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Square-root topological semimetals
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We propose topological semimetals generated by the square-root operation for tight-binding models in two
and three dimensions, which we call square-root topological semimetals. The square-root topological semimetals
host topological band touching at finite energies, whose topological protection is inherited from the squared
Hamiltonian. Such a topological character is also reflected in emergence of boundary modes with finite energies.
Specifically, focusing on topological properties of squared Hamiltonian in class AIII, we reveal that a decorated
honeycomb (decorated diamond) model hosts finite-energy Dirac cones (nodal lines). We also propose a
realization of a square-root topological semimetal in a spring-mass model, where robustness of finite-energy
Dirac points against the change of tension is elucidated.
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I. INTRODUCTION

In the past decade, novel classes of topological phases
have been extensively explored [1]. Focusing on noninter-
acting fermions, there are two kinds of topological phases
according to the bulk spectrum. One is a gapped topological
phase, where bulk has an energy gap and nontrivial topo-
logical numbers are defined for Bloch or Bogoliubov bands.
Examples include topological insulators (TIs) [2–7] and topo-
logical superconductors (TSCs) [8–13]. In TIs and TSCs, the
nontrivial topology is known to result in robust boundary
modes; this relation is called bulk-boundary correspondence
[14,15]. The other kind of topological phase is a gapless
topological phase, also termed a topological semimetal (TSM)
[16–20], where bulk bands themselves have gapless points
or nodes protected by nontrivial topology. Topologically pro-
tected boundary modes appear in TSMs as well. For instance,
flat edge modes protected by the winding number appear in
graphene nanoribbon with the zigzag edge [21–23] and the
dx2−y2 superconductor [24,25].

Recently, an interesting proposal to obtain a class of TIs
was made by Arkinstall et al. Their proposal is to take the
square root of topological tight-binding Hamiltonians [26].
TIs thus obtained are called square-root TIs. The square-root
operation was introduced in several contexts, such as a corre-
spondence between the bosonic Klien-Gordon theory and the
fermionic Dirac theory [27]. Recently, the similar argument
was also applied to the spin models [28] and mechanical
systems [29,30]. Concerning the tight-binding models, the
square-root operation is carried out by adding the “mediating
sites” between sites of original lattice having nonzero par-
ticle transfer, and letting the nearest-neighbor (NN) transfer
between the original sites and mediating sites. This implies
that the model is naturally chiral symmetric, as the bipartition
of the entire lattice to the original sites and the mediating
sites is possible. The square of the model is equal to the
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direct sum of the original model and another model defined
on mediating sites (up to the constant shift). When topological
models are set as an original Hamiltonian, its square root
inherits the topological nature of it. So far, tight-binding mod-
els of TIs [26,31], higher-order TIs [32], and non-Hermitian
TIs [33] created by the square-root operation were proposed.
Their experimental realization was also actively pursued in
various artificial materials, such as photonic crystals [26,31],
electric circuits [34], and phononic crystals [35]. Interest-
ingly, in square-root TIs, preserving the chiral symmetry,
topologically-protected boundary modes appear at positive
and negative energies in a pairwise manner, which reflects
the square-root nature of the model. Along with the above
significant progress in insulators and superconductors, to our
best knowledge, square-root topology of semimetals has not
been explored yet.

In this paper, we propose that TSMs can also be generated
by the square-root operation. We term such TSMs square-root
TSMs (SR-TSMs). SR-TSMs have topological band touching
at finite energies, and the topologically-protected nature of
them can be elucidated by considering a squared Hamiltonian.

As concrete examples, we study a series of d-dimensional
decorated diamond models, i.e., a decorated honeycomb
model in two dimensions and a decorated diamond model
in three dimensions. Their mediating sites correspond to
the vertices of line graphs [36,37], i.e., the d-dimensional
pyrochlore lattice [38]. The models are a suitable plat-
form for the SR-TSMs since the squared Hamiltonian is
composed of d-dimensional diamond and pyrochlore lat-
tices, both of which are well known examples of the TSM.
(The formr is in class AIII.) Specifically, the Dirac points
arise in two dimensions (i.e., the hoeycomb and kagome
lattices), and the nodal line SM is realized in three di-
mensions (i.e., the diamond and pyrochlre lattices). We
show that the d-dimensional decorated diamond model in-
deed hosts the nodal points or lines at finite energies,
inherited from the d-dimensional diamond and pyrochlore
models. Furthermore, the decorated models also succeed
to the characteristic boundary modes in the d-dimensional

