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Kondo screening regimes in multi-Dirac and Weyl systems
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We have investigated the Kondo physics of a single magnetic impurity embedded in multi-Dirac (Weyl)
node fermionic systems. By using a generic effective model for the host material and employing a numerical
renormalization group approach we access the low temperature behavior of the system, identifying the existence
of Kondo screening in single-, double-, and triple-Dirac (Weyl) node models. We find that in any multi-Dirac
node systems the low-energy regime lies within one of the known classes of pseudogap Kondo problem,
extensively studied in the literature. Kondo screening is also observed for time reversal symmetry broken
Weyl systems. This is, however, possible only in the particle-hole symmetry broken regime obtained for finite
chemical potential μ. Although weakly, breaking time-reversal symmetry suppresses the Kondo resonance,
especially in the single-node Weyl semimetals. More interesting Kondo screening regimes are obtained for
inversion symmetry broken multi-Weyl fermions. In these systems the Kondo regimes of double- and triple-Weyl
node models are much richer than in the single-Weyl node model. While in the single-Weyl node model the
Kondo temperature increases monotonically with |μ| regardless the value of the inversion symmetry breaking
parameter Q0, in double- and triple-Weyl node models there are two distinct regimes: (i) For Q0 < |μ| the Kondo
temperature depends strongly on μ, while (ii) for Q0 > |μ| the Kondo temperature depends very weakly on μ,
resembling the flat-band single impurity Anderson model.

DOI: 10.1103/PhysRevB.103.045137

I. INTRODUCTION

Topological materials have promoted a colossal excitement
in recent years [1–5]. The idea behind the characterization
of these systems is the use of concepts of topology to clas-
sify their electronic band structures. As such, topological
phase transition involves changes in some topological index
rather than in an order parameter by a symmetry break [6,7].
The best known example of topological materials are topolog-
ical insulators [1,8,9] that are bulk insulators but exhibit band
touching (metallic) edge states that are protected by time re-
versal symmetry (TRS) [9–12]. Analogs of these 2D materials
exists in 3D and are generically dubbed Dirac semimetals [13]
found in compounds such as Na3Bi [14] and Cd3As2 [15,16].
Near the crossing points, the linearly dispersive bands are
well described by 3D versions of the Dirac equation. These
crossing points are therefore commonly called Dirac nodes,
and their degeneracy is protected by both TRS and inversion
symmetry (IS) of the lattice structure.

An interesting family of topological materials called Weyl
semimetals (WSM) emerge from Dirac systems when at least
one of the aforementioned symmetries that protect the degen-
eracy of the Dirac nodes is broken [17–20]. These systems
are recognized by exhibiting peculiar physical properties such
as Fermi arcs [21–23], chiral anomaly [24,25], affecting dras-
tically their transport properties [26,27]. Another variety of
WSMs was predicted to exist protected by group symme-
try Cn [19]. These WSMs exhibit topological charge J > 1
and appear as a generalization of the first WSM exhibiting
J = 1, as such they were called multi-Weyl node semimetals
(MWSMs) [19]. This prediction was confirmed for J = 2

in HgCr2Se4 and SrSi2 [19,28,29] while systems in which
J = 3 have been anticipated to exist in quasi 1D molybdenum
monochalcogenide compounds [30].

With the increasing popularity of these exotic materials
and the gain of comprehension on their properties, we have
witnessed a rising interest in the low-temperature properties
of these materials when they host magnetic impurities [31,32].
When an isolated quantum magnetic impurity (also known
as Anderson impurity) is inserted in a system of free elec-
trons, such as metals and also these topological materials,
their itinerant electrons cooperate to screen the localized mo-
ment, a phenomena known as the Kondo effect [33]. Although
the Kondo effect is more commonly studied in conventional
metallic materials [34,35], interesting facets of Kondo physics
is also found in structured conduction bands near the Fermi
level [36–39]. More recently, Kondo effect has also been
investigated in topological materials such as Dirac and Weyl
semimetals in which metallic or pseudogap screening regimes
have been found [31,32,40].

