ligand fields. Values of orbital occupations,
in general, show smaller RMSEs, whereas the occupation
of t2g and eg states in Ni2+ (Oh) reaches RMSEs of almost

045140-9



JOHANN LÜDER PHYSICAL REVIEW B 103, 045140 (2021)

FIG. 3. From (a) to (g): Comparison of normalized yp and ya in Dq, Ds, Dt , S1, S2 �1 and �2 for Co2+ with variable T and FWHM in
the description vector evaluated on the test dataset (10 000 spectra). Data point sizes and shades represent the SE between recomputed and
reference spectra. (h) shows the distribution of SE in a histogram in which the color shades are defined for (a) to (g). The inset in (h) shows a
part of the histogram with larger resolution in the counts axis.

10%. This error is less for other elements, e.g., ca. 4% in
Co2+ Oh, and less than 3% in D4h systems. Clustering of
data points with large SE is also pronounced for EP. In
Co2+ D4h, for instance, 〈J2〉, 〈S2〉, and n(b1g) contain clusters
for small values while 〈Jz〉 and n(eg) have them for large
values. Large SE values have a wider spread in the expectation
value prediction than for parametrization. Still, distributions
in histograms show that expectation value estimation is accu-
rate in most cases, i.e., the majority of �s is in an acceptable
range. However, the observed large uncertainties (close to

100%) in a few instances might limit applications for A2pX-
T2EP, because there is no absolute certainty that the presented
approach will yield correct electronic configurations. Interest-
ingly, prediction of expectation values benefits from passing
the spectra in the descriptor vector. In contrast, another ANN
architecture (dense six HL in the wide setup) did not obtain
reliable results (i.e., large RMSE and MAE) when the de-
scriptor vector contained only the parameters from the model
Hamiltonian. This included two cases; one for which the
parameters were determined by A2pX-T2(EP) and the other
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FIG. 4. Comparison of normalized yp vs ya for predicted properties by A2pX-T2EP for Co2+ determined on test dataset (10 000 spectra).
The overlayed histograms show the distribution of difference between yp vs ya on a logarithmic count scale. Color code and data point sizes
are as in Fig. 3. The scales of the histograms are on the top right; the scales of predicted (yp) vs actual data (ya) are given on the bottom left.
Pearson correlation to SE for �y = yp − ya (c�) and ya (ca) are given.

one for which the parameters were taken directly from the test
dataset.

In the end, the ANN-based analysis of 2p XAS spectra
and a simultaneous prediction of electronic configurations
are obtainable to high accuracy for most spectra, while er-
rors in electronic property prediction can be substantial in
a limited number of cases. The most pronounced increase
in RMSE/MAE among the different types of ANN (A2pX,
A2pX-T2 and A2pX-T2EP) was observed in the screening
factors and �2. Besides, shifts in spectra can also cause large
SEs. In addition, ANNs can include effects of temperature
and experimental broadening as an additional input feature

to accurately estimate the parameters of the 2p XAS model
Hamiltonian.

B. Impact of noise and background signal

At this point, the effect of small changes in spectra, which
could also arise from noise and might lead to noticeable
changes in the output vector, needs to be analyzed. In addition,
background contributions are common in x-ray spectra and
various mechanisms, such as solvents or secondary excita-
tion processes and sometimes excitations to other edges, can
contribute to them [69,74]. For instance, in the case of Ni2+,
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the intensity around 867 eV for 2p XAS of NiO is ascribed
to excitation of electrons from 2p3/2 to free states [40], see
Fig. 7. Besides, intensities beyond 872 eV show an approxi-
mately constant background signal. Hence, random noise (or
white noise) and background contributions in spectra must be
considered on how they affect the capabilities of the ANN
methods for practical applications.

The influence of white noise and background contributions
in spectra on the ANN’s performance is tested with different
background models and varying signal-to-noise ratios (SNR)
and signal-to-background ratios (SBR) in normalized test
spectra. When adding white noise, the ANN output vectors
obtained from a spectrum with noise (ynoise

p ) are compared
to the output vectors obtained for the same spectra without
noise. The resulting RMSEs are reported. To distinguish these
RMSEs from the performance errors of the ANNs discussed
above, noise-based errors, that evaluate residuals ynoise

p − yp,
are labeled �RMSE. The latter errors were averaged over
100 trials, each having 10 000 test spectra. The SNR ratio is
reported as 20 log [(RMS(IXAS)/RMS(Inoise)] where RMS is
the root mean square of the 2p XAS spectrum’s intensity IXAS

