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We consider the dynamical properties of a gapped quantum spin system coupled to the electric field of a
laser, which drives the resonant excitation of specific phonon modes that modulate the magnetic interactions.
We deduce the quantum master equations governing the time-evolution of both the lattice and spin sectors,
by developing a Lindblad formalism with bath operators providing an explicit description of their respective
phonon-mediated damping terms. We investigate the nonequilibrium steady states (NESS) of the spin system
established by a continuous driving, delineating parameter regimes in driving frequency, damping, and spin-
phonon coupling for the establishment of physically meaningful NESS and their related nontrivial properties.
Focusing on the regime of generic weak spin-phonon coupling, we characterize the NESS by their frequency
and wave-vector content, explore their transient and relaxation behavior, and discuss the energy flow, the
system temperature, and the critical role of the type of bath adopted. Our study lays a foundation for the
quantitative modeling of experiments currently being designed to control coherent many-body spin states in
quantum magnetic materials.

DOI: 10.1103/PhysRevB.103.045132

I. INTRODUCTION

Both the advent of powerful new laser sources and the
increasing demand for next-generation magnetic devices, re-
quired to power the information revolution, are focusing
intensive research efforts on time-dependent phenomena in
condensed matter. On the laser side, x-ray free-electron laser
sources in the USA and Europe now allow the “ultrafast”
probing of materials on the femtosecond timescales of their
fundamental electronic and magnetic processes. On the device
side, the immediate target is designer materials for antiferro-
magnetic (AF) spintronics [1,2], to enable the writing, storage,
and reading of large-scale classical magnetic information with
factor-1000 improvements over the current levels of speed
and power consumption. Already on the horizon, however, is
the development of magnetic materials as a route to encoding
and manipulating quantum information, and indeed quantum
information processing in systems with strong interaction
energies would ensure very high-frequency operation at the
lowest possible dissipation.

The concept of laser driving generalizes the pump-probe
paradigm from simple pulse-delay schemes to the imprint-
ing of arbitrary dynamics (within the limits of field control).
The laser excitation of quantum systems has generated the-
oretical proposals for uniquely out-of-equilibrium states of
matter, including nonequilibrium steady states (NESS) [3,4],
nonequilibrium topological states [5], and many-body local-
ization (MBL) [6,7]. To date these ideas have been tested
largely on systems of ultracold atoms [8–11], where the laser

controls the “optical lattice” on which the atoms reside [12].
The undeniable beauty of both the physical concepts and the
technological achievements aside, these systems are neither
very large nor very readily miniaturized.

Laser facilities operating on the energy and ultrafast
timescales of condensed-matter systems have been deployed
recently to observe a wide array of novel phenomena in
graphene [13], superconductors [14], charge-density-wave
materials [15,16], and correlated insulators near their metallic
transition [17,18]. Beyond inducing, enhancing, or destroying
a symmetry-broken state, a key focus of these experiments
has been the high-frequency Floquet regime, where steady
laser driving can induce new topological states [19,20], the
“time crystal” [21], or more generally allow the “Floquet
engineering” of the electronic bands [22,23].

While any material can be laser-driven, the key ques-
tion is whether this driving creates a coherent quantum state
[4]. Some of these new phenomena, notably photo-enhanced
superconductivity [14], occur because the laser drives partic-
ular phonon excitations of the lattice hosting the electrons.
Because strong laser driving can lead to very high popula-
tions of any targeted mode, exploiting the anharmonic part
of the lattice restoring force leads to the concept of non-
linear phononics [24–26]. However, the phonon ensemble
determines the temperature, and hence heating of the system
is a fundamental issue in determining whether any of these
novel laser-driven phenomena, and particularly their quantum
nature, can survive beyond the initial ultrafast laser pulses.
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Among the extensive body of theoretical studies of
nonequilibrium quantum systems are analyses of short-time
transient behavior caused by quenches [27–29], including
those due to laser pulses [30,31], and of long-time thermal-
ization behavior [28,32]. Ideas from (near-)integrable systems
include MBL, which is known at least in one dimension
[7], and prethermalization [33], while numerous studies have
explored the Floquet regime [34]. Of the many numerical
approaches to quenched or driven models, one of the most
successful is nonequilibrium dynamical mean-field theory
[35,36], which has been applied to many problems in cold
atoms [37] and condensed matter [38–40]. However, these
studies are largely restricted to fermionic systems and focus
mostly on leading qualitative effects due to intrinsic system
dynamics, rather than on the dynamics in the presence of
dissipation.

By contrast, a realistic NESS requires a path for outflow
of the injected energy [4]. The most general approach to
describe a dissipative (open) quantum system is the Lind-
blad formalism [41], in which damping is provided by bath
operators whose Hamiltonian dynamics are not required to
formulate the equations of motion governing the time evolu-
tion of physical observables in the Heisenberg representation
[42,43]. Recent studies of driven condensed-matter systems
have included dissipative effects by using a phenomenological
Gilbert damping [44], a phenomenological phonon damping
[45], or numerical methods where a thermal bath of phonons
[46–48], a temperature-independent fermionic bath [39,49],
or both [50], form(s) part of the system on which calculations
are performed. While these studies therefore consider NESS
implicitly or explicitly, in fact none correspond to the problem
of an open, driven quantum system subject to Lindblad dissi-
pation processes, whose quantitative treatment is the aim of
the current work.

For this purpose we will focus on quantum magnetic
systems, which historically have provided a clean, read-
ily realized, low-dissipation test bed for many concepts in
condensed-matter and statistical physics. The small num-
ber and unique behavior of the spin degrees of freedom
lead to exact solutions including the Heisenberg spin chain,
the transverse-field Ising model, and the Kitaev model. In
nonequilibrium physics, idealized (and often integrable) spin-
chain models as the Hamiltonian part of a Lindblad system
have provided the framework for illustrating NESS [51], MBL
[52,53], Floquet prethermalization [54], and dynamical quan-
tum phase transitions [55], as well as lending themselves
very well to numerical investigation. With a view to future
device application, single spins have long been considered
as excellent candidate qubits and the application of suitable
laser control schemes [4] has been attempted in ensembles
of quantum dots [56,57]. The entangled quantum many-body
states available in magnetic materials present not only a rich
variety of options for encoding (protected) quantum infor-
mation, keywords including (topological) magnonics [2,58–
61], quantum spin liquids [62], and magnetic textures such
as vortices [63] and skyrmions [64], but also many routes for
exploiting intrinsic interactions [65–67] or extrinsic materials-
design flexibility [68] to obtain “handles” for manipulating
magnetism using laser light [69–71].

The reason why insulating quantum magnets are a relative
latecomer to the game of laser excitation and pump-probe
physics is the weak direct coupling of light to spin. In general
one may consider four routes for the creation of magnetic
excitations by incident light. (1) The response of metallic
magnetic systems is usually described in terms of the inverse
Faraday effect; this mechanism remains present (in the form
of virtual electronic processes) in insulators and is quadratic in
the electric-field strength of the light. It was exploited recently
[72] to study the coherent transport of GHz precession modes
of the magnetization over 100 μm distances in ferromagnetic
iron garnet films. (2) At the intrinsic frequencies of mag-
netic modes in condensed matter, which are of order 1 THz,
processes by which one photon creates one magnon depend
on anisotropies in the spin Hamiltonian. While many forms
of spin anisotropy exist, they are in general a consequence
of spin-orbit coupling and thus they are rather weak in the
most familiar quantum magnetic materials, whose magnetic
ions are 3d transition metals. However, they are present in
type-II multiferroics and other systems with finite magne-
toelectric [73] and thermomagnetic coupling [74], and one
such anisotropy was exploited in a recent discussion of a
laser-pumped spin chain as a test case for a Generalized
Gibbs Ensemble approach to near-integrable dissipative sys-
tems [46].

(3) The mechanism invoked most commonly in condensed
matter emerges from the coupling of the electrons to an
electromagnetic vector potential described by the Peierls sub-
stitution. In insulating magnets, the leading-order processes
are of Raman type, where the scattering of one photon excites
two magnon modes [75,76] and thus spin is conserved. For
this type of process, the light frequency should be a signif-
icant fraction of the on-site Coulomb repulsion, U , of the
electrons being excited virtually; because U is of order 5 eV,
the incident light should be around the visible range. At lowest
order, incident photons with frequency ω modify U to U − ω

or U + ω, thereby affecting the magnetic (super)exchange
interaction. If one considers the effect of the electromagnetic
field not on the (virtual) electronic hopping but on localized
electronic energy levels, the interaction between two spins
localized on sites i and j that have the same energy is not
changed at linear order by the electric field. By contrast, if
the energies on i and j are different, the electric field of the
light can have a linear (albeit weak) influence on the exchange
interactions. However, in the common situation where the
atomic structure ensures a mirror symmetry between ions, this
interaction vanishes.