In this work we revisit the problem of Kondo screening
regimes in the Dirac and Weyl systems [41], with special
attention to the MWSMs, on which a detailed investigation of
the Kondo effect is still lacking. We adopt a generic model
capable of describing multi-Dirac semimetals (MDSMs) as
well as MWSMs [42] and employ a numerical renormal-
ization group (NRG) approach [34,35] to access the Kondo
physics of the system in a systematic manner. Our numerical
results show that the Kondo regimes of all MDSM lie on some
class of pseudogap Kondo effect, in which Kondo screening
is possible only at the particle-hole asymmetric situation. In
contrast, in IS broken MWSM, Kondo screening is possible
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even in particle-hole symmetric condition. Moreover, rich
Kondo regimes emerge as a result of the interplay between
the chemical potential μ and inversion symmetry parameter
Q0. We also find that in MWSMs with TRS broken the Kondo
screening is affected, albeit weakly, by magnetic polarization
induced at the impurity via hybridization function.

The rest this paper is organized as follows. In Sec. II we
present the quantum impurity model Hamiltonian to describe
the physical system and discuss how to approach its Kondo
regimes. In Sec. III we present our numerical results and
discussion the various regimes of the model and, finally, in
Sec. IV we bring our concluding remarks.

II. MODEL AND METHOD

For completeness, the total Hamiltonian that describes our
system can be split into three terms as H = H0 + Himp + HV,
where H0 represents the clean multi-Weyl/Dirac fermion
system, Himp describes the impurity Hamiltonian, and HV

accounts for the hybridization between them. Introducing the
spinor �

†
k = (c†

k+↑, c†
k+↓, c†

k−↑, c†
k−↓), in which c†

kps creates
a fermion with momentum k, chirality p = +,− and spin
s =↑,↓, we can write H0 = ∑

k �
†
kHk�k with

Hk = τz ⊗ [v⊥k0(k̃J
−σ+ + k̃J

+σ−) + vzkzσz − Q0σ0]

− vzQτ0 ⊗ σz − μτ0 ⊗ σ0. (1)

Here, μ is the chemical potential, v⊥ and vz, are effec-
tive velocities perpendicular and parallel with respect to z,
respectively, and k̃± = (kx ± iky)/k0 with k0 being system-
dependent constant. Of key importance in this work are the
parameters Q and Q0, responsible for breaking time reversal
(TRS) and inversion (IS) symmetries, respectively. The expo-
nent J in Eq. (1) represents the winding number associated
with the multi-Weyl/Dirac topological charge [19]. Finally,
σ and τ are Pauli matrices acting on the spin and chirality
sectors of the Hilbert space, respectively, with σ0 and τ0 being
the corresponding identities. To simplify the notation, we have
introduced σ± = (σx ± iσy)/2.

The impurity Hamiltonian in turn can be written as

Himp =
∑

s=↑,↓
(εd − μ

)
d†

s ds + Und↑nd↓, (2)

where d†
s (ds) creates (annihilates) an electron in the impurity

with spin s and energy εd at the impurity site. ndσ = d†
σ dσ is

the impurity number operator and U is the Coulomb interac-
tion repulsion energy.

Assuming, for simplicity, that the impurity hybridizes
equally with all bands with a k-independent matrix ele-
ment V [43], the Hamiltonian HV can be written as HV =∑

k(�†
kV̂ �d + H.c.), where �

†
d = (d†

↑, d†
↓) and V̂ is a matrix

given by [42]

V̂ =
(

V 0 V 0
0 V 0 V

)
. (3)

To access the low-energy physics of the full system we
employ the NRG method which allows us to compute the
impurity spectral and thermodynamic properties [35]. Within
this method, the entire effect of the host material on the impu-
rity is given by the so-called hybridization function, �(ω). To
obtain this quantity, we define local Green’s function

Ĝimp(ω) = [
(ω − εd )σ0 − �̂(I )(ω) − �̂(0)(ω)

]−1
, (4)

where �̂(I )(ω) and �̂(0)(ω) are the interacting and hybridiza-
tion self-energies. The latter accounts for the effect of the host
fermions on the impurity and is formally given by

�̂(0)(ω) =
∫

dk
(2π )3

V̂ Ghost
k (ω)V̂ †, (5)

in which

Ĝhost
k (ω) = [ωI −Hk]−1

. (6)