2469-9950/2021/103(4)/045136(8) 045136-1 ©2021 American Physical Society

https://orcid.org/0000-0003-4986-7177
https://orcid.org/0000-0002-2276-1009
https://orcid.org/0000-0001-6933-5552
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.103.045136&domain=pdf&date_stamp=2021-01-26
https://doi.org/10.1103/PhysRevB.103.045136


MIZOGUCHI, YOSHIDA, AND HATSUGAI PHYSICAL REVIEW B 103, 045136 (2021)

diamond model, i.e., the flat edge modes in the two-
dimensional case and the flat surface state in the three-
dimensional case. They appear at finite energies, and are
topologically protected by the winding number defined for the
d-dimensional diamond-lattice sector of the squared Hamilto-
nian.

We further propose that the SR-TSM is feasible in a spring-
mass model [29,30,39–51], a periodic array of mass points
connected by springs. Focusing on the two-dimensional case,
i.e., the decorated honeycomb spring-mass model, we reveal
that the finite-energy band touching points appear, and they
survive when the intermode coupling between longitudinal
and transverse modes is introduced. This indicates that those
touching points are topologically stable as far as the protecting
symmetry is conserved.

The rest of this paper is structured as follows. We first argue
a generic recipe for constructing SR-TSMs of class AIII in
Sec. II. Then, in the following two sections, we reveal how this
construction works through the concrete examples. In Sec. III,
we study the decorated honeycomb model as an example of
SR Dirac semimetals in two dimensions. In Sec. IV, we study
the decorated diamond model, as an example of SR nodal line
semimetals in three dimensions. Section V is devoted to the
spring-mass-model realization of the SR-TSM. In Sec. VI, we
summarize this paper.

II. GENERIC CONSTRUCTION OF SQUARE-ROOT
TOPOLOGICAL SEMIMETALS

In this section, we describe a generic recipe of constructing
SR-TSMs, focusing on those in class AIII.

Consider a bipartite lattice with an even number of sub-
lattices and vertices of its line graph, which are obtained
by placing a site on each bond of the original lattice. Then,
let us consider the Hamiltonian with the NN hoppings on a
composite lattice of the original lattice and the vertices of its
line graph:

H =
∑

k

c†
kHkck, (1)

where ck = (ck,1, · · · ck,N , ck,N+1, · · · , ck,N+M )T. Here, N and
M are the numbers of the sublattices for the original lattice and
the vertices of the line graph, respectively, and the sublattices
of the composite lattice are labeled such that the sublattices
1-N belong to the original lattice, whereas the sublattice (N +
1)-(N + M ) to the vertices of the line graph.

This kind of lattice structure is a suitable platform for
realizing square-root topological phases. For instance, the
square-root higher-order TI was proposed [32], as was a
generic construction of square-root TIs proposed later on [33].
As the NN hoppings on the composite lattice occurs only
between the original lattice and the vertices of the line graph,
the Hamiltonian matrix Hk can be written in a form:

Hk =
(
ON,N t�†

k
t�k OM,M

)
. (2)

Here, t is the transfer integral, �k is the M × N matrix which
reflects the connectivity between the original lattice and the
vertices of the line graph, and On,m stands for the n × m zero
matrix.

From (2), we see that the model preserves the chiral sym-
metry, namely, Hk anticommutes a matrix �:

� =
(

IN ON,M

OM,N −IM

)
, (3)

where In is the n × n identity matrix. Due to this chiral sym-
metry, the square of Hk is blockdiagonalized, since (Hk)2

commutes �. Specifically, we have

(Hk)2 =
(

t2�
†
k�k ON,M

OM,N t2�k�
†
k

)
. (4)

Notably, t2�
†
k�k corresponds to the Hamiltonian on the orig-

inal lattice with the on-site potential zt2 and the NN hopping
t2, whereas t2�k�

†
k corresponds to that on the line graph with

the on-site potential z′t2 and the NN hopping t2 [38]; z and
z′ are the coordination numbers of the original sites and the
vertices of the line graph, respectively. The eigenenergies of
these two matrices are identical except for the zero-energy flat
band in that for the line graph. In addition, we can define the
topological winding number for the squared Hamiltonian in
the original lattice subspace. To be specific, as N is even, there
exists a N × N matrix � such that � satisfies

{�, h̃k} = 0, (5)

with

h̃k := t2�
†
k�k − zt2IN , (6)

and {, } stands for the anticommutator. Then, the following
winding number can be defined [22,23]:

ν(k1, . . . , k j−1, k j+1, . . .) =
∫ 1

0

dk j

4π i
Tr

[
�∂k j (log h̃k)

]
, (7)

where k j ∈ [0, 1] is defined such that k = ∑d
j=1 k jb j , with d

being the spatial dimension and b j being the jth reciprocal
lattice vector.