(4) The lattice geometry is fundamental to the magnetic
interactions, because exchange and superexchange processes
are very sensitive to the distances and angles of the bonds
between the ions along the exchange path. Thus the selective
excitation of specific phonon modes would provide direct
control of magnetic interactions through a mechanism reso-
nant both between laser and phonon and between the selected
phonon and the spin sector. By symmetry, the phonons must
be infrared (IR)-active if they are to be driven directly by the
light. Once the excitation of a phonon ensures that the atoms
in a magnetic material are displaced, the modulation of the
interactions is in general linear in the displacement coordi-
nate; the structural complexity of most materials ensures both
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FIG. 1. Schematic representation of a lattice spin system, here a
structurally dimerized chain with antiferromagnetic interaction pa-
rameters J > J ′, driven by the selective excitation of one specific
phonon mode of the lattice. Both the driven phonon and the spin
system are damped by the ensemble of lattice phonons. We envisage
an experimental geometry with the sample attached to an efficient
heat sink for thermal regulation.

IR- and Raman-active phonons over a range of frequencies,
and only for bond paths and displacement directions of espe-
cially high symmetry do the linear terms vanish.

We comment for completeness that recent experiments
have used nonlinear mixing of two driven IR-active phonons
to produce excitations at the sum and difference frequen-
cies, whose symmetry compositions include Raman-active
phonons [77] and magnetic modes [78]. While this mecha-
nism should allow Raman-active phononic modulation of the
magnetic interactions at quadratic order in the electric-field
strength, it is important to distinguish such “nonlinear driving
with harmonic phonons” [77,78] from “nonlinear phononics”
[24]. The latter depends on anharmonic phonons and has
been exploited to influence the electronic properties of cor-
related many-body states in superconductors [50,79–81] and
Mott insulators [82]. Although nonlinear phononic effects on
magnetism have to date been considered only in the form of
creating effective static magnetic fields [83], more sophisti-
cated protocols could be devised that provide a further channel
for dynamical driving. Here we restrict our focus to the simple
case of direct and coherent driving of the spin system by
single, IR-active phonon modes in the harmonic regime. This
situation was given the name “magnetophononics” by the
authors of Ref. [84], who performed a theoretical study of
classical magnets with phenomenological damping, and here
we apply the magnetophononic protocol to a quantum spin
system with quantum dissipation.

To discuss the dynamics of a driven dissipative quantum
magnet we use the example of the alternating spin chain
shown in Fig. 1. The driving is effected by laser excitation
of an Einstein phonon that couples to one of the magnetic
interactions in the spin chain and the dissipation is mod-
eled in the Lindblad formalism by bath operators that damp
both the lattice and spin sectors directly. We establish the
equations of motion governing the basic physics of quantum
NESS in this system, in terms of the driving frequency, the
system parameters, and the response of the separate lattice

and spin sectors. These equations enable us to discuss the
different regimes of weak and strong spin-phonon coupling,
of weak and strong damping, and all the timescales associ-
ated with driving, NESS formation, and relaxation. Thus our
study establishes a foundation for many types of extension,
specifically to different types of spin system, to different types
of bath (characterized by whether they conserve spin and
momentum), to finite system temperatures and thus to driving
protocols for the management of heat and of coherence, and
to quantitative studies of materials and device geometries for
practical experiments.

The structure of this article is as follows. In Sec. II we
present our model for the quantum spin chain, for the laser-
coupled phonon mode that drives it, and for the Lindblad bath
operators that damp it. We derive the equations of motion for
the coupled lattice and magnetic sectors and comment on their
structure. Section III contains a preliminary analysis of the
content of these master equations, with specific attention paid
to NESS. We demonstrate numerically that NESS can indeed
be established, and illustrate how their basic properties are
governed by the primary system parameters, namely, the driv-
ing power, the driving frequency, the lattice and spin damping
coefficients, and the spin-lattice coupling. With this basis, in
Sec. IV we concentrate on the regime of low spin-phonon
coupling to perform a complete investigation of the dynamical
properties of the NESS in the spin sector, characterizing their
response by frequency, wave-vector components, and spin
damping.

In Sec. V we turn to a different but essential aspect of
NESS, namely, the transient processes occurring as they are
established, from the moment the laser driving is switched
on, and the relaxation processes by which equilibrium is
restored when the drive is removed. At higher net occupan-
cies of lattice and spin excitations we find anomalously slow
convergence to NESS, and in Sec. V A we apply analytical
arguments to discuss the underlying physics. Section V B
extends this analysis to the question of limits in parameter
space for the existence of NESS within our model framework,
and Sec. V C provides a brief discussion of relaxation and
temperature. In Sec. VI we analyze the energy flow in the
NESS, considering both its uptake by the spin system as a
function of laser power and frequency and its dissipation by
the Lindblad terms. This allows us to provide experimentally
oriented estimates for the rate of temperature increase in
the driven system, for its control by the heat sink shown in
Fig. 1, and the resulting timescales for read-out and control
processes. In Sec. VII we discuss the context of our results
from a number of angles, including methodology, the influ-
ence of the bath model, timescales and heating effects, and
laser experiments on real materials. Section VIII consists of
a brief summary and perspectives for future extensions of the
framework established in this study.

II. MODEL AND METHODS

We begin by representing the Hamiltonian of the coupled
system shown in Fig. 1 as

H = Hs + Hsp + Hp + Hl, (1)
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where the four terms describe, respectively, the spin system,
the spin-phonon coupling, the Einstein phonon, and the effect
of the laser electric field on this phonon. The bath operators
damping the spin and lattice systems do not enter Eq. (1)
explicitly, but are introduced at the level of the Lindblad
formalism. While some authors have investigated the strong
and controllable effects obtained by considering the quantum
nature of the light field, generally referred to as “cavity QED”
[85,86], for the purpose of driving phonon modes we treat the
laser light field as classical.

A. Spin system

We express the Hamiltonian for the structurally dimerized,
antiferromagnetic spin chain as

Hs =
∑

i

J �S1,i · �S2,i + J ′ �S2,i · �S1,i+1, (2)

with J > J ′ > 0. For simplicity we consider only Heisenberg
interactions between the spins and neglect any anisotropy
terms; in real materials these could be of exchange,
Dzyaloshinskii-Moriya, single-ion, g-tensor, or other origin,
and as noted in Sec. I are generally weak in 3d transition-
metal compounds. A representation particularly useful for
dimerized spin systems is the bond-operator description
[87,88], in which the Hamiltonian is transformed by express-
ing the two spin operators on each dimer using the identity

Sα
1,2 = ±1

2
(s†tα + t†

αs) − 1

2
i
∑
βζ

εαβζ t†
βtζ , (3)

where s and tα (α = x, y, z) are operators for the singlet and
triplet states of each dimer (J) bond. These operators have
bosonic statistics, required to reproduce the spin algebra of
Sα

1,2; however, because each dimer may be in only a singlet
state or one of the three triplets (equivalent to the four possible
states of two spin-1/2 entities), the bond operators must also
obey a local hard-core constraint,

s†
i si +

∑
α

t†
i,αti,α = 1, (4)

on each dimer i and hence are hard-core bosons.
For a system whose magnetic interactions are inversion-

symmetric, the minimal Hamiltonian of Eq. (2) takes the form
Hs = H0 + H2 + H4, where [88,89]

H0 =
∑

i

−J

(
3

4
s†

i si − 1

4
t†
i,αti,α

)
− μi(s

†
i si + t†

i,αti,α − 1),

(5)

with summation over the repeated index α,

H2 = −1

4
J ′ ∑

i,α

(t†
i,αti+1,αs†

i+1si + t†
i,αt†

i+1,αsisi+1 + H.c.), (6)

and

H4 = 1

8
J ′ ∑

i,α �=β

(t†
i,αt†

i+1,βti+1,αti,β − t†
i,αt†

i+1,αti+1,βti,β + H.c.).

(7)

The second term in H0 enforces the constraint [Eq. (4)] using
the Lagrange multipliers μi. At zero applied magnetic field,

the term quadratic in the singlet operators is negative, which
ensures a singlet condensation and justifies their replacement
by a constant, si = 〈si〉, on each dimer. The ground state of
the system is then a condensate of singlets with a spin gap
to all triplet excitations, whose dispersion is specified by the
quadratic terms in H2. Here we will not consider any spatial
gradients (for example, in temperature, magnetic field, or
laser flux) and hence 〈si〉 = s and μi = μ; the latter condition
enforces the hard-core constraint at a global level, but not
locally. For the purposes of the present analysis we will not
consider triplet-triplet interactions, and thus we neglect H4.

We transform the quadratic triplet Hamiltonian H0 + H2 to
reciprocal space using

ti,α = 1√
N

∑
k

tk,αe−ikri , (8)

where N is the number of dimers, and express the result in the
form

Hmf = E0 +
∑
k,α

[(
1

4
J−μ

)
t†
k,α

tk,α − 1

4
J ′s2 cos k(t†

k,α
tk,α

+ t−k,αt†
−k,α

+ t†
k,α

t†
−k,α

+ t−k,αtk,α )

]
, (9)

where

E0 = N
[( − 3

4 J − μ
)
s2 + 5

2μ − 3
8 J

]
. (10)

We note that the only terms generated are those coupling
operators at wave vectors k and −k, and there is no mixing of
the triplet indices, α. The conventional approach [88,89] is to
symmetrize the Hamiltonian matrix, diagonalize it to obtain a
new bosonic quasiparticle, known as the triplon [90], form two
mean-field equations, and solve these for μ and s. By the use
of effective quasiparticle statistics, this procedure may also be
followed at finite temperatures [91,92].

