
PHYSICAL REVIEW B 103, 045133 (2021)

Nonequilibrium steady-state theory of photodoped Mott insulators

Jiajun Li and Martin Eckstein
Department of Physics, University Erlangen-Nuremberg, 91058 Erlangen, Germany

(Received 24 July 2020; accepted 5 January 2021; published 22 January 2021)

Photodoped states are widely observed in laser-excited Mott insulators, in which charge excitations are quickly
created and can exist beyond the duration of the external driving. Despite the fruitful experimental explorations,
theoretical studies on the microscopic models face the challenge to simultaneously deal with exponentially
separated time scales, especially in multiband systems, where the longtime behaviors are often well beyond the
reach of state-of-the-art numerical tools. Here, we address this difficulty by introducing a steady-state description
of photodoped Mott insulators using an open-system setup, where the photodoped system is stabilized as a
nonequilibrium steady state by a weak external driving. Taking advantage of the stationarity, we implement
and discuss the details of an efficient numerical tool using the steady-state dynamical mean-field theory
combined with the noncrossing approximation. We demonstrate that these stationary photodoped states exhibit
the same properties of their transient counterparts, while being solvable with reasonable computational efforts.
Furthermore, they can be parametrized by just a few physical quantities, including the effective temperature and
the density of charge excitations, which confirms the universal nature of photodoped states indeed independent
of the excitation protocols. As a first application, we consider the stationary photodoped states in a two-band
Hubbard model with intertwined spin-and-orbital ordering and find a family of hidden phases unknown from the
previous studies, implying an apparently unexplored time regime of the relaxation of the intertwined orders.
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I. INTRODUCTION

The recent years witnessed a surge of interests in the ul-
trafast dynamics of quantum materials driven by strong laser
pulses [1,2]. A plethora of experimental studies are carried
out on the photoinduced dynamics of transition metal oxides
and heterostructures, revealing new possibilities of manipu-
lating material properties on the pico- and even femtoseconds
timescale, such as a putative enhancement of superconductiv-
ity [3–5], ultrafast modification of magnetic properties [6–8],
and the emergence of photoinduced hidden phases with inter-
twined spin, orbital, and charge orders [9,10].

In general, light-induced dynamics in Mott insulators in-
volves multiple entangled degrees of freedom and physical
processes which occur over orders of magnitude different
timescales. One of the most widely established excitation pro-
tocols in Mott insulators, termed photodoping, is the creation
of charge excitations, such as doublons (doubly occupied
sites) and holons (empty sites) in a single-band system. A laser
pulse of femtosecond duration can easily create a significant
density of such charge excitations across the Mott gap. These
charge excitations can exist well beyond the short duration
of the laser pulse [11–13] and are decisive for the subse-
quent nonequilibrium dynamics through their interacting with
spin, orbital, or lattice degrees of freedom [14–22]. Theoret-
ically, the long lifetime of the charge excitations is explained
with a lack of efficient scattering channels to dissipate their
large potential energy [23–26]. At the same time, the partial
thermalization of doublons/holons inside each Mott-Hubbard
band can be much faster, allowing for the possible formation

of quasistationary nonthermal states or hidden phases in quan-
tum materials [27–33].

Due to this argument, the understanding of photodoped
states plays crucial roles in unraveling the complex photoin-
duced dynamics in realistic systems. For theoretical studies,
one common strategy is to explicitly compute the time evo-
lution of the photoexcited model system and examine its
physical properties in the longtime limit, where the tran-
sient photodoped state becomes quasistationary due to the
slow charge recombination. Different methods for solving
strongly correlated materials, such as dynamical mean-field
theory (DMFT) [34], exact diagonalization, and density ma-
trix renormalization group [35], have been generalized to the
nonequilibrium regime. However, the timescale of the experi-
mentally relevant dynamics can be orders of magnitude longer
than the intrinsic timescales of the electronic systems, such as
electron hopping and intraband scattering, which provides a
major challenge for microscopic simulations of the real-time
dynamics.

Nonetheless, the separation of timescales allows for an
alternative method to study the photodoping physics. Since
the charge excitations thermalize quickly within the Hubbard
bands and decay on a timescale which is orders of magnitude
longer, the experimentally observed photoexcited dynamics
can be understood through a quasistationary “nonequilibrium
free-energy landscape” determined by a suitable nonequi-
librium control parameter, given by the density of charge
excitations in the present case, which gradually evolves
as doublons and holons recombine. In practice, this moti-
vates a semiclassical description of the dynamics, such as a
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Ginzburg-Landau theory. While such an approach is a power-
ful phenomenological theory and widely used both in theory
and for the interpretation of experiments [10,16,20,36–38], it
is not straightforward to link it to a more quantitative descrip-
tion including the feedback between quantum fluctuations of
the electrons and the order parameters, in particular for Mott
insulators, except for a few situations [39,40].

In this paper, we explore an open-system approach to
study the properties of the quasistationary photodoped states.
Specifically, we apply a weak external driving (through ex-
ternal bath) to compensate the loss of charge excitations
due to the slow charge recombination and stabilize the tran-
sient photodoped state as a true nonequilibrium steady state
(NESS). If the doublon-hole recombination rate is slow, then
we can expect two important properties of the resulting NESS:
First, we expect that the external driving can be chosen much
weaker than the intrinsic energy scales of the system and is
still sufficient to maintain a nonzero excitation density. Sec-
ond, a doublon-hole pair inserted into the system from the bath
remains in the system much longer than the intraband ther-
malization time so that the NESS should become universal.
It is then largely independent of the detailed properties of the
bath and dependent on only a few effective parameters, which
can be taken as the control parameters in a nonequilibrium
phase diagram. We implement this protocol with a coupling
to carefully chosen fermion reservoirs, which steadily inject
doublons and holons into a Mott insulator, without breaking
the symmetries of the model. We will then demonstrate that
this bath-doping protocol indeed produces steady states with
quantitatively the same properties as the laser excited systems
and discuss a first application to the spin-orbital-ordered two-
band Hubbard model.

Another way to explain the approach is to note that deep
in the Mott phase the double occupancy becomes an almost
conserved quantity, since the upper and lower Hubbard bands
are energetically well separated. The approach to stabilize
a universal NESS is then similar in spirit to the activation
of almost conserved quantities in near integrable systems
[41]. The NESS formalism should be also contrasted with
the idea used successfully in diagrammatic weak-coupling
calculations for insulators to impose certain nonequilibrium
distribution functions in the conduction and valence band (see,
e.g., Ref. [17] for an example within the GW formalism) or
assume a Fermi distribution with separate chemical potentials
for the electrons in the conduction and valence band. In the
bath doping, both nonthermal distribution functions and the
modification of the spectrum due to the modified distribu-
tion and correlations are determined self-consistently, which
make it suitable for the application to strongly correlated
systems.