In spherical coordinates, kx = k sin θ cos φ, ky = k sin θ sin φ,
and kz = k cos θ , the Green’s function (6) can be recast in the
matrix form

Ĝhost
k (ω) =

⎛
⎜⎜⎝

g+,Q0,Q(k, θ ) −e−iJφFQ0,Q(k, θ ) 0 0
−eiJφFQ0,Q(k, θ ) g−,Q0,Q(k, θ ) 0 0

0 0 g−,−Q0,−Q(k, θ ) e−iJφF−Q0,−Q(k, θ )
0 0 eiJφF−Q0,−Q(k, θ ) g+,−Q0,−Q(k, θ )

⎞
⎟⎟⎠. (7)

In the above we have defined

g±,Q0,Q(k, θ ) = 1

ω + μ + Q0 ∓ vz(k cos θ − Q) − k2
0v2

⊥(k̃ sin θ )2J

ω+μ+Q0±vz (k cos θ−Q)

(8)

and

FQ0,Q(k, θ ) = k0v⊥(k̃ sin θ )J

k2
0v

2
⊥(k̃ sin θ )2J + v2

z (Q − k cos θ )2 − (μ + Q0 + ω)2
. (9)

With these expression, the integrand of Eq. (5) becomes

V̂ Ĝhost
k (ω)V̂ † = V 2

(
AQ0,Q(k, θ ) e−iJφBQ0,Q(k, θ )

eiJφBQ0,Q(k, θ ) A−Q0,−Q(k, θ )

)
,

(10)

where AQ0,Q(k, θ ) = g+,Q0,Q(k, θ ) + g−,−Q0,−Q(k, θ ) and
BQ0,Q(k, θ ) = F−Q0,−Q(k, θ ) − FQ0,Q(k, θ ). Transforming the
integral (5) into spherical coordinates, it is easy to see that
the off diagonal terms vanish under integration over the
azimuthal angle φ, while the remaining diagonal terms can be
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FIG. 1. Energy bands vs kx and kz (kz = 0) (top three layers) and hybridization vs energy for different values of J (lowest layer). The
different columns correspond to different values of Q and Q0 indicated by the pairs (Q, Q0 ) at the top of the columns. The dashed gray vertical
lines in the lowest panels represent the chemical potential, here set at μ = 0. Other parameters are k0 = v⊥ = vz = 1.

written as

�(0)
s (ω)= V 2

4π2

∫ ∞

0
k2dk

∫ π

0
dθ sin θAsQ0,sQ(k, θ, ω). (11)

On the rhs of the expression above, s = +1 and −1 for spin
↑ and ↓, respectively. For practical purpose we introduce a
cutoff kc to truncate the integral over k [44].

Within the NRG approach, the effect of the host material
on the impurity is entirely accounted for by the hybridization
function defined as

�s(ω) = −Im[�(0)
s (ω + i0+)]. (12)

The integration in Eq. (11) is rather complicated and, in gen-
eral, cannot be performed analytically. Therefore, we solve it
numerically. Having the numerical results for �s(ω) we ap-
ply the standard numerical logarithmic discretization scheme
described in Ref. [35].

To get some insight on what we expect from our numerical
results for the Kondo physics, it is instructive to take a close
look at the structure of the hybridization function in the vari-
ous regimes of the Hamiltonian model. This will allow us to
compare the Kondo regimes expected here with those already
known in the literature. For a given set of parameters of the
host Hamiltonian, the contribution for �s(ω) is associated to
the four energy bands of the clean multi-Weyl/Dirac node
system [obtained upon diagonalizing the Hamiltonian (1)],

εhsk = h
√

k2
0v

2
⊥k̃2J

⊥ + v2
z (Q − skz )2 − sQ0 − μ. (13)

Here, k2
0 k̃2

⊥ = k2
x + k2

y , h represents conduction (+) and va-
lence (−) bands and s = ± is the quantum number resulting

from linear combinations of the original spin and chirality
quantum numbers. These bands are shown in the three upper
layers of Fig. 1. Each of these layers corresponds to a given
value of J indicated on the left hand side of the figure, while a
given set of Q and Q0 is indicated by the pair (Q, Q0) placed
at the top of each column. The lower layer of Fig. 1 shows the
hybridization function for different representative instances of
the multi-Weyl and Dirac node cases studied here. In the next
section we will discuss in detail the various features of the
hybridization function alongside the discussion of the Kondo
physics dredged up by the NRG calculations.