Here we adopt one further simplification with a view
to applying equation-of-motion methods. In the “Holstein-
Primakoff” approximation [89], the singlet occupation is
replaced directly by invoking the local constraint [Eq. (4)],
giving

s2 = 1 − 1

N

∑
k,α

t†
k,α

tk,α. (11)

At quadratic order, this substitution reduces to the approxima-
tion s = 1, μ = − 3

4 J , which is clearly valid in the limit of a
strongly dimerized chain. From extensive studies of the spin
ladder [92], it is generally recognized that the bond-operator
description retains semiquantitative validity for interaction
ratios J ′/J � 1/2 at low temperatures. For the present qual-
itative purposes, this approximation has the major advantage
of not requiring a solution of the self-consistent equations at
each time step.

From the spin Hamiltonian in the “mean-field” form

Hs =
∑
k,α

[
Jt†

k,α
tk,α − 1

4
J ′ cos k (2t†

k,α
tk,α

+ t†
k,α

t†
−k,α

+ tk,αt−k,α )

]
, (12)
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we diagonalize it by applying the Bogoliubov transformation

tk,α = t̃k,α cosh θk + t̃ †
−k,α

sinh θk, (13a)

t †
k,α

= t̃ †
k,α

cosh θk + t−k,α sinh θk, (13b)

where

tanh 2θk = λ cos k

2 − λ cos k
(14)

with λ = J ′/J , to obtain

Hs =
∑
k,α

ωkt̃ †
k,α

t̃k,α. (15)

The operators t̃ †
k,α

and t̃k,α create and destroy the triplon modes
of the dimerized chain and have dispersion relation

ωk = J
√

1 − λ cos k. (16)

B. Phonon system and spin coupling

As shown in Fig. 1, we consider a situation in which the
interaction J is modulated by the oscillations of one specific
phonon mode on every bond. We take this to be an Einstein
phonon with wave vector q = 0 and a finite energy, ω0. As
noted in Sec. I, we focus on the situation where this opti-
cal phonon is IR-active and hence is driven directly by the
electric field of the incident light, and we do not consider the
further possibilities offered by high-order phonon excitation
processes. We assume that the laser illuminates the entire
sample, meaning that we treat the driving as a bulk effect. In
a real material, many different phonon modes are present in
addition to the driven phonon, and all of them, in particular
the acoustic phonons, are responsible for the dissipation of
energy from both the lattice and spin sectors.

The Hamiltonian terms involving the driven phonon are

Hp + Hsp + Hl =
∑

j

[ω0b†
jb j + g(b j + b†

j ) �S1, j · �S2, j

+ E (t )(b j + b†
j )], (17)

where g is the spin-phonon coupling constant and E (t ) =
a cos(ωt ) is the oscillating electric field of the laser, which
we assume to contain a single driving frequency, ω; as noted
above, for the amplitudes a we consider, E (t ) may safely be
treated as classical field. For our purposes, E (t ) is an internal
field, meaning it is the fraction of the incident laser light trans-
mitted into the sample, and we do not concern ourselves with
the reflected component. The dissipative terms do not enter
Eq. (17), but will be included using the Lindblad formalism in
Sec. II C.

The transformation of Eq. (17) includes single- and
triple-operator terms. For pedagogical accuracy we take a
conventional definition of the Fourier transform,

bj = 1√
N

∑
q

bqe−iqr j , (18)

under which the electric-field term becomes

E (t )√
N

∑
j,q

(bqe−iqr j + b†
qeiqr j ) = E (t )√

N

∑
q

(b0 + b†
0), (19a)

= NE (t )d, (19b)

where only the q = 0 mode is selected, but we express it as an
intensive quantity summed over q, with effective displacement

operator d = 1√
N

(b0 + b†
0). Even more simply, the phonon

term becomes
∑

q ω0b†
q bq.

Finally, the spin-phonon coupling term becomes

1

N
√

N

∑
j,q,k,k′,α

(bqt†
k,α

tk′,αei(k−k′−q)r j + H.c.)

= 1√
N

∑
q,k,α

(bqt†
k,α

tk−q,α + b†
qt†

k,α
tk+q,α ), (20)

with q = 0 as the only relevant phonon mode. At the mean-
field level one obtains the decoupled terms

Hsp = Hsp,s + Hsp,p, (21a)

Hsp,s = g 〈d〉
[∑

k,α

t†
k,α

tk,α − 〈t†
k,α

tk,α〉eq

]
, (21b)

Hsp,p = g

〈∑
k,α

t†
k,α

tk,α − 〈t†
k,α

tk,α〉eq

〉
d, (21c)

where we have omitted the product of the two expectation
values in Eq. (21a) because it has no influence at all on the
dynamics of the system. Here Hsp,s contains the operator part
acting on the spin degrees of freedom, expressed in triplon
operators, while Hsp,p contains the operator part acting on the
driven phonon. In both terms the spin-phonon interaction is
expressed by deducting the equilibrium value of the triplon
occupation, such that it has no effect when the system is not
driven. While this mean-field decoupling is an approximation,
we will show in Sec. VI that its quantitative limitations are
minor.

To transform Hsp into the diagonal (triplon) basis of the
spin sector, we use the identity

t †
k,α

tk,α = yk
(
t̃ †
k,α

t̃k,α + 1
2

) − 1
2

+ 1
2 y′

k (t̃ †
k,α

t̃ †
−k,α

+ t̃k,α t̃−k,α ), (22)

in which

yk = 1 − 1
2λ cos k√

1 − λ cos k
= J

2

1 + ω2
k/J2

ωk
and (23a)

y′
k =

1
2λ cos k√

1 − λ cos k
= J

2

1 − ω2
k/J2

ωk
, (23b)

to obtain the expression

Hsp,s = g 〈d〉
∑
k,α

{
yk[t̃ †

k,α
t̃k,α − n(ωk )]

+ 1

2
y′

k (t̃ †
k,α

t̃ †
−k,α

+ t̃k,α t̃−k,α )

}
. (24)

Here the bosonic occupation function, n(ωk ) =
[exp(h̄ωk/kBT ) − 1]−1, provides an accurate value for the
equilibrium occupancy of the triplon mode with frequency ωk

[Eq. (16)] at the low temperatures we consider, despite the
hard-core nature of these modes [93].
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We define the operators

uk =
∑

α

t̃†
k,α

t̃k,α and (25a)

ṽk =
∑

α

t̃†
k,α

t̃†
−k,α

(25b)

in the triplon sector and denote their expectation values at any
given time, t , by

uk (t ) = 〈uk〉(t ), (26a)

ṽk (t ) = 〈ṽ〉(t ); (26b)

the expectation value of the product of two annihilation oper-
ators is manifestly the complex conjugate of ṽk ,

ṽ∗
k (t ) =

∑
α

〈t̃k,α t̃−k,α〉(t ). (27)

We comment that the triplon branch, α, is summed over here
and, because we do not consider an applied magnetic field
or any anisotropy in the spin Hamiltonian, will not enter our
considerations again.

uk (t ) is clearly a real variable due to the hermiticity of
the operator on the right-hand side of Eq. (25), while the
complex variable ṽk (t ) is conveniently separated into its real
and imaginary parts,

vk (t ) = Re ṽk (t ), (28a)

wk (t ) = Im ṽk (t ). (28b)

In the equations of motion to be derived in Sec. II C, the spin-
phonon coupling introduces two quantities composed of the
above expectation values, which we include by defining

U (t ) = 1

N

∑
k

yk[uk (t ) − 3n(ωk )], (29a)

V (t ) = 1

N

∑
k

y′
kvk (t ), (29b)

both of which are real by construction. For the description of
the spin sector in the driven system, we define the number, nx,
of elementary (Bogoliubov, or “dressed”) triplons per site,

nx(t ) = 1

N

∑
k

uk (t ), (30)

and it will be helpful to compare this with the number of
original (or “bare”) triplons per site in the starting basis of
Eq. (1),

nb(t ) = 1

N

∑
k,α

〈t†
k,α

tk,α〉(t ). (31)

Using Eq. (22), this last definition is equivalent to

nb(t ) = U (t ) + V (t ) + 1

N

∑
k,α

〈t†
k,α

tk,α〉eq, (32)

in which the last term is given by

1

N

∑
k,α

〈t†
k,α

tk,α〉eq = 3

2N

∑
k

[(2n(ωk ) + 1)yk − 1]. (33)

At zero temperature and for λ = 1/2, which will be our test
case in what follows, the equilibrium expectation value is
nb0 = 0.028. This number quantifies the quantum fluctuations
in equilibrium and will serve as a reference for the extent of
modifications to the phonon-driven spin state relative to the
undriven ground state.

C. Equations of motion

The time evolution of an open quantum system is specified
by adjoint quantum master equations [42] of the form

d

dt
AH(t ) = i[H, AH(t )] (34)

+
∑

l

γ̃l

[
A†

l AH(t )Al − 1

2
AH(t )A†

l Al − 1

2
A†

l Al AH(t )

]
for any operator AH(t ) describing a physical observable. In
these Heisenberg equations of motion, H is the Hamiltonian of
the “reduced” system under consideration, by which is meant
the quantum system with no environment. The “Lindblad”
operators, {Al}, are formed from the Liouville space of the re-
duced system to describe its interaction with the environment
(the “bath”), which is excluded from explicit consideration. It
was proven by Lindblad [41] that Eq. (34) is the most general
form of the dissipation term for a separable (system-bath)
Hilbert space when l describes a bounded set of operators.
The coefficients γ̃l play the role of damping parameters.