The paper is organized as follows: In Sec. II, we dis-
cuss the Hubbard model and the fermion bath coupling. We
discuss the details of a specific bath setup to create the
NESS containing excess charge excitations. We also elaborate
on the solution of the model using nonequilibrium DMFT
and the steady-state NCA impurity solver. In Sec. III, we
show that the bath coupling pumps up charge excitations
and discuss the universality of these states independent of
the bath details. Section IV then concentrates on a sys-
tematic comparison between the stationary and the transient

photodoped states, created by bath coupling in the present
setup and from real-time DMFT simulation, respectively.
Section V applies the bath-doping protocol to a two-band
Hubbard model with intertwined spin and orbital orders and
discusses the relation between the bath-doped states and the
transient photodoped states. Section VI is the conclusion and
outlook.

II. MODEL AND METHOD

As the minimal setup to illustrate the steady-state formal-
ism, we consider a one-band Hubbard model defined on the
Bethe lattice of infinite coordination number, described by the
following Hamiltonian

H = −t0
∑
〈i j〉σ

c†
iσ c jσ + U

∑
i

ni↑n j↓ + μ
∑

i

ni, (1)

where ci annihilates the lattice electron at site i and 〈i j〉 runs
over all pairs of neighbors. The model features a semiel-
liptic one-particle density of states ρ(ω) =

√
4t2

0 − ω2/πt2
0

(bandwidth 4t0) and is a minimal model describing the Mott
physics [42]. For large interaction U/t0 and at half filling, the
low temperature phase is antiferromagnetically ordered [42].
In our calculations the half-filling condition is imposed by
the condition that the chemical potential μ = −U/2. We use
U = 8.0t0 unless otherwise stated; h̄ = 1 is set throughout the
paper.

As discussed in the introduction, we intend to maintain
a stationary photodoped state with fermion-bath coupling.
Specifically, we weakly couple the system to two fermion
baths which are individually in equilibrium and have other-
wise identical density of states except for different chemical
potentials and energy shifts. To be concrete, the spectra of
the baths are shifted by ±V , with the intention of matching
their bands with the upper or the lower Mott-Hubbard bands
of the lattice system, as schematically depicted in Fig. 1. The
Hamiltonian of fermion baths reads

Hbath = g
∑
isα

(d†
isαci + H.c.)

+
∑
isα

(εα + Vs)d†
isαdisα, (2)

where g is the coupling constant and s = U or L corresponds
to upper and lower bath.

Due to the particle-hole symmetry of the Hamiltonian (1),
we assume a symmetric bath setup, that is for upper (s = U )
and lower (s = L) bath we impose VU = V and VL = −V ,
respectively. For simplicity, we assume the upper bath is full
and the lower bath is empty. In the resulting NESS, the upper
bath should mainly inject electrons into the upper Hubbard
band, forming doublons, i.e., doubly occupied lattice sites.
The lower bath, on the other hand, absorbs electrons out of
the lower Hubbard band, forming holons, i.e., empty lattice
sites. Charge excitations are constantly created in the lattice,
canceling the spontaneous recombination of doublons and
holons. The excess energy is also dissipated through the baths,
thus producing a stationary doublon and hole-doped state, in
analogy to a photodoped state.
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FIG. 1. Illustration of real laser-induced photodoping and the
auxiliary bath doping protocol: (a) In a Mott insulator, photoexcita-
tion creates charge excitations. This effectively dopes both doublons
and holons into the system. (b) Coupling a Mott insulator to suitably
chosen fermion baths can lead to nonequilibrium doping effects
similar to the photoexcitation. The spectral function is calculated for
the Hubbard model with U = 8, β = 12.5 in the antiferromagnetic
ground state and averaged over spins. The blue shades schematically
indicate the charge occupation.

In the following, we will generally consider two types
of spectra for the fermion baths, namely the semiellip-
tic and the square spectra. After integrating out the bath
degrees of freedom, the semielliptic bath yields a local self-
energy with −Im	r

bath(ω) = πg2Dbath(ω), where Dbath(ω) =∑
α,s δ(ω − εα ) is the local density of states of the bath.

The semielliptic bath yields a self-energy −Im	r
bath(ω) =

�
∑

s

√
1 − (ω − Vs)2/W 2 while the square bath gives rise to

−Im	r
bath(ω) = �/2

∑
s θ (ω − Vs − W )θ (W − ω + Vs) with

Heaviside step function θ . Here the damping constant is de-
fined as � = g2/W for both cases.

We use nonequilibrium dynamical mean-field theory
(DMFT) to solve the model. In general, DMFT maps the
lattice problem to a single-impurity Anderson model (SIAM)
with a self-consistently determined bath and is exact in
the infinite dimensional limit [42]. In particular, it is exact
for model (1) on the Bethe lattice of infinite coordination
number. The steady-state nonequilibrium DMFT is recently
developed to study systems under constant driving [34,43–
48]. In the steady state, due to the time-translational in-
variance of the problem, all Green’s function Gr,<(t, t ′) =
Gr,<(t − t ′) can be Fourier transformed to the frequency
domain. One can firstly integrate out the bath degrees
of freedom and map the lattice problem to the following

SIAM,

Simp = −i
∑
σσ ′

∫
C

dtdt ′c†
σ (t )
σσ ′ (t − t ′)cσ ′ (t ′)

− i
∫
C

dt

[∑
σ

c†
σ (t )(−i∂t − μ)cσ (t ) + Un↑(t )n↓(t )

]
,

(3)

where C denotes the Keldysh contour and the hybridiza-
tion function 
σσ ′ (t − t ′) = 
latt

σσ ′ (t − t ′) + 	bath(t − t ′)δσσ ′

encodes both the self-consistent bath 
latt and a contribution
	bath from the real fermion baths. For the Bethe lattice, the
self-consistent bath is given by 
latt

σσ ′ (t − t ′) = t2
0 Gloc,σσ ′ (t −

t ′), where Gloc represents the Green’s function of the “central”
site of the Bethe lattice. The real bath contribution is obtained
after integrating out the bath degrees of freedom, as noted
above. If a bath is empty or full, one simply has to assume
the relation between the lesser or greater components and the
retarded (advanced) component