III. NUMERICAL RESULTS

To perform our numerical analysis, we will look mainly
at the impurity magnetic moment kBT χimp(T ) and the local
density of states ρ(ω) that reveal most of the relevant features
of the Kondo effect. Here, χimp(T ) is the impurity contribution
to the magnetic susceptibility defined as χimp(T ) ≡ χ (T ) −
χ (0)(T ), where χ (T ) − χ (0)(T ) are the magnetic susceptibil-
ities calculated with and without the impurity, respectively
(see discussion in Ref. [35]), and ρs(ω) can be defined using
the diagonal elements of the impurity local Green’s function
matrix (4) as ρs(ω) = − 1

π
Im[Ĝimp(ω + i0+)]ss. Within the

NRG approach, ρ(ω) is calculated via Lehman representa-
tion Ĝimp(ω + i0+)]ss using the many-body spectrum readily
available in standard NRG calculations. For more details, see
thorough discussion in Ref. [45]. To obtain the numerical
results, we set D = 1 as the ultraviolet energy cutoff for all
the calculations which follow. Moreover, we set the model
parameters v⊥ = vz = k0 = 1. For simplicity, we also set the
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fundamental Boltzmann and Plank constants kB = h̄ = 1. We
will fix the impurity-related parameters V = 0.12625, U =
0.2, and εd = −U/2. There is nothing special with the specific
choice of V here. It just renders �↑(D) = �↓(D) = 0.1, which
in combination with U = 0.2 and εd = −U/2 (corresponding
to the particle-hole symmetric point of the impurity Hamil-
tonian) provides us with TK much smaller than D, U , and
�s for any regime considered in this work. This prevents
the system from entering in a mixed-valence regime. Our
NRG calculations were obtained using the well-known open
source NRG Ljubljana code [45], using � = 2.5, keeping a
maximum number of states Ns = 2000 at each iteration and
z-averaging Nz = 4. The NRG flow is truncated at a lowest
energy Emin = 10−12. This choice is good enough to access
the main feature of the Kondo regime with great accuracy.
Finally, the impurity density of states ρs was calculated at
T = 10−10.

A. Multi-Dirac node fermions: Q = Q0 = 0

Let us start by studying the regime of (Q, Q0) = (0, 0),
in which the Hamiltonian (1) is invariant under TRs and IS.
The Hamiltonian then describes the aforementioned multi-
Dirac node materials [20,46,47]. For μ = 0 and μ 	= 0 it
corresponds to semimetal and metal, respectively. The energy
bands and hybridization functions for this case are shown in
the first column of Fig. 1. For J = 1 the host corresponds to a
four-band Dirac semimetal (for μ = 0) exhibiting two copies
of Dirac cones. This renders a hybridization function that
behaves as �(ω) ≡ �↑(ω) ∼ |ω − μ|2 = �↓(ω) (since TRS
is preserved). For J = 2, 3, the bands are distorted around
k = 0. Note that while ε(0, 0, kz ) ∼ |kz| the dispersion is no
longer linear with kx or ky. The hybridization function be-
haves as �(ω) ∼ |ω − μ| and �(ω) ∼ |ω − μ|2/3 (for J = 2
and J = 3, respectively). These results are consistent with the
prediction that �(ω) ∼ |ω − μ|2/J as ω → 0 for a generic J
[48,49].