The driven phonon exemplifies the textbook case [42,43]
of the Lindblad equations, namely, those of the damped har-
monic oscillator. The Lindblad operators in this case are A1 =
b†

0 and A2 = b0, with damping rates γ1 and γ2. For the system
to relax back to its equilibrium state in the absence of driving,
it is known [42] that the ratio of the two rates must be given
by the ratio n(ω0)/(1 + n(ω0)), and hence the conventional
parametrization is

γ̃1 = γ n(ω0), (35a)

γ̃2 = γ (1 + n(ω0)), (35b)

leaving only one damping parameter, γ . For physical trans-
parency we separate the Lindblad operators into those that
excite the system by an energy ωl , which we denote by Bl ,
and those that de-excite, which are given by the Hermitian
conjugates, B†

l . The dissipative part of Eq. (34), which is the
second line, may then be separated into the two contributions

T1 = 1

2

∑
l

γl n(ωl ){[Bl , [AH(t ), B†
l ]]+[B†

l , [AH(t ), Bl ]]},

(36a)

T2 = 1

2

∑
l

γl{[Bl , AH(t )]B†
l + Bl [AH(t ), B†

l ]}. (36b)

The commutators in these expressions facilitate their rapid
evaluation in comparison with the expression in Eq. (34); if
the observable and the Lindblad operators are linear bosonic
operators, as for the damped phonon, it can be seen without
explicit calculation that the term T1 vanishes and hence no
dependence on the bosonic occupation, n(ωl ), arises.
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To describe the driven phonon we consider the real vari-
ables

q(t ) = 〈
1√
N

(b0 + b†
0)

〉
(t ), (37a)

p(t ) = 〈
i√
N

(b†
0 − b0)

〉
(t ), (37b)

nph(t ) = 〈
1
N b†

0b0
〉
(t ), (37c)

describing respectively the displacement of the Einstein
phonon (d in Sec. II B), the conjugate phonon momentum, and
the number operator. We recall that, despite the presence of
all phonon modes, b†

q, in Hp, only the operators b0 and b†
0 ap-

pear elsewhere in the Hamiltonian of the reduced system and
hence are candidates for the formation of Lindblad operators.
The other phonons form the environment and their presence
gives rise to the damping, which is contained in the single
parameter γ .

By evaluating Eq. (34) or (36) with the expectation values
from the spin sector [Eqs. (29)] in the spin-phonon coupling
term, one obtains the closed set of equations of motion [42]

d

dt
q(t ) = ω0 p(t ) − 1

2
γ q(t ), (38a)

d

dt
p(t ) = −ω0q(t ) − 1

2
γ p(t ) − 2[E (t ) + g(U (t ) + V (t ))],

(38b)

d

dt
nph(t ) = −[E (t ) + g(U (t ) + V (t ))]p(t )

− γ [nph(t ) − n(ω0)]. (38c)

One observes the characteristic structure in Eqs. (38a) and
(38b) of the displacement and momentum serving as con-
jugate time derivatives, but damping themselves through the
γ /2 term. The electric-field driving and the spin-system cou-
pling appear only in the equation for the phonon momentum
[Eq. (38b)]. The number operator reflects the driving of the
momentum [Eq. (38c)] and also features as its own damping
term, where n(ω0) is the occupation of phonon mode ω0 at
thermal equilibrium. Here we do not extend these considera-
tions to bilinear Lindblad operators in either the phonon or the
spin sector.

Turning to the spin degrees of freedom, we consider the
real expectation values uk (t ), vk (t ), and wk (t ) introduced in
Eqs. (26a) and (28) to describe the dynamical spin processes
diagonal and off-diagonal in the triplon number basis. To
determine the equations of motion, it is expected that the spin
sector will be subject to a direct damping due both to weak
spin-anisotropic terms and to phononic processes arising from
the many acoustic and optical phonon modes in the Hamilto-
nian of any real material. The specific nature of these damping
processes will be the subject of more extended discussion in
Secs. IV and VII, but the available Lindblad operators will
in general be linear and bilinear combinations of t̃k and t̃†

k .
In the present analysis we focus on linear operators, in order
to present the primary phenomena associated with the driven
dissipative quantum spin chain. The equations of motion we
will deduce have the analytical advantage of maintaining a
simple form with transparent physical consequences. How-
ever, it is true that such one-triplon Lindblad operators are spin
nonconserving, meaning that this type of bath is appropriate

for materials with the non-negligible spin anisotropies more
commonly associated with systems of 4d and 5d magnetic
ions. Usually such anisotropic terms are nevertheless correc-
tions to the spin Hamiltonian of Eq. (2), whereas they may
be the leading dissipative terms; we discuss this situation in
more detail, and comment on the case of spin-conserving bath
operators, in Sec. VII.

Thus the Lindblad operators, Bk , that we consider are sim-
ply t̃†

k,α
, and have damping coefficient

γ̃k = γsn(ωk ), (39)

while B†
k has damping γs(1 + n(ωk )). We neglect a possible

dependence of γs on the wave vector, k, along the chains.
While one may ask whether this approximation constitutes
a severe omission, given that energy and momentum con-
servation allow dissipation only for particular combinations
of both, we observe that energy conservation as contained
in Fermi’s Golden Rule does not impose a strong constraint
when one recalls that the one-dimensional (1D) chains are em-
bedded in a three-dimensional (3D) crystal. Thus k-dependent
damping coefficients, γs(k), are averaged over the transverse
momentum, �k⊥, and the assumption that energy conservation
is satisfied at some value of �k⊥ is fully justified. While some
dependence of γs on the longitudinal momentum, k, may
indeed remain, we proceed for the purposes of our present
pedagogical exposition with a single value of γs for clarity.

To deduce the equations of motion when AH(t ) in Eq. (34)
is one of the bilinear operator combinations in Eq. (25), we
first consider the Hamiltonian parts of the respective expres-
sions,

[Hs, uk] = 0, (40a)

[Hs, ṽk] = 2ωk ṽk, (40b)

[Hsp,s, uk] = gq(t )y′
k (ṽ†

k − ṽk ), (40c)

[Hsp,s, ṽk] = 2gq(t )
[
yk ṽk + y′

k

(
uk + 3

2

)]
. (40d)

Combining the unitary parts of Eqs. (40) with the dissipative
part, T2, from Eq. (36b), and taking the appropriate expecta-
tion values, leads to the final expressions

d

dt
uk (t ) = 2gq(t )y′

kwk (t ) − γs[uk (t )−3n(ωk )] (41a)

d

dt
vk (t ) = −2[ωk + gykq(t )]wk (t ) − γsvk (t ) (41b)

d

dt
wk (t ) = 2[ωk + gykq(t )]vk (t )

+ 2gq(t )y′
k

[
uk (t ) + 3

2

]
− γswk (t ). (41c)

In combination with Eqs. (38a)–(38c), these form the equa-
tions of motion for the coupled spin-lattice system. Regarding
the structure of these equations, we comment only that nph(t )
[Eq. (38c)] does not have any direct effect on the evolution
of the other coupled equations and hence it appears that this
variable can be neglected for dynamical purposes, but we will
continue to show nph(t ) as a valuable diagnostic of the state of
the driven phonon sector.
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Regarding the solution of these equations, in order to
study the steady-state and dynamical properties of the driven
and dissipative ensemble of Fig. 1, this will be our task in
Secs. III and IV. In the majority of our calculations, we
will use a periodic chain of N = 400 dimers and hence by
inversion symmetry will have 201 independent values of k,
which we will consider both separately and in summed quan-
tities such as Eqs. (29) and (30). The equations of motion
[Eqs. (38a)–(38c) and (41a)–(41c)] have no lower or upper
validity cutoff in time, and thus can be applied to discuss the
formation, switching, and relaxation of quantum spin NESS
from t = 0 to ∞.

III. NESS IN THE PHONON-DRIVEN SPIN SYSTEM

We begin by choosing input parameters that establish quan-
tum spin NESS, deferring a detailed analysis of the limits to
NESS formation until Sec. V. Our first aim is a preliminary
characterization of the response of NESS to the different fac-
tors influencing their driving. To reduce the space of possible
driving parameters, in the present analysis we restrict our
considerations to resonant excitation of the Einstein phonon
mode, meaning that we select the laser frequency such that
ω = ω0 and hence E (t ) = a cos(ω0t ). From a driving stand-
point, for the electric-field intensities we wish to study and
for a generically weak spin-phonon coupling, off-resonant
driving is largely just a less efficient means, by a factor pro-
portional to [(ω − ω0)2 + (γ /2)2]−1, of exciting a response at
frequency ω. However, in systems with stronger spin-phonon
coupling, nontrivial phenomena are indeed found by pumping
and probing at frequencies ω �= ω0. We remind the reader that
the minimal model of Sec. II A was not designed to describe
driving by any of the other physical mechanisms summarized
in Sec. I, all of which are less frequency-selective than phonon
driving. It is easy to anticipate that the strongest effects of
the driven phonon on the spin system will be found when ω0

matches the spectrum of triplon excitations.
We consider first the driven phonon system without cou-

pling to the spin chain, meaning with g = 0. To represent the
phonons of a typical inorganic material we choose a damping
coefficient γ = 0.02ω0. From Eqs. (38a)–(38c) one observes
that, up to a coupling to the spin system (g) that is typically
below 10%, the phonon has the behavior of a classical damped
harmonic oscillator with a driving term. This is borne out by
the time dependence of the variables q, p, and nph, shown in
Fig. 2. Figure 2(a) illustrates that the phonon number is driven
up to a finite average value and the inset that it oscillates
steadily around this constant value for all later times; this
is the NESS of the driven phonon system. Figures 2(b) and
2(c) show the corresponding behavior of the displacement and
momentum, which have a relative π/2 phase difference.