	>
bath = 0, 	<

bath = 	a
bath − 	r

bath (empty bath), (4)

	<
bath = 0, 	>

bath = 	r
bath − 	a

bath (filled bath). (5)

(More generally, one can also use a partially filled bath with
a separate chemical potential. In the present paper, this is
used only for the extremely strongly doped case, discussed in
the Appendix.) In equilibrium DMFT, the unbiased quantum
Monte Carlo method is often used to solve the SIAM. How-
ever, the algorithm often suffers from a serious sign problem
for the nonequilibrium dynamics, which hinders its ability to
reach the quasistationary regime. In this work, the auxiliary
SIAM is solved by a self-consistent strong coupling expan-
sion up to the lowest order, a.k.a. noncrossing approximation
(NCA) [49]. In nonequilibrium DMFT, NCA has been proven
to qualitatively reproduce the correct physics in the Mott
insulating regime [24,50]. In this work, we aim to confirm
the steady-state photodoped states are physically equivalent
to the transient states obtained from real-time DMFT, so we
will use NCA solver for both simulations to provide a fair
comparison. The real-time implementation of NCA can be
readily generalized to the steady state [51,52]. The imple-
mentation of the NCA is discussed with more details in the
Appendix. In general, one starts with an arbitrary initial guess
and self-consistently updates the solution until convergence,
i.e., when Gimp = Gloc.

In the following, we will examine the spectral func-
tion A(ω) = − Im Gr

loc(ω)/π , which indicates the local
density of states, and the distribution function f (ω) =
− Im G<

loc(ω)/2 Im Gr
loc(ω), which represents the local oc-

cupational probability for electrons and is the Fermi-Dirac
distribution in equilibrium. Equivalently, the distribution can
be analyzed via the occupied density of states, −iG<

loc(ω) =
2πA(ω) f (ω).

III. PUMPING CHARGE EXCITATIONS
IN A MOTT INSULATOR

In this section, we show the fermion bath coupling effec-
tively pumps up charge excitations in an insulating system.
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This can be demonstrated by analyzing the nonthermal distri-
bution function f (ω) in the bath-coupled state. As discussed
above, the charge excitations, once created, should decay
slowly in terms of electron hopping time (t−1

0 ), so that a
very weak coupling to the fermion baths should suffice to
maintain a stationary photodoped state. In such a case, one
may expect the resulting stationary photodoped state exhibits
universal properties independent of the details of the bath,
such as its density of states and occupation. We will confirm
this universality in the following.

A. The universality in the antiferromagnetic phase

We start with the photodoping in the antiferromagnetic
ground state of a half-filled Hubbard model. To be specific,
we couple the system with a full upper fermion bath as well
as an empty lower fermion bath, both of square-shaped den-
sity of states. The calculation is started with an equilibrium
initial guess of inverse temperature β = 12.5, and the VU/L

are chosen so that the overlaps between the Hubbard bands
and the fermion baths are small, and the photodoping level
is moderate. Note that, for extremely strong photodoping, the
solution can in general depend on the initial guess [53].

The effect of the bath coupling is best demonstrated by
looking at the distribution function f (ω). In an equilib-
rium fermion system, fluctuation-dissipation theorem imposes
f (ω) to be a Fermi-Dirac distribution. However, f (ω) can
exhibit enhanced occupation near the upper Hubbard band and
reduced occupation near the lower band upon photodoping,
indicating the distribution of doublons and holons, respec-
tively.

As shown in Fig. 2, the distribution function f (ω) evolves
continuously out of equilibrium for increasing bath coupling,
and a peak (dip) gradually emerges at the bottom (top) of
the upper (lower) Hubbard band. Moreover, a closer look at
the tail of the doublon peak exhibits evidently an exponen-
tial decay, as shown in panel (b) of the figure. Therefore,
a well-defined effective temperature Teff = 1/βeff of charge
excitations can be determined from the slope ∂ω log( f (ω)) ∼
−βeff above the effective “Fermi level” of the charge ex-
citations (doublons in the figure). Analogous behaviors are
observed for holes in the lower Hubbard band. Interestingly,
the effective temperature only changes slightly as � increases.
On the other hand, the effective temperature Teff can be sig-
nificantly modified by choosing different V of baths, since the
latter affects the energy flow into/out of the system.

Note that the rapidly varying form of the distribution func-
tion in the frequency range where the spectrum A(ω) vanishes
has no consequence for physical observables. Therefore, the
data show that the distribution function f (ω) in the relevant
frequency range ω � 2.2 with A(ω) > 0 [see the dark-red
curve in Fig. 2(b)] is essentially described by only two pa-
rameters, i.e., the total occupation in the upper band and
the effective temperature. In particular, f (ω) has no detailed
resemblance to the sharp edge in the density of states. Be-
low we will see that the same holds for other bath density
of states. Such a universal distribution of doublons (holons)
is consistent with the fact that, in the AFM phase, charge
excitations couple strongly with the long-range-ordered spin
moments, and the AFM order acts as a reservoir to assist the
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FIG. 2. Distribution function f (ω) of bath-doped systems in
the AFM phase. The minority spin is shown. The dark-red line is
the spectral function A(ω). The blue-shaded region indicates the
fermion-bath occupation. The bath coupling is changed in the range
� = 0.2, 0.4, 0.6 . . . , 1.8 × 10−4, shown as solid lines from blue to
red colors, respectively.

relaxation of the excitations. [In equilibrium, this charge-spin
coupling results in the substructure in the spectral function in
Fig. 2(a).] Once a doublon-hole pair is inserted from the bath,
it therefore thermalizes much faster than the recombination
time, and detailed memory on the bath density of states is lost
in the steady state.

B. The nonuniversality in the paramagnetic phase

The situation changes in the paramagnetic phase. As shown
in Fig. 3, the distribution function is strongly affected by the
square-shaped spectrum of the fermion baths at weak bath
coupling. The distribution function even forms shoulders at
the edges of the bath spectrum, which can be observed in both
panels of Fig. 3. These shoulders shift positions following the
fermion baths if V is changed. For stronger bath doping, e.g.,
� � 1.0 × 10−4, the nonuniversal features are suppressed due
to the higher density of charge excitations, which results in
enhanced quasiparticle scattering and intraband thermaliza-
tion. We note that even in this regime the bath coupling is
orders of magnitude smaller than other major energy scales
in the system. We also observe that the charge excitations in
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FIG. 3. Distribution function of bath-doped systems in the PM
phase. The dark-red line is the spectral function A(ω). The chosen
�’s and the color scheme are identical to Fig. 2.