The Kondo physics emerging from this class of hybridiza-
tion functions is well understood as it has been thoroughly
investigated previously in a generic context, namely the so-
called pseudogap regime [50]. Indeed, the Anderson and
Kondo models for a pseudogap density of states ρ(ω) ∝ |ω|r
presents a rich quantum phase diagram extensively studied
[51–57] [remember that �(ω) ∝ ρhost (ω)]. Numerical and
perturbative renormalization group calculations showed that
the fixed points structure of the pseudogap Anderson/Kondo
systems are radically distinct for r < 1 and r > 1, suggest-
ing r = 1 as the upper-critical “dimension” of the problem
in the RG sense [51,52]. For completeness, here we present
the results we have obtained for these three regimes when
J = 1, 2, or 3. From a theoretical point of view, cases of J > 3
are interesting as they render r � 1/2, leading to anomalous
Kondo screenings [38]. It has been shown, however, that Weyl
materials with J > 3 are not topologically protected [19].
Therefore, these cases are not considered here. The results for
J = 1, which corresponds to r = 2, is summarized in Fig. 2.
In Ref. [58], the authors have showed that the Kondo screen-
ing in this case is influenced by the electron-hole asymmetry
of the pseudogap density of states. Here, the electron-hole
asymmetry of the multi-Dirac/Weyl hosts is controlled by

FIG. 2. Hybridization function (a) and impurity density of states
ρs (s =↑, ↓) (b) as a function of ω for J = 1 and for different values
of μ. The left inset of (b) shows a zoom of the region about ω = 0,
while the right inset shows the height of the peak, ρs(0), as a function
of |μ|.

the chemical potential μ, resulting in significant changes in
the low-energy physics in comparison with the electron-hole
symmetric case (μ = 0). This is shown in Fig. 2(a) that shows
�(ω) vs ω for various values of μ. Note that the hybridization
function vanishes quadratically at ω = −μ, which results in a
finite hybridization function at ω = 0. This is why for μ = 0
there is no Kondo peak, as seen in Fig. 2(b) (black line). Note
also that as �(0) increases with |μ| the system becomes metal-
lic, resulting in the emergence of the Kondo peak (note the
sharp peaks for μ = −0.15 and μ = −0.2). The finite Kondo
temperature (TK ) in this case is known in the literature [34,41].
The right inset of Fig. 2(b) shows the evolution of ρs(0) (the
height of the impurity density of states) with |μ|. Observe that
the Kondo peak starts increasing very rapidly for |μ| ≈ 0.1.
For very small |μ|, although finite, TK is smaller than T (the
temperature at which ρs is calculated. The maximum value of
ρs(0) for |μ| ≈ 0.16 suggests the complete onset of the Kondo
screening when TK becomes larger than T , after which the
broadening of the Kondo resonance is more pronounced.

The result for J = 2 and J = 3 (r = 1 and r = 2/3) are
shown in Figs. 3 and 4, respectively, showing the same quanti-
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FIG. 3. Hybridization function (a) and impurity density of states
ρs (s =↑,↓) (b) as a function of ω for J = 2 and for different values
of μ. The left inset of (b) shows a zoom of the region about ω = 0,
while the right inset shows the height of the peak ρs(0), as a function
of |μ|.

ties of Fig. 2. Note that the results for the three values of J are
qualitatively equivalent. This equivalence is consistent with
the predictions of Ref. [54] that identify all cases of r > 1/2 as
belonging to same class of pseudogap Kondo screening. Note,
however that for larger values of J the Kondo peaks is broader
for a fixed value of μ. This can be understood by noticing that
for a given value of μ and any ω 	= μ, ρhost (ω) = |ω − μ|2/J

is larger for larger J . Hence, the impurity is more strongly
hybridized with the host material for larger J . It is also note-
worthy that the value of the chemical potential below which
ρs(0) drops to zero is smaller for larger J . We will come back
to this point below.

To conclude this section, in Figs. 5(a), 5(b), and 5(c) we
show the impurity magnetic moment kBT χs as a function of
temperature for J = 1, J = 2, and J = 3, respectively, and
various values of μ. Note that for all J and μ = 0 the magnetic
moment remains finite all the way to T → 0, confirming the
doublet ground state, a characteristic of the LM fixed point.
However, for μ 	= 0, it drops to zero when T → 0, which is
consistent with the singlet Kondo ground state, the strong cou-
pled fixed point. Figure 5(d) shows TK as a function of μ for

FIG. 4. Hybridization function (a) and impurity density of states
(b) as a function of ω for J = 3 and for different values of μ. The left
inset of (b) shows a zoom of the region about ω = 0, while the right
inset shows the height of the peak, ρs(0), as a function of |μ|.

the three values of J [59]. Note that TK becomes vanishingly
small as |μ| → 0 for all three values of J . When |μ| increases
the curves tend to coincide with each other, which is better
observed for J = 2, 3. This is an expected behavior since there
are two regions along ω within which the hybridization func-
tions �(ω) for different J have similar values, see lower panel
in the left column of Fig. 1. Interestingly, the values of |μ|
for which TK crosses T (= 10−10) agree fairly well with those
at which ρs(0) is maximum in the insets of Figs. 2(b), 3(b),
and 4(b), confirming that, indeed, ρs(0) vanishes as |μ| → 0
because TK becomes smaller than T .