Several straightforward comments are in order. First, the
phonon number operator in this laser-pumped steady state
has been driven to a nonequilibrium average value of ap-
proximately 0.04. Although this value appears small, it does
constitute a macroscopic occupation of a single mode. This
driven ω0 phonon is the primary source of lattice excitations
in the system, and all other phonon modes will have very low
occupations at low temperatures. In all of the considerations
to follow, we maintain the value of nph in this range, both for

FIG. 2. Response of the Einstein phonon to a resonant driv-
ing field. Here ω0/J = 1, a = 0.004J , γ = 0.02ω0, and g = 0.
(a) Phonon number, nph(t ), produced by switching on a constant laser
electric field at t = 0. The inset shows the steady state of the driven
phonon system at long times. (b) Phonon displacement, q(t ), and
momentum, p(t ), shown from t = 0. (c) q(t ) and p(t ) at long times.

meaningful comparisons as other parameters are varied and
for a realistic account of the temperature of the steadily driven
system, as we discuss in Sec. VI.

Second, the frequency of the oscillations in the driven
phonon occupation, nph(t ), is twice that of q(t ) and p(t ),
as expected from the number of nodes in the displacement
cycle; the latter pair can be taken as the base frequency of the
system, while the former is characteristic of 2ω0, reflecting
the fact that nph is essentially the sum of the squares of q
and p. Third, the characteristic timescale for convergence of
the average of nph to the phonon NESS is 2/γ for all three
quantities [Figs. 2(a) and 2(b)]. For q(t ) and p(t ), this is
to be expected from the corresponding equations of motion
[Eqs. (38)], which contain explicit terms with prefactor −γ /2,
while for nph(t ) it is the behavior of p(t ) on the right-hand side
of Eq. (38c) that induces the same convergence rate. Because
the convergence is exponential, the actual establishment of a
phonon NESS depends on the chosen accuracy criterion.

To a good approximation, the phonon number in the NESS
[inset, Fig. 2(a)] is given by nph(t ) = nph0 + nph2 cos(2ω0t );
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FIG. 3. Average value of the driven phonon occupation number,
nph0, in a NESS of the phonon system, displayed as a function of a2

for various driving frequencies at fixed γ = 0.02ω0 and γs = 0.01J .
(a) No coupling to the spin system (g = 0). (b) g = 0.1J .

we will investigate the corrections to this situation, which
arise due to coupling to the spin system, in Sec. IV. To study
the quasistationary behavior of the NESS, we focus on the
mean phonon occupation, nph0. Figure 3(a) shows that, for all
driving frequencies, the average energy in the driven phonon
mode rises with the driving power, which is proportional to
the square of the electric-field amplitude. In a fully classical
treatment of the driven oscillator, nph0 ∝ (a/γ )2, and this re-
sult may equally be understood from Fermi’s Golden Rule,
where the flow of energy into the system is proportional to
the square of the matrix element, and hence to a2. We discuss
the topic of energy flow in detail in Sec. VI. Because we have
chosen for realism to scale γ to the phonon frequency, a will
also be scaled to ω0 in all of the studies to follow, thereby
maintaining a constant (a/γ )2 when ω0 is varied.

The spin system is driven by the pumped phonon through
the coupling parameter g. Given that the amplitude of the
phonon oscillation, q(t ), is proportional to a/γ , it follows
that the amplitude of the induced driving of the spin system
is proportional to ga/γ . Figure 3 compares the driven phonon
system with g = 0 to the situation with a finite value of g. Here
we have chosen driving parameters suitable for the formation
of NESS; those causing the spin system to inhibit NESS for-

mation are the explicit focus of Sec. V. We observe in Fig. 3(b)
that a generic spin-phonon coupling, g = 0.1J , results in only
small changes being induced by the spin system relative to the
isolated driven and damped phonons of most frequencies, but
that some more significant alterations are possible at specific
phonon frequencies, for reasons we investigate next.

Turning now to the response of the driven spin system,
it is necessary first to establish the nature and characteristic
frequencies of the excitations created by the driving phonon.
Throughout the present study, we will consider the dimerized
S = 1/2 chain of Sec. II A with an illustrative coupling ratio
λ = J ′/J = 1/2. Equation (16) states that the triplon modes of
this chain form one triply degenerate branch dispersing from
a value of ωmin = J/

√
2 at k = 0 to ωmax = √

3/2J at k = π .
However, by spin conservation it is not possible for a phonon
to create a single spin excitation, and from the form of Hsp

in Eq. (17) it is evident that one phonon (b†
0) couples to two

spin excitations. One therefore anticipates that the strongest
effects of the driving phonon on the spin system will be found
when ω0 is chosen to lie within the band of two-triplon exci-
tations, namely, when 2ωmin � ω0 � 2ωmax (1.414J � ω0 �
2.449J). Thus an origin for the special behavior of the ω0/J =
1.5 phonon in Fig. 3(b) is apparent immediately, although the
detailed mechanism will not become clear until Sec. V.

In Fig. 4(a) we choose six driving phonon frequencies
below, in, and above the two-triplon band, and consider the
amplitude of the perturbation transferred to the triplon system
by the phonon for a spin-phonon coupling parameter g =
0.1J . We include a direct spin damping, γs = 0.01J , which we
scale to the energy of the spin system; to reflect the observed
fact that the spin degrees of freedom are in general very
weakly damped, we also adopt a value that is significantly
lower than the phonon damping over most of the range of ω0.
Figure 4(a) shows that laser driving at any frequency does cre-
ate a response in the spin system that is qualitatively similar to
that in the phonon system, namely, that the spin occupation is
“pumped” to a new average value, about which it oscillates. At
constant (a/γ ), the average triplon occupation, nx0, displays
a hierarchy of values as the NESS is approached. While at
frequencies far from the two-triplon band (ω0/J = 0.5, 1.0,
and 3.0) this degree of driving produces only a very weak
occupation, nx0 < 0.001 [inset, Fig. 4(a)], for frequencies in
or near the band we find a state with nx0 � 0.05 at ω0/J = 1.5,
but also one with an occupation of only nx0 � 0.0006 at the
band center, ω0/J = 2.0.

Before discussing these occupation amplitudes, we demon-
strate that each of the driven states is a true NESS. The
detailed time structure, nx(t ), is shown for three selected
frequencies in Figs. 4(b) to 4(d). In each case we compare
the triplon occupation in a time window near the center of
Fig. 4(a) with the long-time limit, for which we take the
window 9960 � t � 10 000; we have shifted all the long-time
traces by a phase 0 � φ < 2π to start each cycle at the same
point. The most important result of Figs. 4(b) to 4(d) is to
prove that the driven model system damped by γ and γs does
indeed host spin NESS, in that identical periodic traces are
obtained for arbitrarily long times. The subsidiary result is
that, for most ω0 values, a good approximation to the NESS is
reached already at rather short times. Because convergence
is exponential, any meaningful accuracy criterion will be
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FIG. 4. (a) Response of the spin system, measured by nx(t )
[Eq. (30)], to driving phonon frequencies ω0/J = 0.5, 1.0, 1.5, 2.0,
2.5, and 3.0. The driving field ensures that a/γ = 0.2 and we set g =
0.1J , γs = 0.01J . nx(t ) in the spin NESS is shown at (b) ω0/J = 0.5,
(c) ω0/J = 1.5, and (d) ω0/J = 2.5, where we compare results in
the time window 1160 � t � 1200, meaning after a small number
of spin-system time constants, with those at 9960 � t � 10 000,
meaning at truly long times.

reached after a single-digit number of time constants, and
thus for quantitative purposes (Sec. VI), bearing experimental
uncertainties in mind, we define a NESS to exist using a rel-
ative criterion of 2% (corresponding to approximately 4/γs).
According to this criterion, the driven state in Fig. 4(c) is not
yet a NESS, for reasons we will revisit below, but those shown
in Figs. 4(b) and 4(d) are.

As a benchmark for the meaning of the nx0 values in Fig. 4,
one may compare with the value nb0 = 0.028 deduced below
Eq. (33) (Sec. II B), which expressed the mixing of dimer
singlet and triplet states due to the quantum spin fluctuations
in the pure spin chain. Thus by inspection of the average

nonequilibrium triplon populations characterized by nx0, one
may state that the spin NESS established at low and high
frequencies constitute only a weak perturbation of the equi-
librium state. This result also implies that in the “Floquet”
regime of frequencies above the two-triplon band, the spin
state is not altered qualitatively, although it may obtain a
nontrivial phase structure. By contrast, for some frequencies
in and around the two-triplon band, the quantum spin NESS
can be altered significantly from the equilibrium state, and our
results for ω0/J = 1.5 suggest that rather modest phonon driv-
ing at certain frequencies can create an essentially different
type of triplon system. We will characterize these qualitatively
new states in detail in Sec. IV.