The dispersion relation of the Hamiltonian of the com-
posite lattice is given by the square of that for (Hk)2, with
the signs + and −. This means that, if the NN hopping
model on the original lattice has band touching at zero en-
ergy, the Hamiltonian Hk has the band touchings as well,
and their energies are ±√

z|t |, i.e., the TSM is realized in
the composite-lattice model. However, we cannot define the
topological winding number protecting the band touchings
from the composite-lattice model itself, as they are at finite
energies. Instead, they are protected by the winding number
for the squared Hamiltonian defined in Eq. (7). Accordingly,
the protecting symmetry of the finite-energy gapless nodes is
the chiral symmetry described by � of Eq. (5), because this
symmetry enables us to define the winding number. We thus
call this TSM the SR-TSM. In addition, the topologically pro-
tected band touching also leads to the finite-energy boundary
modes, which is another characteristic of the SR-TSM.

In the following two sections, we show the concrete
models, namely the decorated honeycomb model in two
dimensions and the decorated diamond model in three dimen-
sions. Additionally, we remark that the SR-TSM obtained in
the above procedures is stable against the on-site potential that
is proportional to �; see Appendix A for details.
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FIG. 1. (a) A decorated honeycomb lattice and (b) the band struc-
ture with t = 1. The finite-energy Dirac points are denoted by green
circles.

III. EXAMPLE 1: SQUARE-ROOT DIRAC SEMIMETAL IN
THE DECORATED HONEYCOMB MODEL

A. Model and bulk properties

We first study the decorated honeycomb model, which
is a composite lattice of honeycomb and kagome lattices
[Fig. 1(a)]. This model was studied in the literature [52–54],
and the aim of this paper is to present a renewed viewpoint of
the SR-TSM.

The lattice has five sublattices degrees of freedoms; two of
them come from the honeycomb lattice and the rest from the
kagome lattice. Then, �k of Eq. (2) is a 3 × 2 matrix given as

�k =
⎛⎝ 1 1

eik·a1 1
eik·a2 1

⎞⎠. (8)

Note that the two lattice vectors in Eq. (8) are a1 = ( 1
2 ,

√
3

2 )

and a2 = (− 1
2 ,

√
3

2 ); the corresponding reciprocal lattice vec-
tors are b1 = (2π, 2π√

3
) and b2 = (−2π, 2π√

3
).

As explained in Sec. II, the square of Hk is block diago-
nalized as

H 2
k =

(
H (H)

k O2,3

O3,2 H (K)
k

)
, (9)

where H (H)
k and H (K)

k correspond to the honeycomb lattice
model, with the NN hopping t2 and the on-site potential 3t2

and the kagome lattice model with the NN hopping t2 and the
on-site potential 2t2, respectively. For later use, we define

q(H)
k = 1 + eik·a1 + eik·a2 , (10)

which is the (2,1) component of H (H)
k .

The band structure for this model is shown in Fig 1(b).
We find Dirac cones at K and K′ points (the latter is not
shown in the figure), whose energies are ε = ±√

3|t |. These
Dirac cones are inherited from those of the honeycomb and
kagome models. We note that the band gap opens when the
hopping between sublattice 1 and 3,4,5 is different from that
between sublattice 2 and 3,4,5, because the chiral symmetry
of the squared Hamiltonian [Eq. (5)] is broken. In such a case,
higher-order TI is realized [32].

FIG. 2. (a) The dispersions for the system with the zigzag edge.
The cyan lines represent the flat edge modes. (b) The winding num-
ber defined for q(H)

k in Eq. (11). We set t = 1.