or the noise contribution Inoise to it. Background intensities
were modeled with a linear function. In addition, step back-
grounds were modeled by two hyperbolic tangent functions,
i.e., 0.5β(tanh(α(E − ELi )) + 1), a so-called soft-step func-
tion, centered at the L3 or L2 peaks. The factors α (taken as 2
eV−1), β, and ELi influence the width, the max. height, and the
center of the soft-step function, respectively. The background
is added to the spectra of the test datasets. Then spectra with
background are passed to the trained ANNs and their perfor-
mance is evaluated with respect to the test parameters. The
difference between parameters obtained with background and
original parameters is evaluated through SBR that is computed
like the SNR but using the background instead of the noise
intensity. The analysis is also based on �RMSE. A max.
noise range/background contributions between 1 × 10−4%
and 2.0% of the max. intensity of the reference spectra was
considered.

It is noteworthy mentioning that the impact of noise on
the accuracy of the ANNs becomes significantly stronger
with a feature-wise (i.e., channel-wise) normalization instead
of spectrum-wise normalization, which applies equally to Z-
score scaling [75] and the here used box normalization. This
is caused by large noise-induced fluctuations in low-intensity
regions in spectra. Still, the feature-wise normalization can
generally result in better performance of the ANNs; however,
their noise sensitivity may hinder or challenge real-world ap-
plication.

Figure 5 shows how random noise in test spectra affects
A2pX-T2EP’s capability and accuracy to determine features
of the output vector for Co2+, Ni2+, Fe2+, and Mn2+. Data
points show the mean values obtained through evaluating 100
trails each having 10 000 test spectra and error bars give their
ranges (i.e., min. to max. error). The error bars are negligible
for parameter estimation while they are noticeable for expec-
tation value prediction, especially for 〈J2〉.

The effect of noise is most noticeable in Mn2+ while its
impact decreases slightly for parameter estimation and sig-
nificantly for expectation value estimation with increasing Z
number. Substantial uncertainties are in �2 followed by �1 for

all tested ions. For SNR larger than ca. 4 dB, this correlates
to some degree with the overall feature resolved accuracy of
the ANNs, given in Table V. Estimating convolution factors,
Dq and screening factors is also sensitive to random noise.
For instance, for the Ni ion, the �RMSEs of the Ballhausen
parameters and S1 increase faster with noise than �1. In con-
trast, expectation value prediction is less affected by random
noise. At low SNR, the �RMSEs are by a factor of ca. 4 to 10
smaller compared to the ones of the parameter determination.
The largest �RMSEs are seen in 〈J2〉 for all ions, while
〈S2〉, 〈L2〉, and orbital occupations are less affected among
expectation values. The observed �RMSEs are smaller than
the RMSEs at large SNR, which should not result in severe
limitation for practical applications as long as the SNR is
reasonable.

Figure 6 compares the effect of SBR probed by linear
background contributions on the �RMSEs for all tested ions
in D4h CFs. The max. �RMSEs are much larger (by a factor
of 15 for parameter and 75 for expectation value estimation
at ca. 3 dB) than for random noise. Therefore the magnitude
of the �RMSEs indicates sever limitations at small SBR.
At large SBR, the �RMSEs decrease to an acceptable size.
�2 shows the largest dependence, followed by �1 and the
screening factors. Only for Ni2+, the �RMSE of �1 is smaller
than some RMSE values of the ligand-field and atomic param-
eters. The results for the step function backgrounds are given
in the Appendix in Fig. S13. The trends follow roughly the
same as for the linear background. Two points are noticeable
that are: (i) the magnitude of �RMSE caused by background
signals is much larger than for white noise, and (ii) there is
a weak correlation between feature accuracy in the test data
and an increase of �RMSE with an increasing background.
Moreover, step backgrounds centered either at L3 or L2 lead to
comparable values of �RMSE. Hence, accurate background
reduction can be of equal importance for L3 and L2 features
with small SBR.

It can be concluded that removal of background contri-
butions from experimental spectra is essential to increase
the usefulness of the ANN-based method in analyzing XAS
spectra at the L edge. In contrast, noise removal becomes
only necessary for very noisy signals and for high accuracy
predictions for some expectation values, while spin and orbital
momenta as well as orbital occupations are not significantly
affected by noise.