Here we note that the hard-core nature of the dimer spin
states sets an absolute upper limit of nx = 1 on the triplon oc-
cupation, and in fact such a situation would represent the most
extreme out-of-equilibrium state possible, at which many of
the approximations in Sec. II A would no longer be valid.
Anticipating the discussion of Secs. IV and V A, we introduce
an operational threshold value of nx(t ) in the driven spin
state, such that our description of the spin sector will remain
appropriate, and we set this to nmax

x = 0.2.
In addition to the order-of-magnitude differences observed

in nx0 as a consequence of the driving frequency, Fig. 4 invites
two further remarks. First, we observe that the time structure,
nx(t ), of the NESS in Figs. 4(b) to 4(d) shows a rather com-
plex form, with a definite superposition of different frequency
harmonics in evidence. We will investigate this harmonic
mixing, which appears to be strongest at the below-band fre-
quency of Fig. 4(b), in detail in Sec. IV. Second, the timescale
over which the spin system reaches its NESS appears to be
similar at all frequencies, other than ω0/J = 0.5 and 1.5, at
t ≈ 400J−1. This value corresponds to approximately four
time constants of the spin system (1/γs). Of the exceptional
cases, at ω0/J = 0.5, where γs = γ , the process is somewhat
delayed by the phonon “switch-on” timescale (Fig. 2). At
ω0/J = 1.5, the process appears to be longer still, with the
NESS not yet fully established after t = 1200J−1 [Fig. 4(c)].
We will investigate the transient behavior of the spin system
at switch-on, and explain this curiously slow convergence, in
Sec. V A.

We conclude our initial survey of spin NESS in response to
a driving phonon by showing the spin-system analog of Fig. 3.
In the analysis of experiments, a key quantity in characterizing
any phenomenon is its dependence on the power, or fluence,
of the laser, which is quite straightforward to measure. From
elementary electrodynamics, the fluence is proportional to the
squared amplitude of the laser field, and hence in Fig. 5(a) we
show the dependence on a2 of the average triplon occupation,
nx0, in the NESS for the six representative driving frequencies.
As for the driven phonon, the dependence is clearly linear over
the full range of γ -normalized a2 values for all driving fre-
quencies, again except for ω0/J = 0.5 and ω0/J = 1.5. The
latter shows a saturation as nx0 is driven towards unphysical
values at very large a, while the former shows a crossover
to a dependence that it as least quadratic in (a/γ )2 at strong
driving. Next (Sec. IV) we discuss the dynamical properties of
the driven NESS, which will allow us to understand the origin
of this form, after which (Sec. V) we will address the issue of
limits on (a/γ )2 for spin NESS to exist at long driving times.
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FIG. 5. (a) Dependence of the average triplon number, nx0, in
the NESS on the fluence, shown as (a/γ )2, at driving phonon fre-
quencies ω0/J = 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0. The fixed system
parameters are g = 0.1J , γ = 0.02ω0, and γs = 0.01J . Only the
ω0/J = 0.5 and 1.5 phonons at very high fluences show deviations
from a linear form. (b) Dependence of nx0 on the spin-phonon cou-
pling constant, g, for driving phonons of the same six frequencies at
fixed a/γ = 0.2. A well-defined g2 dependence at all small couplings
gives way to a suppression of nx0 at larger g values whose onset
depends on ω0.

In Fig. 5(b) we show the dependence of the driven triplon
occupation on the spin-phonon coupling, g, for the same six
driving frequencies. At low values of g, nx0 shows a g2 form
that is directly analogous to its dependence on a2. How-
ever, at high g we observe a suppression of nx0 below its
expected value, the onset of which occurs at lower g for the
phonons closest to resonance with the two-triplon band, and
find that the spin response can even decrease as the coupling is
increased. This onset of more complex behavior, which is also
evident in the response of the ω0/J = 1.5 phonon in Fig. 3(b),
allows us to define a regime of “weak” (or “linear”) spin-
phonon coupling, which terminates around g = 0.08J , and a
“strong-coupling” regime. Most magnetic quantum materials
do not show strong spin-phonon coupling at equilibrium, and

thus for the purposes of the present analysis, which is to
discuss the properties of a generic driven quantum magnet,
we will focus on the weak-coupling regime. Hence we adopt
the value g = 0.05J to be representative of the class of mag-
netic materials in which to seek linear quantum spin NESS
phenomena.

In this weak-coupling regime, one may exploit the equiv-
alence of a and g to define a dimensionless effective driving
parameter for the spin system,

D = ga/(γ J ), (42)

which can be used to simplify the analysis, and we will em-
ploy this parameterization in Sec. V. However, when working
beyond this regime it is not possible to avoid studying the full
space of a/γ and g. Although we defer the analysis of strong
coupling to a later study, we stress that all of the treatment
in Sec. II remains fully valid for all the g values shown
in Fig. 5(b). Nevertheless, as we will mention in Sec. VII,
values of g up to 0.5J are known in some dimerized-chain
compounds, and for such extreme spin-phonon coupling one
may not exclude the possibility of a different type of physics
at equilibrium, such as the formation of combined phonon-
triplon entities; we comment only that the formalism of Sec. II
would not be appropriate for such a situation.

IV. DYNAMICAL PROPERTIES OF THE
QUANTUM SPIN NESS

We turn now to a quantitative analysis of the dynamics
of the spin NESS. It is already clear from Sec. III, and par-
ticularly Fig. 4, that the superposition of frequencies present
in the steady state can be complex. For full insight into the
harmonic content of the spin NESS, we introduce the Fourier
transform (FT) of the NESS signal, which we apply to nph(t ),
to the individual spin components, uk (t ) and vk (t ), and to the
summed quantities nx(t ) [Eq. (30)] and

V (t ) = 1

N

∑
k

vk (t ), (43)

which characterize respectively the average triplon occupation
and the average behavior in the off-diagonal two-triplon sec-
tor. The definition of the FT is simplied by making use of the
results in shown in Fig. 4, where we demonstrated that NESS
had been achieved at long times. We use one cycle of the
signal taken from the time window 9960 � t/J−1 � 10 000
to determine the coefficients of the Fourier series

X (t ) =
∑

m

Xm exp(imωt ) (44)

for any quantity X appearing in a NESS driven by any fre-
quency ω; with this notation, any quantity with an integer
subscript (Xm) denotes a Fourier component, and those with
m = 0 are all real numbers. Without performing a detailed
analysis beyond the level of Fig. 4, we comment that the
system described by the model of Sec. II does not generate
any significant dynamics at frequencies other than mω, where
m is an integer. We also comment that there are no discernible
extrinsic features arising in the FT as a consequence of the fi-
nite length of the chain on which we perform our calculations.
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FIG. 6. Illustration of the quantities (a) nph(t ), (c) nx(t ), (e) V (t ),
(g) uk=0(t ), and (i) uk=π (t ) in the NESS obtained with driving pa-
rameters a/γ = 0.2 and g = 0.05J at frequency ω0/J = 1.5 in the
presence of spin damping γs = 0.01J . Panels (b), (d), (f), (h), and (j)
show the corresponding Fourier decompositions.

Returning to the case of resonant driving (ω = ω0), we
illustrate the FT in Fig. 6 by showing in the left panels the time
structure of nph(t ), nx(t ), V (t ), and the single-k components
uk=0(t ) and uk=π (t ) in the NESS of Fig. 4 at ω0/J = 1.5;
juxtaposed in the right panels are the corresponding harmonic
decompositions determined from Eq. (44). We have chosen
a relatively conventional NESS trace [Fig. 6(c), similar to
Fig. 4(c)], in which nx(t ) and uk (t ) are dominated by the
even Fourier components m = 0 and 2, while V (t ) [and by
extension vk (t )] is dominated by m = 1. This result is quite
natural if one considers the equations of motion [Eqs. (41)],
taking q(t ) to be a sinusoidal driving with small amplitude and
a frequency ω0. At leading order in q(t ), all components vk (t )
and wk (t ) will also oscillate at this same frequency, giving a
dominant m = 1 component, while the leading-order response
in uk (t ) oscillates at 2ω0 and possesses a constant offset (a
zeroth harmonic). Because nx(t ) is the sum over all uk (t ),
it therefore shows harmonic components primarily at m = 0
and 2. All of these features are evident in Figs. 6(c)–6(j).
In addition, we observe that the different k-components of
uk (t ) display different harmonic contributions, and because
ω0/J = 1.5 excites triplons closer to the band minimum, the
m = 0 and 2 coefficients are larger at k = 0 than at k = π ;
one may verify (data not shown) that the converse is true
at a driving frequency of ω0/J = 2.5, and we consider the
k-dependence of the response in more detail below.

Given this conventional behavior of the spin NESS, it is
somewhat surprising to observe the presence of a significant
m = 1 harmonic in the phonon NESS, nph(t ), of Fig. 6(a). In
fact nph0 is suppressed by 14% compared to its g = 0 value
(Fig. 2), which is a weaker version of the effect visible for the

FIG. 7. Coefficients of the Fourier transforms of (a) nx(t ) and
(b) V (t ) in the NESS obtained with driving a/γ = 0.2 and g =
0.05J , shown as a function of the driving phonon frequency, ω0, for
damping parameters γ = 0.02ω0 and γs = 0.01J .