PM phase are generally hotter than those in the AFM phase,
indicated by larger effective temperatures (Teff ). This may be
explained by the absence of long-range order, which leads to
less efficient relaxation of charge excitations than in the AFM
phase.

The lack of universality is again consistent with the study
of “intraband” thermalization of excitations in the paramag-
netic phase of the Hubbard model. In previous time-dependent
studies, it has been observed that the relaxation of charge
excitations in the paramagnetic Mott phase is almost stuck
[24,54] and retains a detailed memory on the spectrum of
the pump laser pulse. In part, this is understood as an arti-
fact of the local approximation within DMFT, because this
interaction of electrons with long range charge fluctuations
[55] or spin fluctuations [56] would introduce a fast relaxation
scale. One could therefore expect that the proper incorporation
of such interactions beyond DMFT would yield a universal
bath-doped state also in the paramagnetic phase.

In summary, the distribution function of charge excita-
tion generally exhibits universal features under different bath
coupling, suggesting a well-defined inverse effective tem-
perature βeff measured by the exponential tails in f (ω), or
more generally for stronger doping a distribution of the form
f (ω) = (exp(βeff (ω − μeff )) + 1)−1. This leads to a well-

defined stationary photodoped state, which can potentially be
parametrized by a few physical quantities including Teff .

IV. THE NONEQUILIBRIUM PHASE DIAGRAM

A. Comparison to time-evolved states

To establish the physical relevance of the stationary
photodoped states, we compare their properties with a tran-
sient photodoped system excited by ultrafast pulses. We first
confirm that the distribution of the charge excitations in these
stationary states are similar to that of the transient states. To be
concrete, we consider the antiferromagnetic phase (AFM) at
inverse temperature β = 12.5 and U = 8.0. When baths are
attached to the system, we find charge excitations accumu-
late at the bottom (top) of the upper (lower) Hubbard bands.
Figure 4 shows the occupied density of states −iG<

loc(ω) =
2πA(ω) f (ω) at the bottom of the upper Hubbard band for the
minority spin, verifying again that the distribution is insen-
sitive to the details of the fermion baths. Similar behaviors
are observed for holons in the lower band. In this figure, the
bath coupling � is varied up to the nonequilibrium phase
transition to a paramagnetic phase and is generically of the
order of magnitude �10−4, being much smaller than other
energy scales in the system.

These steady-state results are compared with the real-time
simulations on the same model (1) using nonequilibrium
DMFT. Specifically, the equilibrium ground state of βeq =
12.5 is disturbed by a short electric field pulse E (t ) =
E0 sin(�t )θ (t )θ (T − t ) where T = 5.0, � = 2π , and θ (t )
is the Heaviside step function. The amplitude E0 is var-
ied to reach different photodoping levels. Following the
pulse, the system evolves into a quasisteady state after about
∼40 t−1

0 , and the occupied density of states G<(t, ω) =∫
ds eiωsG<(t + s/2, t − s/2) is shown for time t = 40.0 for

different amplitudes E0, see Fig. 4(f).
The distribution for the time-evolved state apparently bears

a resemblance to the stationary cases created by bath coupling.
To make this statement quantitative, and show that the prop-
erties of the bath-doped and photodoped state are the same,
we now aim to identify the suitable control parameters to
scan a phase diagram of the nonequilibrium steady states and
show that the properties of the time-evolved state are in fact
reproduced by a point in this phase diagram.

B. Antiferromagnetic order parameter

In the AFM phase, the presence of charge excitations can
significantly reduce the ordered moment (spin polarization)
Sz. To quantify this effect in the stationary photodoped states,
we first define the excitation density nex as the increased
value of the double occupancy due to bath coupling, i.e.,
nex = d (�) − d (0), with the double occupancy d = 〈n↑n↓〉.
Furthermore, one can obtain the effective temperature Teff by
fitting the exponential tail of the distribution function f (ω),
as discussed in the previous sections. Since the stationary
photodoped states exhibit universal features for the charge
distribution, one can speculate the existence of the function
Sz(Teff , nex), which maps the parameter tuple (Teff , nex) to the
AFM spin order in the photodoped state [27]. For concrete-
ness, we stick to semielliptic fermion baths and systematically
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FIG. 4. Charge excitations induced in the one-band Hubbard model through fermion-bath coupling. Lines with colors from blue to red
show occupied density of states −iG<(ω) in the upper Hubbard band (for minority spin). The blue areas indicate the shape and position of the
baths. Different panels show the distribution for baths with different shapes (square or semielliptic) and offsets V . The colors from blue to red
correspond to increasing bath couplings. The dark-red line A(ω) indicates the spectrum function of the upper Hubbard band of the minority
spin. The panel of transient states shows the distribution created by an electric pulse in the real-time DMFT simulation. The E0 is varied from
0.1, 0.2, ..., 0.6. For the steady states, the damping � = (a) 0.2, 0.4, . . . , 1.8 × 10−4, (b) 0.2, 0.4, . . . , 1.2 × 10−5, (c) 0.2, 0.4, . . . , 1.8 × 10−4,
(d) 0.2, 0.4, . . . , 1.4 × 10−5, (e) 0.4, 0.6, . . . , 2 × 10−6.

change V and � to sample this function, see the symbols
in Fig. 5. Although the evaluation of Teff rather sensitively
depends on numerical errors, the figure clearly implies the
possible existence of a single-valued Sz(Teff , nex), suggesting
the stationary photodoped states can be parametrized by nex

and Teff . Because a similarity between photodoped and chem-
ically doped (equilibrium) Mott insulators has been discussed
in previous works [27,57], it is also worthwhile to show
in Fig. 5 the corresponding equilibrium function Seq

z (T, nex)
which is controlled by temperature and chemical potential and
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FIG. 5. The antiferromagnetic order parameter Sz(Teff , nex ) in
equilibrium and nonequilibrium. In this plot, we have chosen U =
8.0 and β = 12.5 for the equilibrium reference system in an antifer-
romagnetic phase. The points show Sz in the nonequilibrium steady
state with � = 0.5, 1.0, . . . , 5.0 × 10−7, plotted against nex and Teff

as defined in the text. The surface shows equilibrium Sz for different
temperatures and chemical potentials. In the equilibrium case, we
define nex = 1

2 |n↑ + n↓ − 1|. The factor 1/2 is introduced to fairly
compare with the bath-doped system where both doublon and holons
are present.

is plotted as the surface in Fig. 5 for comparison. Also here we
note a similarity that will be analyzed below.