C. Revisiting the 2p XAS of TM compounds with ANN

Furthermore, the ANNs are tested on experimental spec-
tra. Recomputed spectra served to validate the results. The
theoretical and experimental spectra were shifted in energy
to facilitate comparison. For A2pX, the results for TM oxides
are presented in Fig. 7. Experimental spectra are taken from
Refs. [76–79] for NiO, FeO, CoO, and MnO. A2pX deter-
mined 10Dq values for Ni2+, Fe2+, Co2+, and Mn2+ ions are
1.47, 0.99, 0.74, and 0.78 eV, respectively. The values are
in reasonable agreement with previous results [40,41]. The
determined screening factors are between 0.63 and 0.8 (details
are given in Fig. 7). The ANN yielded the exchange screen-
ing (S2) being less than the Coulomb screening (i.e., S2 >

S1). The agreement of the computed XAS spectra with the
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FIG. 5. Influence of noise in test spectra on the ANN’s analytic (top: parameter estimation) and prediction (bottom: expectation value
estimation) performance (A2pX-T2EP) evaluated as RMSE between ynoise

p and ya.

experimental spectra shown in Fig. 7 is remarkable, consid-
ering the simplicity of the underlying methods. Even small
features, for instance, at 780 eV in Co2+, 710 eV in Fe2+,
and 645 eV in Mn2+ are qualitatively reproduced. In addition,
the L3-L2 branching ratios are comparable, which confirms the
ANNs accuracy. Limitations are present mostly in the peak
widths caused by underestimated broadening and neglecting
effects of temperature.

More challenging is the L-edge XAS of TM ions with D4h

symmetric CF like the ones in Co- and Fe-phthalocyanine
(Pc), for which experimental spectra are taken from Refs. [29]
and [80], respectively. A2pX determined parameters of the
model Hamiltonian are given in Fig. 8 for the L-edge XAS
of FePc and CoPc. The figure compares the theoretical (re-
computed) with the experimental spectra.

For FePc, the agreement between experimental and com-
puted spectrum is acceptable, but the same limitations (fixed
temperature and underestimated broadening) as in the case
of simple TM oxides seem to apply. The computed spectrum
is based on the ANN analysis of the experimental spectrum.
The similarity between the spectra is seen in, e.g., the tail

of the L3 peak, a small feature at 706.5 eV and the shape
of the main peak. Also, the L2 peaks have an overall similar
spectral shape. The electronic configuration of the d subspace
determined by A2pX, a1

1gb1
1gb2

2ge2
g, is a singlet state. It should

be noted that this result is based on CMT and presents the
best fit to the experimental spectrum that the ANN can pro-
duce. Previous works determined similar but also different
electronic configurations in FePc [80–82], for which several
authors have discussed the true ground state of FePc in recent
years. At this point, the ANNs cannot exclude other electronic
configurations of FePc since the results are limited to CMT.

To accurately reproduce the spectrum of CoPc, the pa-
rameter ranges and the size of the dataset needed to be
increased. A dataset size of more than 100 000 spectra with
ranges for Dq = [0.0, 0.3] eV, Ds = [−2.0, 2.0] eV, and Dt =
[−1.0, 1.0] eV were used. This gives a similar per-feature
dataset size of ca. 15 000 as the A2pX-T2EP case and results
in equivalent performance of the ANN as discussed above.
Then, the computed CoPc spectrum belonging to a doublet
ground state (a1

1gb1
1gb1

2ge4
g) is reproduced and agrees with pre-

viously reported results [29].
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FIG. 6. Influence of linear background in test spectra on the A2pX-T2EP’s analytic (parameter estimation) and predictive (expectation
value estimation) performance measured in �RMSE. Same curve labeling as in Fig. 5 applies.