ω0/J = 1.5 phonon in Fig. 3(b). The presence of the m = 1
harmonic is another consequence of strong feedback from the
spin system at this “resonant” (in-band) frequency, and arises
from the term gU (t )p(t ) in Eq. (38c), where U (t ) oscillates
primarily at 2ω0 and p(t ) at ω0. It is also clear that additional
harmonics are present in the spin NESS analyzed in Fig. 6,
including at higher multiples of ω0, and one may anticipate
[not least from Fig. 4(b)] that for certain frequencies they are
significant.

To investigate the effect of the frequency of the driving
phonon, in Fig. 7 we show the coefficients of nx(t ) and V (t )
from m = 0 to 4 as a function of ω0. Across the full range
of frequencies, nx(t ) is indeed dominated by the m = 0 and 2
coefficients [Fig. 7(a)] and V (t ) by m = 1 [Fig. 7(b)], meaning
that the case study of Fig. 6, performed for ω0/J = 1.5, is in
fact well representative of the hierarchy of coefficient values,
with only one significant exception. This is the frequency
range around ω0 = ωmin, where a clear peak appears in a
number of the harmonic components. Although frequencies
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around ω0/J = 0.7 are far from a direct resonance, their sec-
ond harmonic (2ω0/J = 1.4J) coincides with the peak density
of states at the two-triplon band minimum. Inspection of
Eqs. (41b) and (41c) reveals that oscillations are indeed in-
duced at 2ω0 because q(t ) is multiplied by vk (t ) or wk (t ).
While this process appears at next-to-leading order in q(t ),
it is strongly enhanced when the second harmonic satisfies the
resonance condition.

The resonantly enhanced second harmonic of wk (t ) in
turn induces stronger first and third harmonic components
in uk (t ), as may be read from Eq. (41b), in which wk (t ) is
multiplied by q(t ) where it acts as a driving term for uk (t ) at
frequencies (2 ± 1)ω0. This type of harmonic mixing results,
for the driving we consider in Fig. 7, in the coefficient |nx1|
even exceeding |nx2| around ω0 = ωmin, where |nx3| is also
strongly enhanced. Similarly, |V2| and |V3| are also enhanced
over a wide frequency range around ω0 = ωmin, where at its
peak |V2| approaches |V1|. Thus the resonant enhancement of
the second harmonic explains why the temporal behavior of
the spin NESS displays more and different features at below-
band frequencies around ω0/J = 0.5 [Fig. 4(b)] than it does
for the cases ω0/J = 1.5 [Figs. 4(c) and 6] and ω0/J = 2.5
[Fig. 4(d)].

We comment briefly on the physical meaning of the
“frequency-doubling” effects that cause the enhancement of
so many Fourier components around ω0 = ωmin. First, it is
important to stress that the response observed at 2ω0 in nx(t )
is not a doubling phenomenon; it is merely a consequence
of the fact that the triplon number is an operator square of
the triplon degree of freedom, and in this sense the behavior
of uk (t ), vk (t ), and wk (t ) is directly analogous to that of the
driven phonon variables discussed in Sec. III. By contrast,
the frequency doubling observed between phonon driving at
ω0 = ωmin and the strong response of the spin system at 2ωmin

is a real effect, which at a “classical” level can be read di-
rectly from the equations of motion. At a quantum level, this
frequency doubling requires the involvement of two phonons
at frequency ω0, taking part in off-shell phonon-triplon pro-
cesses that are allowed in the strongly out-of-equilibrium
system.

We stress again that all physical processes of this type
[meaning those contained in Eqs. (41)] do involve multiple
driving phonons, as is standard in Floquet physics. Our treat-
ment of the lattice system does not allow for the creation
of phonons with frequencies of 2ω0, 3ω0, or higher due to
anharmonicities in the lattice potential, as was discussed in
Refs. [24,25]. Because the factors enhancing multiphonon
response and harmonic mixing (Figs. 6 and 7) are the same,
it is no surprise to find that both phenomena are strongest
in the same range of frequencies. Quantitatively, the strength
of these subdominant signals at constant a/γ is a product of
powers of g with the height of the density-of-states peak at
2ωmin, and the enhancement can exceed an order of magnitude
at ω0 = ωmin.

Turning to the physical quantities characterizing the NESS,
we have seen in Sec. III, and see again in Fig. 7, that the
response of the spin system is very sensitively dependent on
the driving frequency, with clearly different adiabatic, antia-
diabatic, and “resonant” (by which is meant in-band) forms.
However, some in-band frequencies are not particularly re-

FIG. 8. (a) Average triplon occupation, nx0, in the NESS obtained
with driving a/γ = 0.2 and g = 0.05, shown on logarithmic axes as
a function of ω0 for different values of γs. The band-edge features
become increasingly prominent as γs decreases, as does the peak at
ω0 = ωmin, but for most other phonon frequencies nx0 is quite insen-
sitive to the spin damping. (b) Corresponding off-diagonal response,
shown by the quantity |V1|.

markable, due to small matrix elements or low densities of
two-triplon states, and some adiabatic frequencies clearly
have rather strong anomalous (multiphonon) enhancement.
For a quantitative visualization of this response, in Fig. 8(a)
we show the mean amplitude, nx0, of the driven triplon oc-
cupation and in Fig. 8(b) the amplitude of the off-diagonal
response, which we gauge using |V1|. The rising lines indicate
decreasing values of γs, which we terminate at γs = 0.005J to
avoid having nx0 exceed nmax

x = 0.2, thereby allowing NESS
formation at all frequencies for the chosen driving param-
eters. At frequencies far from a resonance with the edges
of the band, nx0 is surprisingly insensitive to γs [Fig. 8(a)].
However, as ω0 approaches 2ωmin and 2ωmax, the driven nx0

varies strongly with γs, and the same is true around ω0 = ωmin.
As Fig. 8(b) makes clear, analogous effects are present

at ω0 = 2ωmin and 2ωmax in |V1|, which also rises to values
of order 0.1 at the lower band edge for γs = 0.005J but is
essentially independent of γs for driving frequencies more
than 0.1J outside the two-triplon band. Because we have cho-
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FIG. 9. Wave-vector-resolved average triplon occupation, uk0, in
the NESS obtained with driving a/γ = 0.2 and g = 0.05J , shown as
a function of the driving frequency, ω0, for k = 0, π/4, π/2 + ε,
3π/4, and π . Black squares show the maxima, umax

k0 , of the uk0

functions peaking at different energies across the Brillouin zone,
which defines the wave vectors kres. At all frequencies ω0 < 2ωmin

the strongest peak is found in uk=0 and at ω0 > 2ωmax in uk=π .
ε = π/N is an offset from the band center, where uk=π/2 = 0.

sen |V1| as the off-diagonal diagnostic, and this is a primary
driving term in Eqs. (41) rather than a driven term, there
is no γs-dependence around ω0 = ωmin; this response of the
off-diagonal sector is found rather in the coefficients |V2| and
|V3| in Fig. 7. The other differences in the frequencies of char-
acteristic features in |V1|, most notably the in-band minimum
occurring at ω0/J = 1.7 rather than 2.0, may be traced to
the leading dependence in Eq. (41b) on the coefficient yk in
Eq. (23a) as opposed to y′

k in Eq. (23b).
To understand the degree to which individual k-

components of the spin system are selected by the phonon
driving, in Fig. 9 we show uk0 over the full range of driving
frequencies for selected values of k across the Brillouin zone.
For k = 0 and π , it is no surprise that the respective uk0

functions peak strongly at ω0 = 2ωmin and 2ωmax, because
these are the dominant available wave-vector components;
we note that there is no problem with the fact that uk=0(t ) ex-
ceeds the threshold when the system is driven at ω0 = 2ωmin,
because the triplon occupation is determined by the aver-
age over all components [Eq. (30)]. For driving frequencies
within the two-triplon band, one might expect a broad spin
response on the grounds that triplon pairs from a wide range
of wave vectors may contribute. However, the response at
each frequency remains dominated by the resonance condition
ω0 = 2ωk , and thus the components uk0 for k = π/4 and
3π/4 continue to show sharp peaks (which fall by one order of
magnitude over an energy range of 10% of the band width).
Thus k-selection on the basis of the driving energy is rather
accurate and it is well justified to introduce a “resonant” wave
vector, kres, selected by each ω0. The black squares in Fig. 9
show the maxima, umax

k0 , of a sequence of ukres (t ) functions
selected in this way.

In addition to this characteristic frequency, each uk0 shows
a pronounced below-band two-phonon process, visible at one

half of the peak frequency, and it is only the act of averaging
over all the k-components that disguises these features in our
figures showing nx0. For the driving and damping parameters
used in Fig. 9, no three-phonon processes are discernible
in the individual k-components. Nevertheless, a wealth of
structure is revealed by considering the FT of the different
k-components on logarithmic axes for a range of frequencies
(analogies of Fig. 6, data not shown). The differential response
of different k-components is also clearly visible when the
drive is switched on, leading to complex envelope oscillations
at initial times, and we will touch on these phenomena in
Sec. V A. We remind the reader that the structure of our model
ensures no interactions between triplons at different k, and so
all uk (t ) components evolve independently in time.