C. Spectral function and distribution

To quantitatively confirm the existence of a “single-valued”
manifold of states, we note that, in addition to the reduction
of Sz, the presence of charge excitations also significantly
changes the single-particle spectral function [58], which
can have important consequences for the optical properties
[59–62]. Indeed, the hopping of doublons and holons in an
AFM background leads to trails of defects, resulting in energy
transfer into the ordered local-spin moments [25,63]. This
process has two consequences: (i) the AFM order dynami-
cally obtains energy from the charge excitations, leading to
increase of the “spin temperature” and a (partial) melting
of the order; (ii) doublons and holes experience an effective
potential proportional to their hopping distance and hybridize
with magnons to form stringlike excitations [64–68], giving
rise to so-called spin-polaron peaks in the spectral function
[58]. These peaks already appeared in Fig. 1(b).

This allows for a unique opportunity to quantitatively com-
pare the stationary and transient photodoped states. Indeed,
one should expect that a similar parametrization of (Teff , nex)
should exist for the transient photodoped states, and for the
same parameters, the spectral function A(ω) and the occu-
pied density of states −iG<(ω) = 2πA(ω) f (ω) should also
be the same for the stationary and transient photodoped states
if the steady-state theory is valid. For this reason, a series
of stationary photodoped states are obtained by varying �,
finally reaching nex = 0.0148 and Sz = 0.370, with spectral
functions plotted in Fig. 6. The spectral functions are com-
pared against a transient state of nex = 0.0149, Sz = 0.367 in
the long time limit, which is excited by the electric pulse
described above. Upon increasing �, the spin polaron peaks
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FIG. 6. (a) Spectral function A(ω) and (b) occupied spectrum
A(ω) f (ω) under various bath coupling �/10−5 = 0.5, 1.0, . . . , 4.5
from blue to red. The dashed line is the result of real-time simula-
tion. It roughly fits the red curve with � = 4.5 × 10−5. The inset of
(b) compares the real-time solution, the steady state with square bath
coupling, and the equilibrium state of β = 11.2 at half filling, which
all have rather close AFM order parameters. W = 1.0 and V = 1.8
are used for the bath-coupled steady-state system.

for the stationary states damp out more and more strongly
and, at � = 4.5 × 10−5, they eventually become identical to
the transient state (black dashed line). Moreover, the same
result is obtained when square baths are used to excite the
system, as indicated by the Green curves in Fig. 6(b). With the
same nex and Sz, the system always shows essentially identical
spectral function and distribution of charge excitations, which
confirms the single-valuedness of the mapping Sz(Teff , nex),
as the distribution in Fig. 6(b) determines the Teff . We stress
that the observation is physically reasonable because a bath
coupling � down to 10−5t0 should not affect most of the
fast electronic processes in the photodoped system, such as
doublon (holon) scattering and the charge-spin interaction.

In addition, we compare both the transient and stationary
photodoped states with an equilibrium state at half filling
with a similar spin order Sz = 0.368. This state is reached
by increasing temperature to β = 11.7. As shown in the inset
of Fig. 6(b), the equilibrium spectrum is distinct from the
nonequilibrium cases. This indicates that the temperature ef-
fect alone cannot explain the spectral features of a photodoped
system, and the presence of nonthermal charge excitations is
crucial to describe the photodoping physics. This has already
been noted in Ref. [27], by comparing chemically doped to
photodoped states. Finally, it is worth noting that, although
we showed the stationary photodoped states are reasonable
approximations of the corresponding transient states, it re-
mains an open question whether the manifold of stationary

states cover all the physical scenarios under appropriate bath
parameters.

V. PHOTODOPING IN A TWO-BAND MOTT INSULATOR

So far we have concentrated on the photodoped one-band
Mott insulator, while multiple bands are often relevant to
the ultrafast dynamics in experimental systems. Indeed, the
steady-state theory carried out here provides a promising tool
to access the long-time behavior of these multiband sys-
tems, due to a significant reduction of computational costs.
In this section, we will not concentrate on a systematic
interpretation of the numerical results but will mainly demon-
strate the steady-state theory indeed provides insights beyond
the state-of-the-art real-time simulations. We consider one
paradigmatic example, the photodoping in a three-quarter
filled (n = 3) two-band Hubbard model with eg orbital de-
generacy and cubic lattice symmetry. This model is widely
used to study the intertwined orders in transition metal com-
pounds, in particular the spin and orbital ordering in KCuF3,
and is shown to form a hidden phase under photodoping
[30]. The model corresponds to a two-orbital tight-binding
Hamiltonian on a cubic lattice with onsite Coulomb interac-
tion of Kanamori form [SU (2) symmetric interaction]. The
two bands represent two real combinations of the degenerate
d-shell orbital wave functions, i.e., dx2−y2 and d3z2−r2 . It can
be summarized as below,

H =U
∑

i�

ni�↑ni�↓ +
∑

i,σσ ′,� 	=�′
(U ′ − JHδσσ ′ )ni�σ ni�′σ ′

+ JH

∑
i,� 	=�′

(c†
i�↑c†

i�↓ci�′↓ci�′↑ + c†
i�↑c†

i�′↓ci�↓ci�′↑)

− t0
∑

〈i j〉��′σ

eiφi j (t )c†
i�σ T̂ α

��′c j�′σ , (6)

where JH is the Hund’s coupling and U ′ = U − 2JH . The sec-
ond term is the interorbital density-density interaction, and the
third term represents the pair hopping and Hund’s coupling,
respectively. The hopping matrices T̂ α’s are imposed by the
cubic lattice symmetry, with α = x, y, z determined by the
direction of the bond 〈i j〉. We solve the system again on a
Bethe lattice with three types of bonds to mimic the cubic
symmetry [30].