The recomputed spectra based on the analysis given by
A2pX display a few features that can be improved, such as
sharp peaks of high intensity in L2 and an overall rougher
appearance due to underestimated broadening effects. A2pX-
T2 is tested on the already introduced experimental 2p XAS
spectra of Co2+ and Fe2+ ions. As indicated by the above
results, A2pX-T2 will yield similarly accurate outcomes as
A2pX-T2EP. Moreover, 2p XAS spectra of Co2+ at the L
edge are known to display noticeable temperature depen-

dence [69,70]. Applying A2pX-T2 should improve on these
issues. Still, it must be understood that background contri-
butions can severely affect the outcome. The discussion is
based on resemblance between recomputed spectra and ex-
perimental spectra. Only 2p–3d transitions that contribute to
the experimental spectrum, as described by Eq. (7), must be
present for optimal performance of the ANNs. Therefore,
other contributions such as background intensities have to
be removed. Still, the description itself is incomplete given,

FIG. 7. Comparison of experimental L-edge XAS spectra (dotted) of NiO [76], CoO [77], FeO [78], and MnO [79] and the simulated
spectra (solid) based on the analysis of the trained six HLs medium width ANN.
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FIG. 8. Comparison of experimental L-edge XAS spectra (dot-
ted) of FePc (powder) [80] and CoPc (gas phase) [29] with the
simulated spectra (solid) that are based on the evaluation using the
six HLs medium width ANN.

for instance, by missing charge transfer (CT) effects (see
above discussion). Overcompensation of the ANNs for miss-
ing physical effects (e.g., the earlier mentioned CT) may
occur.

For background subtraction in the 2p XAS spectrum of
FePc, one step function was centered at L3 at ca. 710 eV
and the height (β) was chosen to approx. level the intensity
before L2 at 0 and the other function was center at L2 at around
722.3 eV with a height that levels the intensity beyond 728 eV
at 0. No noise reduction was applied. The temperature was set
to 8 K, at which the experiment was performed [80], and the
experimental FWHM equaled 0.1 eV.

A2pX-T2 determined Dq = 0.13 eV, Ds = 0.35 eV, Dt =
0.037 eV, S1 = 0.62, and S2 = 0.86. The lifetime broaden-
ing factors are �1 = 0.59 eV and �2 = 0.76 eV. Compared
to the A2pX results, Ds experiences a large change, while
the other atomic and ligand field parameters are similar to
the ones determined by A2pX. In an earlier study, Miedema
et al. performed the analysis of 2p XAS of FePc using planar
symmetry that relates values of Ds and Dt to the value of Dq.
Concerning the formal rule for planar symmetry and Dq, the
A2pX-T2 determined values are mismatched, Ds by a factor of
2 and Dt by a factor of 0.5. Note that chemical environments
can lead to a reduction of symmetry in FePc. Previously,
Snezhkova et at. detected symmetry breaking in FePc through
interaction of the molecule with its chemical surrounding, i.e.,
when adsorbed on Cu(111) surface, by XPS measurements
and first-principle calculations [83]. While a mismatch of
parameters, especially for small values, cannot be excluded, a
reduced symmetry may at least partly contribute to the yielded
A2pX-T2 outcome.

Figure 9 shows the recomputed 2p XAS spectrum and
the experimental spectrum of FePc. The agreement between
recomputed and experimental spectra is satisfactory, which
demonstrates that A2pX-T2 performed well for this case.
Compared to the recomputed spectrum employing the output
vector of A2pX, the agreement in the spectral shape of L2

improved. The A2pX-T2-based recomputed spectrum repro-
duces the steep increase between 720 to 722 eV followed by
a gradual decrease between 722 and 725 eV. The similarity in
L3 did somewhat increase. The pre-peak at around 707 eV, the

FIG. 9. Comparison of experimental (red) [80] and recomputed
spectra (dashed blue) based on the results of A2pX-T2 for FePc.
Vertical lines are given for reference of spectral feature positions.

slight shoulder at ca. 712.5 eV, and the main peak at 710 eV
(although the latter peak is slightly shifted to higher energies
and overestimated in intensity) are still present. A peak at
711 eV is overestimated by a bit. Moreover, a small peak at
713 eV appeared.

For FeO, the temperature was set to 848 K, a temperature
at which FeO is a stable phase, and an experimental FWHM
of 0.1 eV is assumed. Note that there was little difference in
the recomputed spectrum for input vectors with temperatures
at 400 K and 848 K passed to the ANN. In contrast, the results
show larger differences if low temperatures, e.g. 10 K, are
used. A subtraction of the stepped background was applied
with two soft-step functions. One step function was centered
at L3 at ca. 713 eV and the height (β) was chosen to slightly
lower intensity before L2 and the other function was center at
L2 at around 725.3 eV with a height that levels the intensity
beyond 730 eV closer to 0. Also, the signal was truncated (i.e.,
set to 0) before 706 eV. No noise reduction was applied.