B. Multi-Weyl node fermions: Q �= 0 or Q0 �= 0

Up to now we have considered situations in which the
system exhibits both TRS and IS invariance. Let us now focus
on the Weyl fermions, obtained when at least one of these
symmetries is broken.

1. TRS-broken multi-Weyl node semimetal (Q �= 0)

Here we analyze the situation where only TRS is bro-
ken by keeping Q0 = 0. The energy bands and hybridization
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FIG. 5. Impurity magnetic moment for J = 1 (a), J = 2 (b), and
J = 3 (c) and various values of μ. (d) Kondo temperature as a func-
tion of μ for different values of J . Other parameters are Q = Q0 = 0.

function for this case is shown in the second column of Fig. 1,
where we used the notation (Q, Q0) = (−0.1, 0). The effect
of breaking TRS in the energy bands is to shift the nodes
along kz. We should note that the conduction (and valence)
energy bands have opposite spin polarization. As a result,
since here we have assumed that the spins of the impurity
couples equally to all bands of the host material, at a given
value of μ the spin splitting of the hybridization functions van-
ishes upon integration over the entire momentum space. In our
approach, the introduction of the momentum cutoff kc induces
a small spin splitting in the hybridization function for a finite
Q. The polarization �↑ − �↓ of the hybridization function is
shown in Fig. 6(a) for J = 1, μ = −0.2, and several values
of Q. Observe that it depends on ω and vanishes at ω = −μ.
This is quite different from that obtained in Ref. [60] in the
context of magnetic graphene, in which �↑(ω) and �↓(ω)
vanish at different energies, rendering a full polarization of
the hybridization function. Here, full polarization is absent
and is indeed very small. Nevertheless, it is enough to induce
a visible spin splitting in the impurity density of states. In
real systems, integration over the well defined first Brillouin
zone should naturally induce spin splitting in the hybridiza-
tion function. This can be confirmed by adopting a more
realistic model for the multi-Dirac/Weyl node host material.
Moreover, spin-dependent coupling of the impurity orbital to
the host bands can also contribute to spin polarization of the
hybridization function. This important improvement in the
model is beyond the scope of the present work and will be
presented in a future publication.

The spin resolved LDOS is shown in Fig. 6(b) (for spin ↑)
and Fig. 6(c) (for spin ↓) for J = 1. Interestingly, despite the
relatively large spin splitting of the LDOS, the suppression of
the Kondo peak is slow as Q increases as shown in Fig. 6(d).
The spin splitting in the LDOS induces a sizable magnetiza-
tion 〈Sz〉, shown in Fig. 6(e). For J = 2 and J = 3, the spin
polarization is vanishingly small and is not observed in our
calculations [see red and blue curves in Fig. 6(e)]. More-
over, the Kondo temperature is larger for these cases, making
the Kondo screening more robust against TRS breaking. A

FIG. 6. (a) Splitting of the hybridization function for several val-
ues of Q for a fixed chemical potential μ = −0.2. Impurity density
of states for spin up (b) and down (c) for the same values of Q
as in panel (a). (d) height of the Kondo peak averaged over spins
[ρ̄(0) = [ρ↑(0) + ρ↓(0)]/2 vs Q for μ = −0.2. (e) 〈Sz〉 vs |Q| also
for μ = −0.2. In all panels Q0 = 0 and J = 1.

change Q → −Q in the above leads to opposite polarization
in the hybridization function with identical effect in the Kondo
screening.

2. IS-broken multi-Weyl node semimetal (Q0 �= 0)

The situation is radically different for finite Q0. The hy-
bridization function, �(ω), is always finite even for μ = 0,
as shown in the lower panel of the third column of Fig. 1.
Consequently, the system can exhibit Kondo screening for any
chemical potential μ.