The ground state of (6) features an intertwined A-type
AFM spin order (FM planes align antiferromagnetically),
with order parameter Sz, and G-type antiferro-orbital order
(alternating orbital occupation in all directions), with order
parameter X3 = n1 − n2; here n1,2 are occupations of orbital
1 and 2, respectively. The spin and orbital ordering can be
explained with a superexchange mechanism in both spin and
orbital sectors, as described by the Kugel-Khomskii compass
model [69]. A sketch of the ordering is shown in Fig. 7(a).
X3 indicates the staggered polarization in orbital occupation
[70]. Under nonequilibrium excitations, real-time DMFT sim-
ulations indicate that the system can evolve into a hidden
phase with the ratio Sz/X3 distinct from any equilibrium states
[30], as will be discussed below. For comparison, we pick up
the parameters from Ref. [30], where U/t0 = 7, JH/U = 0.1
and equilibrium β = 100. Specifically, a single-cycle electric
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FIG. 7. Intertwined spin and orbital order in a photodoped two-
band Hubbard model. (a) A-type AFM order parameter Sz versus
orbital order parameter X3. The inset shows a sketch of the inter-
twined spin and orbital order in equilibrium, indicating the orbital
wave function and the spin (green arrows) of a hole per site. The
yellow solid line shows orders of transient photodoped systems, i.e.,
after excitation with an electric field pulse. The yellow dashed line
shows equilibrium order for different temperatures (T increases from
right to left along the curve, indicated by the yellow arrow). The red
line and dots show orders in the presence of semielliptic baths (the
steady-state photodoped states), with � = 0.3, 0.4, . . . , 1.5 × 10−5.
A bath bandwidth W = 0.3 and asymmetric VU = 1.2,VL = −1.27
are chosen to maintain the filling n = 3. The blue hollow squares
correspond to a system coupled to a square bath, with a variety of
different �’s. W = 0.05 and VU = 1.3,VL = −1.4. The point cor-
responding to � = 0 (equilibrium) is marked as a black triangle.
(b) Distribution functions obtained for a coupling to square baths.
The curves from blue to red, with increasing excitation density,
correspond to the hollow squares in panel (a).

pulse (with period T ∼ 1.0/t0) is applied to induce a partial
melting of the spin-orbital order and a nonthermal ordered
state forms within about 100 hopping times (roughly 100
fs if t0 ∼ 1 eV). By fitting the time dependence of the two
order parameters with exponential functions we obtain the
extrapolated orders shown as a yellow solid curve in Fig. 7.
One can see that the nonthermal state contains orders distinct
from the configurations reached in equilibrium as a function
of temperature (dotted yellow line). The nonthermal states
feature stronger A-AFM spin order than the orbital order,
while the opposite situation is observed in equilibrium due
to a weaker spin exchange interaction than the orbital part.
This opposite behavior comes from the interplay between
charge excitations and the spin-orbital order. Again, hopping
of charge excitations transfers kinetic energy to the spin and
orbital orders, but in contrast to the pure antiferromagnet,
hopping within the ferromagnetic planes does not change the

spin order but create trails of defects in the G-type orbital
ordering, leading to faster decay of the orbital order than the
spin order.

While the real-time simulations confirm the nonthermal
orders on several 100 hopping times, it is not clear whether
these photodoped hidden phases are intrinsically transient or
can prevail until the recombination of charge excitations. In
the following, we study the system using the steady-state
formulation and couple it to two semielliptic fermion baths
as in the one-band case. For three-quarter filling, the orbital-
and spin-averaged spectrum is no longer symmetric w.r.t.
zero frequency and the positions of the two baths need to
be separately adjusted to preserve the local occupation n =
n1 + n2 = 3. We show resulting order parameters of the case
VU = 1.2,VL = −1.27 in Fig. 7. Interestingly, under increas-
ing bath doping, the combined spin-orbital order becomes
different from both equilibrium and the extrapolated order in
the photodoped state. In fact, the Sz/X3 is typically larger than
the equilibrium values and smaller than the values in the tran-
sient hidden states, as seen from the red curve in the figure. We
also confirm that the shape of the bath spectral density does
not change the qualitative behavior. In fact, the scenario can be
best demonstrated with the case of square baths, as indicated
in Fig. 7(b). The decaying tails of distribution functions can
be well described by exponential functions insensitive to bath
details, suggesting a universal behavior as before. In addition,
for different bath types (square and semielliptic), the two-
dimensional order parameters (Sz, X3) always follow the same
curve as shown in the figure.

A systematic understanding of the above results requires
further studies and should be compared against possible
extension and extrapolation of the real-time simulations. Nev-
ertheless, the stationary hidden states clearly indicate a new
timescale between the transient dynamics within up to hun-
dreds of electron hoppings (normally femtoseconds) and the
charge recombination which takes an exponentially longer
time. In fact, only the former fs dynamics is captured by
the real-time nonequilibrium DMFT simulations, which has
led to the strongly nonequilibrium states between the spin-
moment and orbital-moment reservoirs, i.e., the transient
hidden phases shown in Fig. 7, since the charge excitations
transfer energy to them at different rates. However, over
longer timescales, the spin-moment reservoir can directly ex-
change energy with the orbital-moment reservoir, giving rise
to a partially equilibrium state between the spin and orbital
moments. By imposing the excitation density, the steady-state
theory is directly accessing these quasiequilibrium hidden
states. This mechanism can be confirmed, for example, with
a systematic examination of the thermalization in a Kugel-
Khomskii model [69].

It is worth noting that, due to the intrinsic frustration and
canting of orbital ordering [71], the ultrafast dynamics in
the two-band Hubbard model is typically accompanied by
a precession dynamics of spin and orbital pseudospins [30].
When this is considered, more complicated ordering may
emerge in the long time limit, such as a nonzero orbital or-
der X2, which corresponds to a complex superposition of eg

orbitals that is generally absent in equilibrium [72,73]. In the
present formulation, the stationary photodoped states may be
argued to contain order “closest” to equilibrium states through
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adiabatically increasing � from 0. To detect unconventional
orders reachable from precession dynamics in the photoex-
cited systems, one could try to scan the phase diagram by
putting a proper seed for respective symmetry breaking or by
computing the relevant susceptibilities of the nonequilibrium
steady state towards other instabilities.