Dq was determined as 0.022 eV, the screening parameters
as S1 = 0.90 and S1 = 0.92, and the lifetime broadening fac-
tors are 0.77 (�1) and 1.03 eV (�2’). The determined value of
Dq for TMO is underestimated with regard to previous reports
[69] and the A2pX results, which usually give values around
0.1 eV (or 1 eV for 10Dq). It is well known that there can be
a certain insensitivity towards Dq values in 2p XAS spectra,
especially for TMOs, allowing a range of values to reproduce
experimental results. Here, the experimental and recomputed
spectra are similar. This potentially points towards a more
delicate relation between ligand field parameters, screening
factors, and lifetime broadening (potentially also for D4h

systems) in the underlying MHA as commonly assumed by
fixed values of screening factors of 0.8 or restrictions such as
S1 = S2.

Figure 10 shows the comparison between experimental and
recomputed (based on A2pX-T2 results) 2p XAS spectra of
FeO. There is a noticeable improvement for both L3 and L2

peaks in the recomputed 2p XAS spectrum compared to the
results in Fig. 7. The overestimation of the main peaks in
L3 and L2 was reduced. Similarly, the pre-slope starting at
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FIG. 10. Comparison of experimental (red) [78] and recomputed
spectra (dashed blue) based on the results of A2pX-T2 for FeO.

706 eV and the width of the main peak are well matched in
L3. The shoulders at ca. 711 and 714 eV are somewhat over
pronounced but follow the tail of L3 in their intensity ratios.
Especially the latter peak at 714 eV is sensitive to the value
of Dq. At larger Dq values, the peak would shift to higher
energies which would diminish the agreement for the given
parameter set. At ca. 721 eV, the close-by main peak and the
tail are well represented in L2.

Background subtraction in the 2p XAS spectra of CoPc
and CoO was performed with soft step functions to align
the onsets of the L3 and L2 peaks at 0 and to remove back-
ground contributions beyond L2 transition intensities. For
CoPc, A2pX-T2 determined the parameters Dq = 0.0043 eV,
Ds = 1.00 eV, Dt = −0.13 eV, S1 = 0.91 S2 = 0.79, �1 =
0.44 eV, and �′

2 = 0.75 eV at a FWHM of 0.2 eV and
the temperature set to 708 K at which the experiment was
performed. For CoO, A2pX-T2 determined the parameters
as Dq = 0.0083 eV, S1 = 0.82 S2 = 0.81, �1 = 0.68 eV, and
�2 = 0.73 eV at a set FWHM of 0.2 eV and a set temperature
of 303 K.

The recomputed spectrum of CoPc based on the A2pX-T2
analysis is given in Fig. 11. The enhanced agreement to the
experimental gas-phase spectrum, compared to the one given
in Fig. 8, appears to be mostly due to an increased broaden-
ing of transition intensities and increased temperature. Other
minor changes in intensity distribution result from changes in
other parameters. The first peak at 778.2 eV and the following
two peaks still match well in their max. intensity and energy
spacing. Even a shoulder at 783.5 eV is reproduced, while L2

features have less agreement, in particular, at 793.5 eV and the
peak structure between 795 and 797 eV. Figure 12 shows the
recomputed spectrum of CoO, which also displays a strong
resemblance to the experimental spectrum. The main features
of L3 and L2 are captured, including smaller shoulders at ca.
772.5, 777, and 792 eV.

Although the agreement between the experimental and
simulated spectra of the selected test cases is encouraging, the
limits of the applied method should be communicated. There
is a dependence on the database and its parameter ranges, e.g.,
the A2pX case of CoPc, reflecting the well-known extrapo-

FIG. 11. Comparison of experimental (red) [29] and recomputed
spectra (dashed blue) based on the results of A2pX-T2 for CoPc.
Vertical lines are given for reference of spectral feature positions.

lation weakness of ANNs. Another factor is the underlying
theory used to construct the database. The presented ANN ap-
proach is based on CMT and the ANNs can only gain insights
that any CMT-based XAS method would have produced, in
particular, charge transfer effects are neglected, which may
cause the ANN to compensate for this effect.