B. Edge modes and topological protection

Figure 2(a) shows the dispersion relation for the cylinder,
obtained by assigning the open boundary condition in the
direction of a1. The edge shape is chosen to be the zigzag
edge. In the momentum space, k2 defined in Sec. II remains
as a good quantum number. We see flat edge modes at ε =
±√

3|t |, connecting the Dirac points in the bulk; this is rem-
iniscent of the edge modes of the conventional honeycomb
model under the zigzag edge, besides the fact that their ener-
gies are finite rather than zero.

The finite-energy flat edge modes are topologically pro-
tected by the winding number for the honeycomb sector of the
squared Hamiltonian, as we discussed in Sec. II. Specifically,
we can define the following winding number as a function
of k2:

ν(k2) = 1

2π i

∫ 1

0
dk1

∂k1 q(H)
k

q(H)
k

. (11)

Note that the definition of Eq. (11) coincides with that of
Eq. (7) when setting � = diag(1,−1). This winding number
is exactly identical to that for the honeycomb model, but we
perform the integration in Eq. (11) for completeness. Chang-
ing the variable as z = e2π ik1 , we have

ν(k2) = 1

2π i

∮
C

dz
1

z + 1 + e2π ik2
, (12)

where C is a unit circle in the complex plane. Using Cauchy’s
residue theorem, we find that ν(k2) is 0 (1) if |1 + e2π ik2 | >

1(|1 + e2π ik2 | < 1). At the critical point, where |1 + e2π ik2 | =
1 (i.e., k2 = 1

3 , 2
3 ), the band gap closes at certain k1, which is
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FIG. 3. (a) A decorated diamond lattice and (b) the band struc-
ture with t = 1. The finite-energy nodal lines are denoted by green
ellipses.

nothing but K and K′ points [55]. In fact, this also manifests
the topological stability of the Dirac points in a bulk, because
the winding number defined by the contour integral around
the Dirac point takes a non-trivial value [22,23,56]. The bulk-
edge correspondence tells us that the number of zero-energy
boundary mode for H (H)

k − 3t2 (per edge) is equal to ν(k2)
at each k2. Then, by taking into account the constant shift of
3t2, we find that the edge modes with energies ±√

3|t | arise in
the decorated honeycomb model. In Fig. 2(b), we plot ν(k2),
which clearly coincides with the above argument, in that ν(k2)
is one where the edge modes exist, while it is zero otherwise.
From this result, we conclude that the SR Dirac semimetal is
realized in the decorated honeycomb model.

Here we note yet another way of characterizing the bulk
Dirac points and the edge modes, i.e., using the Berry’s phase
[57,58]. In fact, such a characterization is applied to the hon-
eycomb model [57], namely the Berry’s phase is quantized
in Z2 and it takes π (0) where the edge modes do (ordo
not) exist. Considering the fact that the squared Hamiltonian
is identical to that of the honeycomb model, we find in the
decorated honeycomb model that the Berry’s phase defined
for the subspace of the honeycomb lattices is indeed quantized
in Z2, and it also gives the topological characterization of the
edge modes.

IV. EXAMPLE 2: SQUARE-ROOT NODAL-LINE
SEMIMETAL IN THE DECORATED DIAMOND MODEL

A. Model and bulk properties

Next, we consider the decorated diamond model [28]
[Fig. 3(a)],which is a composite lattice of the diamond and
the pyrochlore lattices, as an example of the SR nodal-line
semimetal. In this model, the number of sublattices is six;
two of them come from the diamond lattice and the rest four
from the pyrochlore lattice. Hence, �k, introduced in Sec. II,
becomes 4 × 2 matrix given as

�k =

⎛⎜⎜⎝
1 1

eik·a1 1
eik·a2 1
eik·a3 1

⎞⎟⎟⎠, (13)

where a1 = (0, 1
2 , 1

2 ), a2 = ( 1
2 , 0, 1

2 ), a3 = ( 1
2 , 1

2 , 0) are lattice
vectors; the corresponding reciprocal lattice vectors are b1 =
2π (−1, 1, 1), b2 = 2π (1,−1, 1), b3 = 2π (1, 1,−1).

FIG. 4. (a) The dispersions of the decorated diamond model with
a slab geometry. The cyan lines represent the flat surface modes.
(b) The map of the winding number defined for q(D)

k in Eq. (16). We
set t = 1.