VI. CONCLUSION

In this paper, we discussed an alternative numerical method
to compute the quasistationary behaviors of the photodoped
Mott insulators. Specifically, since the timescale of charge
recombination in Mott insulators is well beyond those of
other relevant processes, a stationary photodoped state can
be stabilized with a very weak external driving, such as
a weak coupling to certain fermion baths, while producing
quantitatively identical physical properties to its transient
counterpart. Using DMFT combined with a steady-state NCA
solver, we demonstrated that the bath-coupling protocol is
well defined, so that the resulting stationary photodoped states
are generally insensitive to the bath details. We systemati-
cally compared their physical properties with the transient
photodoped states created by laser excitations. In particular,
we find that the manifold of stationary photodoped states can
be parametrized by a few physical quantities, i.e., the effective
temperature Teff and the density of charge excitations nex. In-
deed, with the same parameters, a stationary photodoped state
exhibits the same spectral features and energy distribution as
a transient (quasistationary) photodoped state. In other words,
we find the single-particle Green’s functions are essentially
identical for both descriptions. Within the DMFT approxima-
tion, a comparison of the dynamic single particle quantities
establishes the full equivalence between the transient and
stationary methods, since the Baym-Kadanoff functional, and
thus all physical observables, can be determined by the lo-
cal Green’s function within DMFT [74]. In particular this
includes a description of the experimentally most important
optical conductivity, which is expanded in terms of single
particle quantities within DMFT.

Using this steady-state theory, we examined the long-time
behavior of a photodoped two-band Mott insulator, relevant
to transition metal compounds like KCuF3. Intriguingly, we
find a new nonthermal spin-orbital order under photodoping,
indicated by a ratio Sz/X3 which is distinct from either equilib-
rium states or transient states obtained from short-time DMFT
simulations. The stationary hidden states should correspond
to the prethermal ordered state on the timescale between the
short-time dynamics (up to hundreds of fs) and the complete
thermalization dominated by the charge recombination, which
has not been explored by the state-of-the-art real-time simula-
tions.

The steady-state theory holds the promise of resolving
nonthermal effects and hidden phases of multiband Mott
insulators in the long-time limit with reduced computa-
tional efforts. It provides a powerful tool for future studies
in many directions, such as photoinduced superconductivity
[75], the entangled dynamics between lattice and charge,
and strongly correlated systems driven by quantum light
[76,77]. Combined with a proper description of lattice de-
grees of freedom, the present formalism can be generalized to

describe photodoping of correlated materials with t2g orbital
degeneracy on the ps or even ns timescales, such as recent
experiments on LaVO3 [78,79], Ca2RuO4 [80], and relativis-
tic Mott insulator [20,81]. A GW +EDMFT scheme with the
steady-state setup can also be promising to study the charge
transfer dynamics in photodoped states [32,55,82]. The slow
dynamics of the quasisteady states could be addressed by a
suitable quantum kinetic theory for correlated systems [83].

Another very interesting perspective of the approach is that
recently a number of promising nonperturbative numerical ap-
proaches have been developed to study nonequilibrium steady
state within DMFT, including the strong-coupling expansion
for the local density matrix [52], matrix product states [84],
auxiliary master equations [85], or quantum Monte Carlo
[86,87].
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APPENDIX A: THE STEADY-STATE
IMPLEMENTATION OF NCA

In this section, we provide details of the implementation
of the steady-state NCA. In a steady state, all physical ob-
servables are stationary in time and the Green’s functions
are time translational invariant G(t, t ′) = G(t − t ′). Thus, we
consider Green’s functions defined on the Keldysh contour C
where the initial correlation is decoupled from the relevant
time evolution [34].

To clarify the noncrossing approximation used in this pa-
per, we briefly summarize the strong-coupling expansion on
the Keldysh contour [50] in the following. We embed the
impurity problem (3) into a larger Hilbert space of pseu-
doparticles where each pseudoparticle fp is mapped from
a unique local basis state |p〉 in the original problem. For
the one-orbital case in particular, we have p ∈ {0,↑,↓,↑↓},
where 0 represents the vacuum state. We can, therefore, define
the pseudoparticle Green’s functions and impose the physical
constraint Q = ∑

p f †
p fp = 1 by projecting all physical quan-

tities into the Q = 1 subspace. The projected pseudoparticle
Green’s functions satisfy the following equation of motion on
the Keldysh contour,

[i∂t − Hloc]G(t, t ′) −
∫
C,t ′≺t̄≺t

dt̄	(t, t̄ )G(t̄, t ′) = δC (t, t ′),

(A1)

where ≺ denotes cyclic order on the contour and Hloc is
the local Hamiltonian expanded in the local basis |p〉. The
self-energy 	(t, t ′) comes from the hybridization of the local
impurity and the self-consistent bath.

1. Formulation for the steady state

We first rewrite the equation of motion in a form that is
suitable for the steady-state problem, in which the Green’s
functions only rely on the relative time t − t ′. The key ob-
servation is that the cyclic convolution in Eq. (A1) can
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be simplified by defining retarded and advanced compo-
nents Gr (t, t ′) = θ (t − t ′)G>(t, t ′) for t > t ′ and Ga(t, t ′) =
−θ (t ′ − t )G>(t, t ′) for t < t ′, where G< and G> are usual
lesser and greater components [51]. It is straightforward to
verify that these Green’s functions satisfy the usual hermitic-
ity condition and the analogous Langreth rules for cyclic
convolution. In fact, we find that

[G1 ∗ G2]r (t, t ′) =
∫ t

t ′
dt̄Gr

1(t, t̄ )Gr
2(t̄, t ′)

=
∫ ∞

−∞
dt̄Gr

1(t, t̄ )Gr
2(t̄, t ′) (A2)

[G1 ∗ G2]<(t, t ′) = −
∫ −∞

t ′
dt̄G<

1 (t, t̄ )Ga
2 (t̄, t ′)

+
∫ t

−∞
dt̄Gr

1(t, t̄ )G<
2 (t̄, t ′)

=
∫ ∞

−∞
dt̄[Gr

1(t, t̄ )G<
2 (t̄, t ′)

+ G<
1 (t, t̄ )Ga

2 (t̄, t ′)], (A3)

where ∗ is the cyclic convolution. From this observation, one
immediately obtains the following form of the equation of
motion (A1),

[i∂t − Hloc]Gr (t, t ′) −
∫ ∞

−∞
	r (t, t̄ )Gr (t̄, t ′) = 0,

G<(t, t ′) =
∫ ∞

−∞
dsds′Gr (t, s)	<(s, s′)Ga(s, t ′). (A4)

These equations can be transformed to the frequency domain
and computed efficiently. Within the noncrossing approxima-
tion, i.e., the lowest order self-consistent approximation for
the action (3), the self-energies are given by

	0(t ) = −i
∑

σ


σ (−t )Gσ (t ),

	σ (t ) = i
σ (t )G0(t ) − i
σ̄ (t )G↑↓(t ), (A5)

	↑↓(t ) = i
∑

σ


σ (t )Gσ̄ (t ).