While the extensions of A2pX, including temperature and
FWHM, increase the similarity between experimental and
computed spectra, agreement of the MHA parametrization
with those of previously published results is somewhat limited
through potential influence of, for instance, the lack of charge
transfer effects in the approach or the alignment between
the experimental and computed spectra. At the same time,
ANNs still demonstrate tremendous capabilities and appear
to be promising tools to determine the parametrization of a
2p XAS model Hamiltonian and potentially its expectation
values of angular and spin momenta as well as d-orbital oc-
cupation from spectra without or little noise and background
contributions. The here presented analysis and application

FIG. 12. Comparison of experimental (red) [77] and recomputed
spectra (dashed blue) based on the results of A2pX-T2 for CoO.
Vertical lines are given for reference of spectral feature positions.
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to experimental 2p XAS spectra showed that practical ap-
plications, however, can be limited by noise and especially
background intensities in spectra, at least for dense ANN and
the chosen data processing strategy. This is neither surpris-
ing nor unexpected as post-processing (e.g., background and
noise reduction) is still a routine part of the evaluation process
for experimental 2p XAS.

The proposed ANN-based approach points out the need
for improvements and continued developments that are re-
quired for routine application of (dense) ANN in 2p XAS
analysis; that can be an automated background subtraction
that, in principle, can also be ML supported and/or a more
robust approach for expectation value prediction. For these
points, the normalization process and data preprocessing can
be, to some extent, essential as the Z-score and box normal-
ization indicated for noise-related errors (see above). Here,
noise reduction seems to be less significant for box normaliza-
tion compared to background intensity removal. Nonetheless,
the ANN-based evaluation of experimental spectra and the
consecutively performed recomputation of spectra were suc-
cessfully performed. The obtained results are particularly
encouraging for the metal-organic compounds with reduced
symmetries, which demonstrates the capability to accelerate
analysis for a wide variety of materials in the near future. Con-
cerning L-edge XAS of metal-organic compounds containing
TM ions, the method could provide an unbiased tool to obtain
experimental electronic ground state configurations and gain
insights on how different chemical environments influence
them. Hence, the question if ANNs can represent the inversion
function of conventional computations of 2p XAS spectra of
light transition metal ions is affirmed.

IV. CONCLUSIONS

In summary, artificial neural networks are presented that
can estimate relative energies of 3d levels, screening factors of
the Coulomb and exchange interaction, and core hole lifetimes
directly from experimental L-edge spectra of transition metal
compounds. The method is based on dense neural network
architectures with six hidden layers, which work sufficiently
well for various transition metal ions. The artificial neural
networks were trained and optimized on theoretical 2p XAS
spectra of transition metal ion employing a model Hamilto-
nian approach that is based on crystal-field multiplet theory.
In general, obtained results become less accurate when more
information (i.e., number of parameters) is to be extracted
from a spectrum. This can partly be compensated by larger
training dataset sizes and larger neural networks. In addi-
tion, temperature and an experimental convolution factor can
be included as input features of the neural network to ac-
count for these effects in spectra. Then, simulated spectra
employing the ANN results can obtain a very high degree of
similarity to experimental spectra if proper background signal
removal is applied. In combination with a 2p XAS model
Hamiltonian, the gained results can be used to determine
physical properties such as the ground state electronic config-
uration and d-level occupations from experimental spectra in
one-shot evaluations without the need for prior first-principles
electronic structure calculations.
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APPENDIX: ADDITIONAL DETAILS ON ANN
PERFORMANCE

In the following we present further details about the per-
formance of the developed ANNs used to evaluate 2p XAS
spectra and predict results of a 2p XAS model Hamiltonian as
presented in the main paper.

1. Optimizing ANNs

The dependence on training performance on dataset size is
shown in Fig. S1. The impact of training dataset size on the
MSE and MAE in validation data for Oh systems is shown
in Fig. S2. Tables S1, S2, and S3 summarize the RMSE and
MAE evaluated on the test datasets and obtained with A2pX,
A2pX-T2, A2pX-T2EP, respectively, for Oh systems.

2. Analysis of spectra and prediction of electronic states

Figure S3 shows the actual (ya) vs the analyzed (yp) values
for Dq, Ds, Dt , S1, S2 �1, and �2 for Ni2+ obtained from
A2pX-T2EP, i.e., the results are based on the dataset including
variable T and FWHM as additional features in the input
vector. Likewise, Figs. S4 and S5 show the results for Fe2+

and Mn2+, respectively. Moreover, A2pX-T2EP simultane-
ously predicts expectation values of J2, Jz, L2, S2 and the
occupations of d states that are shown in Fig. S6 for Ni2+,
Fig. S7 for Fe2+, and Fig. S8 for Mn2+. The corresponding
figures for Co2+ are given in the main paper. Table IV in the
main paper summarizes the accuracy of A2pX-T2EP for these
elements.