The square of Hk is a direct sum of the diamond model
and the pyrochlore model:

H 2
k =

(
H (D)

k O2,4

O4,2 H (P)
k

)
. (14)

The matrix H (D)
k corresponds to the diamond lattice model

with the NN hopping t2 and the on-site potential 4t2; similarly,
H (P)

k corresponds to the diamond lattice model with the NN
hopping t2 and the on-site potential 2t2. We again define the
quantity corresponding to the (2,1) component of H (D)

k :

q(D)
k = 1 +

3∑
j=1

eik·a j , (15)

which we will used in the next subsection.
In Fig. 3(b), we plot the bulk band structure. We see nodal

lines between the X and W points, which are inherited from
the diamond and pyrochlore models.

B. Surface states and topological protection

Let us investigate the boundary modes of this model. Con-
sider a slab geometry whose surface is parallel to the plane
spanned by a1 and a2. In this case, k1 and k2 remain as good
quantum numbers, while k3 is not. In Fig. 4(a), we plot the
band structure for the slab on the high-symmetry lines of the
surface Brillouin zone [green lines in Fig. 4(b)]. We see that
the flat surface states appear, whose energies are ±2|t |.

As discussed in Sec. II, the topological protection of the
surface state can be dictated by calculating the following
winding number as a function of k1 and k2:

ν(k1, k2) = 1

2π i

∫ 1

0
dk3

∂k3 q(D)
k

q(D)
k

. (16)

Performing the integration in the same manner as in Eqs. (11)
and (12), we find that ν(k1, k2) takes 0 (1) if |1 + ei2πk1 +
ei2πk2 | > 1 (|1 + ei2πk1 + ei2πk2 | < 1). For the critical case
where |1 + ei2πk1 + ei2πk2 | = 1, i.e., k1 = 1

2 , k2 = 1
2 , and k1 −

k2 = ± 1
2 , the band gap closes at some k3, which correspond
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FIG. 5. (a) A schematic figure of the spring-mass decorated hon-
eycomb model. We have introduced potential force arising from the
dents of the floor so that the diagonal elements of �(k) become
[�(k)]ii = 3κ (1 − η/2) for i = 1, · · · , 10. Dispersion relations of
the spring-mass decorated honeycomb model for κ = m = 1 with
(b) η = 0 and (c) η = 0.25. Green circles denote the finite-energy
Dirac points.

to the nodal lines. Similar to the decorated honeycomb lattice,
this result indicates the topological protection of the bulk
nodal lines and the surface states. Namely, the finite winding
number indicates the existence of zero-energy surface state for
H (D)

k − 4t2, hence the surface states whose energies are ±2|t |
appear for the decorated diamond model. Figure 4(b) shows
the map of the winding number as a function of the surface
wavevectors. Clearly, the above correspondence between the
surface states and the winding number can be confirmed.

V. REALIZATION IN A SPRING-MASS MODEL

In this section, we argue the realization of the SR-TSM
we have discussed so far in a spring-mass model. The
aims of studying the spring-mass model are (i) to pro-
pose an experimentally feasible setup for the SR-TSMs, and
(ii) to demonstrate the topological stability of the SR-TSM
against the symmetry-preserving perturbations. Concerning
(ii), we note that the symmetry-preserving perturbations can
be achieved by changing the strength of the coupling be-
tween longitudinal and transverse modes, which is inherent
in spring-mass models.

We consider a system of mass points and springs aligned on
the decorated honeycomb lattice [Fig. 5(a)]. Each mass point
can move in any direction of two-dimensional space in the
vicinity of the stationary point. The mass points on sublattices
3, 4, and 5 are placed on dents of the floor, which cause
the gravitational potential [43,49,51]. The Lagrangian of the

system is given as

L = T − Ug − Usp, (17)

with

T = m

2

∑
R

(ẋR,μ)2, (18)

Ug =
∑

R

gR,μνxR,μxR,ν , (19)

and

Usp = κ

2

∑
〈R,R′〉

(xR,μ − xR,μ)γR−R′,μν (xR′,ν − xR′,ν ). (20)

Here, we have assumed the summation over repeated indices
μ and ν (μ, ν = x, y), and the dot in Eq. (18) stands for the
time derivative. In Eq. (17), T is the kinetic energy, Ug is the
potential energy from the dents on the floor, and Usp is the
potential energy describing the restoring force of the springs.
The vector R specifies the sites, which forms a decorated hon-
eycomb lattice. The natural length of a spring is denoted by l0.
The ratio of between distance of neighboring sites (specified
by R and R′) and l0 is denoted by η = l0/|R − R′|, which
determines the tension of the spring. The distance between
neighboring sites is chosen as the unit of length. The vector
xR = (xR,x, xR,y) describes the displacement of the mass point
at the site R.