Here we have assumed a spin-diagonal hybridization function
for simplicity. A generalization of the diagrammatic expres-
sions to more orbitals, with spin and orbitally off-diagonal
hybridization functions is straightforward [50]. The impurity
Green’s functions can be calculated by similar diagrammatic
expressions,

Gσ (t ) = i[Gσ (t )G0(−t ) − G↑↓(t )Gσ̄ (−t )]/Q, (A6)

with normalization factor Q = ∑
p(−1)pG<

pp(0). In practice,
one usually adds a pseudoparticle chemical potential λ, which
is determined self-consistently during the iterations, in the
local Hamiltonian Hloc to normalize Q = 1 and help conver-
gence. Because NCA is a diagrammatic expression in terms
of the full propagators, the pseudoparticle Dyson equations
(A4) and the diagrammatic equations (A5) and (A6) have to
be solved self-consistently. In the steady state code, this is
achieved by iteration (see below).
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FIG. 8. Nonequilibrium steady states pumped up by the fermion
baths. In the left panel, the dashed line indicates an equilibrium initial
guess, while the solid lines correspond to a “polarized” initial guess.
In the right panel, the red dashed line shows the distribution function
of the polarized initial state. The blue dashed line shows the fermion-
bath spectrum (in the upper Hubbard band) and the blue shaded area
shows its occupation.

2. Taming the numerical instability at low temperature

At low temperatures, one has to use a very fine frequency
grid to stabilize the calculation. A logarithmic grid can be used
to get around this problem, but it then loses the advantage of
the fast Fourier transform. We therefore use an equally spaced
grid in this paper. Another subtlety comes from the fact that,
in the first iteration of the self-consistent equations (A4) to
(A6), the self energies are unknown and we often start with
the Green’s functions of an isolated impurity,

Gr (ω) = (ω − Hloc − i0+)−1, (A7)

G<(ω) = ζ (Gr (ω) − Ga(ω))e−βω, (A8)

where ζ is a diagonal matrix with element ±1 corresponding
to boson and fermion pseudoparticles, respectively [50]. The
“fluctuation-dissipation theorem” for pseudoparticle propaga-
tors differs from that of regular Green’s functions and features
an infrared divergence of the factor e−βω as ω → −∞, which
should be treated with extra care. Although this is super-
ficial in theory due to the infrared threshold behavior of
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pseudoparticle spectrum [49], it can nevertheless lead to nu-
merical instability at low temperatures. This problem can
be avoided by replacing 0+ by η[1 − f (βω)] with f (x) =
1/(ex + 1) with η → 0, which normalizes the exponential
factor to a well-behaved factor f (βω) in Eq. (A8), while
preserving the same fluctuation-dissipation theorem. At very
low temperatures, the pseudoparticle spectrum can contain
sharp peaks near the chemical potential λ, and the η factor
may be added as a regulator in the Dyson’s equation for all
iterations.

APPENDIX B: THE DEPENDENCE ON INITIAL GUESSES

In the main text, we have concentrated on relatively small
photodoping (up to several percents for double occupancy),
which is physically close to equilibrium states. In this Ap-
pendix, we show that, when states become extremely (if not
unphysically) far from equilibrium, and when the bath cou-
pling is extremely small, the solution can depend sensitively
on the initial guess. We consider a paramagnetic phase of
the one-band Hubbard model of U = 8t0 coupled to fermion
baths, as shown in Fig. 8. Exemplarily, the calculations
are started with two initial guesses, the equilibrium ground
state with a finite inverse temperature β, and a “polarized”
state with a photodopedlike distribution function as shown in
the right panel. Specifically, in the polarized case, a peak
is added to the Fermi-Dirac function of inverse temperature
βeff at about ω ∼ 2.5, and a dip antisymmetric to the peak is
added at about ω = −2.5 (not shown in the figure), with the
half-filling condition feff (−ω) + feff (ω) = 1.0 preserved. The
upper edge of the peak at ω ∼ 3.5 is of the Fermi-Dirac form
with the same βeff .

For the two cases, we check the double occupancy d =
〈n↑n↓〉, which reflects the photodoping level in the system.
From the view of pumping up approximately integrable sys-
tems [41], the approximately conserved d is pumped by the
bath coupling and can be in principle driven to a very large
value even with negligible �. Here, the upper fermion bath
is chosen to be roughly half filled, with a chemical potential
μU ∼ 4.0, and the lower fermion bath is symmetric to it. As
expected, d increases with bath coupling �. At � � 10−3, the
two initial guesses lead to almost identical double occupancy.
It is intriguing that, in the small � limit, the solutions from
different initial guesses start to deviate, indicating the coexis-
tence of different photodoped states for the same parameters.
With the polarized initial guess, the double occupancy ap-
proaches a large value d > 0.1 in the limit � → 0. The value
further depends on the effective temperature of the initial
guess.

Note that, without the fermion bath coupling, both initial
guesses lead to completely thermal solutions after conver-
gence. Here, the results show that an extremely nonequilib-
rium state can be maintained by a negligible bath coupling,
and the converged solution in our calculations is not neces-
sarily unique. Physically, it is of course expected that two
physical phases can coexist for the same parameter set, such
as in a first-order dynamical phase transition of the NESS
[44,88]. Furthermore, multiple physical solutions can stay
close to each other in the manifold of photodoped states,
depending sensitively on numerical precision and the initial
guess. It is, therefore, important to check whether these states
indeed approximate some physical transient states for our
purpose.
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[71] L. F. Feiner, A. M. Oleś, and J. Zaanen, Phys. Rev. Lett. 78,
2799 (1997).

[72] R. Maezono and N. Nagaosa, Phys. Rev. B 62, 11576 (2000).
[73] J. van den Brink and D. Khomskii, Phys. Rev. B 63, 140416(R)

(2001).
[74] G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O.

Parcollet, and C. A. Marianetti, Rev. Mod. Phys. 78, 865 (2006).
[75] J. Li, D. Golez, P. Werner, and M. Eckstein, Phys. Rev. B 102,

165136 (2020).
[76] G. Mazza and A. Georges, Phys. Rev. Lett. 122, 017401 (2019).
[77] J. Li and M. Eckstein, Phys. Rev. Lett. 125, 217402 (2020).
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