3. Comparison between Reference Spectra and Recomputed
Spectra

Figures S9 to S12 show comparisons between reference
spectra (solid black) used to test the performance of the
A2pX-T2EP and the corresponding recomputed spectra (red
dashed) for Ni2+, Co2+, Fe2+, and Mn2+, respectively. First,
the ANNs determined the parameters from the reference spec-
tra. Then, the parameters were used in Eqs. (3) and (7) to
yield the recomputed spectrum. This was done for all spectra
in the test datasets. The spectrum errors (SE—defined in the
main text) were computed and a selection of them spanning
the whole range of SEs is given in the figures. SE (%) and
the ranking position from best ([0]) to worst ([9999]) are
indicated as well.

4. Influence of Noise

Figure S13 shows the impact of different step backgrounds
on the ANN results. It displays the impact of a step back-
ground on the �RMSE in parameter and expectation value
estimation.
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FIG. S1. The MSE of validation data on trained ANNs with different architectures with one, three, and six HLs for (from left to right)
Ni2+, Co2+, Fe2+, and Mn2+ in D4h CF as a function of dataset size.

FIG. S2. The MSE and MAE of validation data on trained ANNs with different architectures with one, three, and six HLs (A2pX) for
(from left to right) Ni2+, Co2+, Fe2+, and Mn2+ in Oh and C4v CFs as a function of dataset size.
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TABLE S1. RMSE (MAE) of normalized Dq, S1, and S2, determined on the normalized test datasets (2000 spectra) for Mn2+, Fe2+, Co2+,
and Ni2+ with A2pX for Oh/C4v systems. Values are given in %.

Mn2+ Fe2+ Co2+ Ni2+

Dq 0.44 (0.24) 0.16 (0.12) 0.16 (0.12) 0.16 (0.12)
S1 0.36 (0.24) 0.19 (0.13) 0.18 (0.13) 0.20 (0.13)
S2 0.30 (0.21) 0.17 (0.12) 0.16 (0.12) 0.15 (0.11)

TABLE S2. RMSE (MAE) of normalized Dq, S1, S2, �1, and �2 determined on the normalized test datasets (10 000 spectra) for Mn2+,
Fe2+, Co2+, and Ni2+ with A2pX-T2 for Oh and C4v systems. Values are given in %.

Mn2+ Fe2+ Co2+ Ni2+

Dq 1.20 (0.52) 0.88 (0.66) 0.76 (0.47) 0.91 (0.54)
S1 0.43 (0.33) 0.47 (0.36) 0.65 (0.49) 0.77 (0.55)
S2 0.40 (0.30) 0.41 (0.32) 0.52 (0.40) 0.60 (0.44)
�1 0.60 (0.43) 0.64 (0.49) 0.82 (0.62) 0.72 (0.53)
�2 2.15 (1.38) 1.21 (0.88) 1.76 (1.21) 3.00 (1.87)

TABLE S3. RMSE (MAE) of normalized Dq, S1, S2, �1, �2 predicted the electronic configuration determined on the normalized test
datasets (10000 spectra) for Mn2+, Fe2+, Co2+, and Ni2+ with A2pX-T2EP for Oh and C4v systems. Values are given in %.

Mn2+ Fe2+ Co2+ Ni2+

Dq 1.17 (0.57) 0.52 (0.30) 0.40 (0.25) 0.71 (0.35)
S1 0.42 (0.31) 0.76 (0.50) 0.70 (0.52) 0.75 (0.54)
S2 0.54 (0.41) 0.54 (0.39) 0.54 (0.39) 0.63 (0.45)
�1 0.88 (0.64) 0.90 (1.53) 0.90 (0.62) 0.76 (0.56)
�2 2.60 (1.56) 2.63 (1.53) 2.63 (1.53) 3.64 (2.21)