Figure 7(a) shows the hybridization function as a function
of ω for J = 1, μ = 0, and various values of Q0. Note that
the parabolas are shifted upwards and become slightly flatter
as Q0 increases [61]. The progressive enhancement of the
hybridization function at ω = 0 as Q0 increases provides the
condition for the Kondo screening to take place at finite tem-
perature. In Fig. 7(b) we show the TK (Q0, μ)/TK (Q0, μ = 0)
as a function of μ for Q0 = 0.15 and Q0 = 0.2, which shows
how TK increases with |μ|. Despite of their values, note that
the curves exhibit very similar behavior. This is because a
finite value of μ produces a rigid shift of the curves (not
shown) enhancing the value of �(0) due to more conduction
electron’s density of states at the Fermi level. The reader may
have already anticipated this by noticing that the hybridization
function is a smooth function of ω. It is worth mentioning that
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FIG. 7. (a) Hybridization function vs energy for J = 1 and var-
ious values of Q0. (b) TK (Q0, μ)/TK (Q0, μ = 0) as a function of
μ/Q0, for different values of Q0. (c). Kondo temperature vs Q−1

0 for
various values of μ. Here, Q = 0 for all panels.

for Q0 = 0.1 and Q0 = 0.05 shown in Fig. 7(a), TK becomes
too small to be captured by our NRG flow which was trun-
cated at a lower temperature Tmin = 10−12. We examine now
how the Kondo temperature changes with Q0. To see this, in
Fig. 7(c) we show TK (Q0, μ) vs 1/Q0 for several values of
μ. Note that in the limit of large Q0 (small 1/Q0) all curves
tend to collapse onto a single function of Q0 given TK =
AExp(−B/Q2

0), where A and B depend on the parameters of
the system. This is because in this limit the density of states
of the effective conduction band depends essentially on Q0

and becomes ρhost (ω) ∼ Q2
0 even for finite values of μ [61],

and the Kondo temperature approaches its “standard” form for
usual metallic systems TK ∼ Exp[−1/ρ(0)J0] [34], where J0

is the Kondo coupling of the equivalent effective low-energy
Kondo model [62].

The situation is more compelling for J > 1, in which case
the energy dependence of the hybridization function changes
at ω = ±Q0 (for μ = 0) [61]. Figure 8(a) shows how the
hybridization function evolves with increasing Q0 for J = 2
by fixing μ = 0. Clearly, the hybridization function exhibits
a plateau of width 2Q0, consistent with previous analytical
calculations in Ref. [42]. Moreover, the height of the plateau
increases with Q0, which suggests that the Kondo temperature
increases with Q0, resembling the flat band Anderson model.
This is important to understand the behavior of TK in the
regime of Q0 > |μ|. Indeed, this suggests that for J = 2 and
for a fixed Q0 	= 0 the system will exhibit two distinct regimes
observed in the behavior of TK as a function of μ. To confirm
this expectation, in Fig. 8(b) we show TK (Q0, μ)/TK (Q0, μ =
0) as a function of |μ|/Q0 for several values of Q0. One can
clearly see that TK have distinct behavior for |μ|/Q0 < 1 and
|μ|/Q0 > 1. For |μ|/Q0 < 1 the Kondo temperature tends to
collapse onto a single universal function of |μ|/Q0. On the
other hand, for |μ|/Q0 > 1, the curves change their concavity
and are far apart from each other. This reveals that the region
|μ|/Q0 < 1 characterizes a regime dominated by Q0 in which
TK should depend very weakly on μ as the hybridization
function is nearly flat. This becomes more evident in Fig. 8(c)
where we show TK (Q0, μ) vs 1/Q0 for various values of μ.
These curves expose very clearly that indeed for Q0 > |μ|, TK

depends on Q0 as TK = AExp(−B/Q0). Again, here A and B
are quantities dependent on the other parameters of the model.