As for the matrix gR in Eq. (19), we set

gR =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if R ∈ 1, 2

κ
(
1 − 1

2η
)
τ0 + κητz if R ∈ 3

κ
(
1 − 1

2η
)
τ0 − κη

2

(√
3τx + τz

)
if R ∈ 4

κ
(
1 − 1

2η
)
τ0 − κη

2

(−√
3τx + τz

)
if R ∈ 5

, (21)

with τ0 being the 2 × 2 identity matrix and τ = (τx, τy, τz )
being Pauli matrices. Note that the potential is introduced so
that the eigenvalue problem is equivalent to that for the tight-
binding model in the strong tension limit [43,49,51]. Further,
gR is also essential for restoring the chiral symmetry for
the squared systems, which is essential for realizing the SR-
TSM in this system. This implies that, for three-dimensional
systems where the systems are not placed on the floor, the
realization of the SR-TSM is not straightforward. We also
note that η has to be smaller than 2

3 so that the dents have an
ellipsoidal surface (i.e., all the eigenvalues of gR are positive).

The matrix γ in (20) is a 2 × 2 matrix whose elements is
defined as

γδR,μν = (1 − η)δμν + ηδ̂Rμδ̂Rν, (22)

with δ̂R = δR/|δR| and δR being the vector connecting the
neighboring sites, respectively.

The normal modes of the frequency ω are obtained as
follows. Writing R = r̄ + rα where r̄ and rα are the position
of the unit cell and the position of the sublattice α of which R
belongs to, respectively, we apply the Fourier transformation:

xR,μ = 1

N

∑
k

uα
k,μeik·r̄. (23)
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Then, from the Euler-Lagrange equation

d

dt

(
δL

δu̇α
−k,μ

)
− δL

δuα
−k,μ

= 0, (24)

we obtain the equation of motion in the momentum space:

ük = −�(k)uk, (25)

with uk = (u1
k,x, u1

k,y, · · · , u5
k,x, u5

k,y)
T

and

�(k) = 3
κ

m

(
1−η

2

)
I10

− κ

m

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 γ
(1,3)

k γ
(1,4)

k , γ
(1,5)

k

0 0 γ
(2,3)

k γ
(2,4)

k , γ
(2,5)

k

γ
(1,3),†

k γ
(2,3),†

k 0 0 0

γ
(1,4),†

k γ
(2,4),†

k 0 0 0

γ
(1,5),†

k γ
(2,5),†

k 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

(26)

Here, γ
(α,β )

k are 2 × 2 matrices obtained by performing the
Fourier transformation of γ in Eq. (22). Their explicit forms
are given in Appendix B. The matrix �(k) is referred to as
the dynamical matrix in the literature. One can show that the
square of the second term of Eq. (26) preserves the chiral
symmetry in the honeycomb subspace, which is necessary
for realizing the SR-TSM. By further assuming the relation
uk(t ) = eiωtφk, we have

ω2φk = �(k)φk. (27)

Solving the above eigenvalue equation, we have the dispersion
relation for the spring-mass system.

Figure 5(b) shows the dispersion relation for η = 0. Note
that, in this case, all of the matrices γ

(α,β )
k are diagonal,

and �(k) is equivalent to two copies of the tight-binding
Hamiltonian (up to the constant shift). In this figure, we
can see that the band structure of the tight-binding model is
reproduced up to the constant shift 3κ/m, which does not
matter for the topological properties. We note that for η = 0
the transverse and longitudinal modes are decoupled and
each band is doubly degenerate. Namely, each of the Dirac
cones for ω2 ∼ 4.7 and ω2 ∼ 1.2 at the K point is doubly
degenerate, which is consistent with the fact that the winding
number of �(k) − 3 κ

m I2 is two.
For a finite value of η, the transverse and longitudinal

modes are coupled. As a result, some of the matrices γ
(α,β )

k
become off-diagonal, and �(k) is deviated from two copies
of the tight-binding Hamiltonian. In this case, we find that the
doubly degenerate Dirac cone with the winding number two is
not gapped out but splits into two Dirac cones, each of which
has the winding number one as shown in Fig. 5(c). More
precisely, one of the Dirac cones remains at the K point, while
the other is placed on the K-M line. This behavior, which is
reminiscent of the bilayer graphene with AA stacking [59,60],
is also seen in the spring-mass model on a conventional
honeycomb lattice [40]. This result indicates that the Dirac
cones are not gapped out by the inclusion of the intermode
coupling, which manifests the topological stability of the SR-
TSM against the symmetry-preserving change of parameters.