〈J2〉 0.09 (0.01) 1.13 (0.29) 1.21 (0.34) 1.26 (0.42)
〈Jz〉 2.53 (0.41) 10.55 (2.04) 5.76 (0.98) 7.81 (1.27)
〈S2〉 0.09 (0.01) 1.81 (0.13) 0.81 (0.04) 1.29 (1.06)
〈L2〉 0.09 (0.01) 1.79 (0.13) 0.79 (0.07) 0.60 (0.28)
n(t2g) 0.09 (0.02) 2.63 (0.55) 3.81 (0.68) 8.45 (1.37)
n(eg) 0.09 (0.02) 2.40 (0.51) 3.64 (0.67) 8.08 (1.31)
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FIG. S3. From (a) to (g): Comparison of normalized yp and ya in Dq, Ds, Dt , S1, S2 �1, and �2 for Ni2+ with variable T and FWHM
in the description vector evaluated on the test dataset (10 000 spectra). Data point sizes and shades represent the SE between recomputed
and reference spectra. (h) The color shades are defined in the histogram of the spectrum error (SE) in 21 bins. The inset shows a part of the
histogram with larger resolution in the counts axis.
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FIG. S4. From (a) to (g): Comparison of normalized yp and ya in Dq, Ds, Dt , S1, S2 �1, and �2 for Fe2+ with variable T and FWHM
in the description vector evaluated on the test dataset (10 000 spectra). Data point sizes and shades represent the SE between recomputed
and reference spectra. (h) The color shades are defined in the histogram of the spectrum error (SE) in 21 bins. The inset shows a part of the
histogram with larger resolution in the counts axis.
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FIG. S5. From (a) to (g): Comparison of normalized yp and ya in Dq, Ds, Dt , S1, S2 �1, and �2 for Mn2+ with variable T and FWHM
in the description vector evaluated on the test dataset (10 000 spectra). Data point sizes and shades represent the SE between recomputed
and reference spectra. (h) The color shades are defined in the histogram of the spectrum error (SE) in 21 bins. The inset shows a part of the
histogram with larger resolution in the counts axis.
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FIG. S6. Comparison of normalized yp vs ya for predicted properties by A2pX-T2EP for Ni2+ determined on the test dataset (10 000
spectra). The overlayed histograms show the distribution of difference between yp vs ya on a logarithmic count scale. Pearson correlation to
SE for �y = yp − ya (c�) and ya (ca). Color code and data point sizes are given in Fig. S3. The scales of the histograms are on the top right;
the scales of predicted (yp) vs actual data (ya) are given on the bottom left.
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FIG. S7. Comparison of normalized yp vs ya for predicted properties by A2pX-T2EP for Fe2+ determined on test dataset (10 000 spectra).
The overlayed histograms show the distribution of difference between yp vs ya on a logarithmic count scale. Pearson correlation to SE for
�y = yp − ya (c�) and ya (ca). Color code and data point sizes are as in Fig. S4. The scales of the histograms are on the right top; the scales of
predicted (yp) vs actual data (ya) are given on the bottom left.
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FIG. S8. Comparison of normalized yp vs ya for predicted properties by A2pX-T2EP for Mn2+ determined on the test dataset (10 000
spectra). The overlayed histograms show the distribution of difference between yp vs ya on a logarithmic count scale. Pearson correlation to
SE for �y = yp − ya (c�) and ya (ca). Color code and data point sizes are as in Fig. S5. The scales of the histograms are on the right top; the
scales of predicted (yp) vs actual data (ya) are given on the bottom left.
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FIG. S9. Overview of selected Ni2+ reference spectra (black curve) and recomputed spectra (red dashed). The SE (%) is indicated as well
as the ranked position according to SE in square brackets in the test dataset. The energy scale is shifted.
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FIG. S10. Overview of selected Fe2+ reference spectra (black curve) and recomputed spectra (red dashed). The SE (%) is indicated as well
as the ranked position according to SE in square brackets in the test dataset. The energy scale is shifted.

045140-27



JOHANN LÜDER PHYSICAL REVIEW B 103, 045140 (2021)

FIG. S11. Overview of selected Co2+ reference spectra (black curve) and recomputed spectra (red dashed). The SE (%) is indicated as well
as the ranked position according to SE in square brackets in the test dataset. The energy scale is shifted.
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FIG. S12. Overview of selected Mn2+ reference spectra (black curve) and recomputed spectra (red dashed). The SE (%) is indicated as
well as the ranked position according to SE in square brackets in the test dataset. The energy scale is shifted.
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FIG. S13. Influence of step background centered at either L3 (B1) or L2 (B2) in test spectra on the A2pX-T2EP’s analytic (parameter
estimation) and predictive (expectation value estimation) performance measured in �RMSE. The same curve labeling as in Fig. 5 applies.
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