Finally, we examine the Kondo regimes for triple WSM,
J = 3. In Fig. 9 we show the same results as in Figs. 7 and 8
but for J = 3. First, note that we have again two very distinct
regions in the energy axis. The flat plateau observed in the
hybridization function shown in Fig. 8(a) is deformed into an
arc within the region |ω| � Q0 in Fig. 9(a) with a maximum
value at ω = 0. The nonmonotonic behavior of �(ω) is re-
flected in the Kondo temperature of the system. Figure 9(b)
shows TK (Q0, μ)/TK (Q0, μ = 0) for various valued of Q0.
Similar to the case of J = 2, one can clearly distinguish two
regimes separated by |μ| = Q0. Interestingly, note that the
minimum of �(ω) observed at ω = ±Q0 is accompanied by
a minimum of TK at |μ| = Q0, visible in green and yellow
curves. Moreover, it is remarkable that even in this case the
curves collapse nicely onto each other |μ| < Q0, showing the
universality of the Q0 dominated regime.
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FIG. 8. (a) Hybridization function vs energy for J = 2 and var-
ious values of Q0. (b) TK (Q0, μ)/TK (Q0, μ = 0) as a function of
μ/Q0, for different values of Q0. (c). Kondo temperature vs Q−1

0 for
various values of μ. Here, Q = 0 for all panels.

FIG. 9. (a) Hybridization function vs energy for J = 3 and var-
ious values of Q0. (b) TK (Q0, μ)/TK (Q0, μ = 0) as a function of
μ/Q0, for different values of Q0. (c). Kondo temperature vs Q−1

0 for
various values of μ. Here, Q = 0 for all panels.
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From what we have seen above, the Kondo tempera-
ture for IS broken MWSMs behaves asymptotically as TK =
AExp(−B/Q2/J

0 ) for large Q0 for all J = 1, 2, 3 [Figs. 7(c),
8(c), and 9(c)]. This behavior results from the shape of the
effective hybridization function. Recalling that the Kondo
temperature depends essentially on the structure of �(ω) at
ω near the Fermi level and that �(ω) = πV 2ρhost (ω), the
behavior of TK for Q0 � μ can be understood in light of
the well-known Haldane formula for the Kondo temperature
TK ∼ Exp[−πU/8�(0)] [63], valid for a flat band SIAM in
particle-hole symmetry point. Keeping this in mind, we can
see that J = 2 is a special case in which the �(ω) becomes flat
for |ω| � Q0 [Fig. 8(a)]. This is why the curves of Fig. 8(c)
collapse more nicely onto the analytical result shown in the
dashed line as compared to those of Fig. 7(c) and Fig. 9(c).

IV. CONCLUDING REMARKS

We have studied the Kondo physics in a quantum magnetic
impurity embedded in multi-Dirac(Weyl) node fermionic sys-
tems. Our numerical results reveal that the Kondo physics in
the double- and triple-Dirac node systems always lie within
known classes of the pseudogap Kondo problem, well studied
in the literature. While no Kondo screening is observed in
the particle symmetric case, in the asymmetric case for finite
chemical potential, μ 	= 0, the Kondo screening takes place
due to finite hybridization function at the Fermi level. How-
ever, different scenarios appear in multi-Weyl node systems.
(i) Breaking TRS (finite Q) is detrimental to the Kondo at any

finite chemical potential, but the Kondo peak is very slowly
suppressed as |Q| increases. This is because the spin polariza-
tion induced in the impurity is very tiny, as the polarization
of the various conduction and valence band compensate each
other, rendering a vanishingly small spin splitting in the hy-
bridization function. (ii) When IS is broken we show that
Kondo screening is present for any finite Q0, meaning that the
Kondo temperature is always finite. We find that the double-
(J = 2) and triple- (J = 3) Weyl node fermionic systems are
radically distinct from the single- (J = 1) Weyl node fermion
systems. In contrast to the J = 1 case where μ is always an
important parameter, for J = 2 and J = 3 we observe two
distinct regimes: namely the regime |μ| > Q0, in which the
Kondo temperature depends strongly on μ, and the regime
|μ| < Q0, where TK depends very weakly on the chemical
potential. In particular, for J = 2 the system behaves almost as
the traditional flat-band single impurity Anderson model. We
believe our results expose distinct Kondo regimes present in
multi-node Dirac and Weyl materials, contributing for future
theoretical as well as experimental investigations in various
Dirac/Weyl available materials.
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