VI. SUMMARY

We have proposed the SR-TSM, where topologically-
protected point or line nodes are inherited from the squared
Hamiltonian. As concrete examples, we study the decorated
honeycomb model and the decorated diamond model, where
the SR Dirac semimetal and SR nodal-line semimetal are
realized, respectively. There, the Dirac cones and nodal lines
appear at finite energy, and they are protected by the winding
number defined for the squared Hamiltonian. We can also
see the bulk-boundary correspondence between this winding
number and the finite-energy flat edge or surface modes.

We have further proposed that the SR-TSM can be real-
ized in a spring-mass model with the decorated honeycomb
arrangement. We have found that the finite-energy band
touching points are robust against the change of the tension
parameter η, which indicates their topological protection by
the winding number of the parental honeycomb model. We
expect that the finite-energy gapless points in the bulk, and
the flat edge modes associated with them, will be observed ex-
perimentally [42] by implementing the decorated honeycomb
structure.

Before closing, we make two remarks which are related
to topological classification. First, for the generalization of
the dimensionality, the SR-TSMs in class AIII are obtained
when the codimension of the nodes [61] is even, because the
conventional TSMs in the same class are found under the same
condition [62]. Second, extension of SR-TSMs to generic
topological classes will be straightforward, namely they are
obtained by performing the square-root operation to other
classes of TSMs. In such systems, the finite-energy gapless
nodes are protected by the symmetries of the squared Hamil-
tonian. In fact, finite-energy gapless points and lines appear
in various condensed-matter systems [63]. As well as explicit
classification results, the detailed analysis of these edge states
is left as a future work to be addressed. We hope that the
SR-TSM proposed here provides a renewed perspective on
topological band strictures.
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APPENDIX A: STABILITY AGAINST ON-SITE POTENTIAL

We show that the SR-TSM is stable against the on-site
potential proportional to the chiral operator � of Eq. (3).
Consider the Hamiltonian

H ′
k =

(
V IN �

†
k

�k −V IM

)
, (A1)

where V is the strength of the on-site potential. Importantly,
the square of H ′

k is still block diagonalized as

(H ′
k )2 =

(
V 2IN + �

†
k�k ON,M

OM,N V 2IM + �k�
†
k

)
. (A2)
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FIG. 6. (a) The band structure for the decorated honeycomb
model with t = 1 and V = 0.5. The finite-energy Dirac points
are denoted by green circles. (b) The dispersions for the cylinder
with the same parameters. The cyan lines represent the flat edge
modes.

This indicates that the on-site potential proportional to the
chiral operator causes a mere constant shift to the squared
Hamiltonian. Consequently, the topological nature of the
Hamiltonian without on-site potential is unchanged.

To confirm this, we calculate the band structures of bulk
and cylinder in the decorated honeycomb model with on-site
potential. The results are shown in Fig. 6, where we clearly
see that the finite-energy Dirac cones in bulk and the flat edge
modes in cylinder, indicating that the stability of the SR-TSM
against the on-site potential.

APPENDIX B: DETAILS OF THE DYNAMICAL MATRIX

Here we list the forms of γ
(α,α′ )

k in Eq. (26):

γ
(1,3)

k =
(

1 − η 0
0 1

)
, (B1a)

γ
(1,4)

k = e−ik·a1

(
1 − η

4

√
3η

4√
3η

4 1 − 3η

4

)
, (B1b)

γ
(1,5)

k = e−ik·a2

(
1 − η

4 −
√

3η

4

−
√

3η

4 1 − 3η

4

)
, (B1c)

γ
(2,3)

k =
(

1 − η 0
0 1

)
, (B1d)

γ
(2,4)

k =
(

1 − η

4

√
3η

4√
3η

4 1 − 3η

4

)
, (B1e)

and

γ
(2,5)

k =
(

1 − η

4 −
√

3η

4

−
√

3η

4 1 − 3η

4

)
. (B1f)
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