We close our discussion of dynamical phenomena in the
NESS by commenting on the possibility of new dynamical
modes emerging in the driven system, for example where the
pumped phonon is strongly dressed by triplons. Excitations
with combined phononic and spin character are known in a
number of materials, including manganites and “spin-Peierls”
chains. In general these are a property of the equilibrium
system arising for strong g and, as noted at the end of Sec. III,
their inclusion would require an extension of the present
treatment. While this treatment does reveal unconventional
dynamical processes in the driven system, specifically those
involving multiple phonons, it is not designed to capture the
formation of bound states of these excitations at equilibrium.

V. TRANSIENT AND RELAXATION PROCESSES

Although the primary aim of our present study is to discuss
NESS themselves, clearly their short-time (transient) behavior
on “start-up” is a key to measurement windows, as well as
to analyzing switching processes of the type one may wish
to use in logic operations. Despite the clear presence of the
timescales set by the lattice and spin dampings, respectively
1/γ and 1/γs, we have already observed in Figs. 4(a) and 4(c)
that curiously slow convergence to a NESS can take place.
To shed light on this result, we first analyze the convergence
process and identify a further effective timescale arising from
the driving. This allows us to illustrate the nature of con-
vergence within the spin system, given the narrow resonance
regimes of all the different k-components shown in Sec. IV.
We then discuss the consequences of this relationship between
driving and convergence for the possibilities, both theoretical
and practical, that NESS may not be reached at all because the
system is driven too strongly. Finally, the long-time behavior
of the NESS in the absence of driving has both important
benchmarking properties for theoretical purposes and a key
role in thermal control for experimental implementations. As
noted in Sec. II C, the formalism we derived there has no lower
or upper cutoff in time, and thus can be applied to address
every aspect of switching on and off a quantum spin NESS.

A. Transients at switch-on

In the introduction to NESS in our model (Sec. III), we
showed in Figs. 2(a) and 2(b) how the phonon variables are
“pumped up” on application of the electric field, with nph(t )
approaching its steady state, and thus becoming a steady drive
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for the spin system, after a time of approximately 4/γ . In
Fig. 4(a) we showed how the spin system reacts to this oscil-
latory driving, with nx(t ) approaching its steady state after a
time of approximately 4/γs at most of the driving frequencies
in Fig. 4(a). However, it was clear from the nx(t ) curve at
ω0/J = 1.5, which took significantly longer to reach its NESS
[Fig. 4(c)], that this reasoning alone does not explain every
aspect of the spin response at the onset of driving.

For a quantitative analysis of the convergence timescale,
we focus first on in-band driving (2ωmin � ω0 � 2ωmax) and
consider the process by which nx(t ) is “pumped up” by the
driving phonon [Fig. 4(a)]. We simplify the analysis by using
the fact that, in this range of ω0, the driven phonon approaches
its plateau of constant nph0 more quickly than the spin system,
because 1/γ < 1/γs. Thus we take the phonon oscillations as
sinusoidal with a fixed amplitude [Fig. 2(c)], which to match
the unit slope of Fig. 3 is given by

q(t ) = 2
a

γ
sin(ω0t ) = 2

DJ

g
sin(ω0t ), (45)

where we reintroduce the driving parameter, D [Eq. (42)], of
the weak-coupling regime. For any selected k-value we define
the function

fk (t ) = 4DJ sin(ω0t )y′
k[uk (t ) + 3/2], (46)

which appears as an inhomogeneous term in the linear dif-
ferential equation of Eq. (41c). We combine Eq. (41c) with
Eq. (41b) by defining the variable zk (t ) = vk (t ) + iwk (t ),
which then obeys the inhomogeneous differential equation

dzk

dt
= 2i[ωk + 2DJ sin(ω0t )yk]zk − γszk + i fk (t ). (47)

A suitable primitive of the prefactor of the first term on the
right-hand side is

hk (t ) = 2
∫

[ωk + 2DJyk sin(ω0t )] dt (48a)

= 2ωkt − 4DJyk

ω0
cos(ω0t ), (48b)

allowing the solution of Eq. (47) to be expressed in the form

zk (t ) = ieihk (t )−γst
∫ t

0
fk (t ′)e−ihk (t ′ )+γst ′

dt ′. (49)

This is not yet an explicit expression, because the right-hand
side depends on uk (t ), which remains unknown, but can be
related to zk (t ) by an expression based on Eq. (41a),

ũk (t ) = uk (t )eγst (50a)

= −2iDJy′
k

∫ t

0
sin(ω0t ′)[zk (t ′) − z∗

k (t ′)]eγst ′
dt ′, (50b)

where z∗(t ′) denotes the complex conjugate. While this gen-
eral expression still does not represent an explicit function, it
can be used to identify the primary trends in the response of
the spin NESS.

We focus on the slowly varying component of nx(t ), and
not on the rapidly oscillating ones. For this it is sufficient to
consider the slowly varying parts of each mode occupation,
uk (t ), as may be verified by numerical integration of Eqs. (41).
Figure 9 indicates that the dominant term will be the one at the

resonant momentum, kres, which is determined from the driv-
ing frequency by 2ωkres = ω0. The behavior of k-components
away from kres is discussed in Appendix A and the results are
summarized below. Henceforth we omit the subscript kres. The
slowly varying component of the right-hand side of Eq. (49)
is obtained by averaging over one period, T0 = 2π/ω0, giving

1

T0

∫ T0

0
sin(ω0t )e−ih(t )dt = J1(β )/β, (51)

in which β = 4DJy/ω0 and J1(β ) is the Bessel function of the
first kind. Replacing sin(ω0t ′) exp[−ih(t ′)] in the integrand of
Eq. (49) by its average taken from Eq. (51) leads to

z(t ) = i
y′

y
ω0J1(β )eih(t )−γst F (t ) (52a)

with

F (t ) =
∫ t

0

[
ũ(t ′) + 3

2
eγst ′

]
dt ′, (52b)

which is a real quantity. We stress that the approximations
leading to this result are well justified because the driving
oscillations are much faster than the build-up in the triplon
expectation values [Fig. 4(a)]. By inserting Eq. (52a) into
Eq. (50b) we obtain

ũ(t ) = (2y′)2DJω0J1(β )

y
Re

[∫ t

0
sin(ω0t ′)eih(t ′ )F (t ′) dt ′

]
(53a)

=
[

y′ω0J1(β )

y

]2 ∫ t

0
F (t ′) dt ′, (53b)

where again we have used Eq. (51) to obtain the last expres-
sion. Taking the second derivative yields

d2ũ

dt2
= �2

[
ũ(t ) + 3

2
eγst

]
, (54)

in which we have defined

� =
∣∣∣∣y′ω0

y
J1

(
4DJy

ω0

)∣∣∣∣. (55)

The differential equation is readily solved with the relevant
initial conditions, ũ(0) = 0 and dũ/dt (0) = 0, to give the final
expression for u(t ) as

u(t ) = 3�

4

(
1 − e−(γs−�)t

γs − �
− 1 − e−(γs+�)t

γs + �

)
. (56)

This result makes the essential feature clear immediately.
At the level of the present analysis, the true convergence rate
is given by the quantity

γ̃s = γs − �, (57)

which can become arbitrarily small when � approaches γs.
The qualitative situation is quite intuitive: γs decribes the rate
of relaxation of the system back to a state with zero triplons
at zero temperature, which is the case considered here (and
discussed in Sec. V C); the phonon driving acts in the opposite
direction by creating pairs of triplons, and thus strong driving
changes the effective relaxation (damping) timescale. In fact it
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is clear that Eq. (57) also specifies a regime where � exceeds
γs, so that triplon creation outweighs the relaxation term and
Eq. (56) specifies that the resonant triplon occupation, u(t ),
will undergo an exponential divergence. This situation will be
the focus of our attention in Sec. V B. Quantitatively, in most
circumstances the argument of J1 will be non-negative and
smaller than 1.84, which is where the function has its first
maximum. In this interval, J1 is a monotonically increasing
function of the driving strength, D, and thus one expects that
� can indeed be raised to values on the order of γs.

Before computing � as a function of ω0, we make two
further general remarks. First, in the qualitative view of �

as a driving rate, or excitation rate, that competes with the
relaxation rate, γs, one is tempted to interpret � in terms of
Fermi’s Golden Rule. However, a conventional application of
the Golden Rule gives a rate proportional to the square of the
matrix element, whereas in the present analysis � = 2DJy′
at small driving (D → 0), meaning that � is linearly pro-
portional to the driving amplitude. In more detail, the value
of u(t ) in the NESS is given from the long-time limit of
Eq. (56) by 3�2/[2(γ 2

s − �2)] and thus is indeed proportional
to �2, and hence to D2, in accordance with the Golden Rule.
However, the timescale of the transient behavior as the system
approaches the NESS is governed by a different coherent
mechanism that yields � ∝ D.

Second, for quantitative purposes it is necessary to consider
the effect of driving at frequency ω0 on the modes at k �= kres,
meaning the action of the driving phonon as a “detuned” pump
of all other triplon modes. The algebra of the detuned case
is presented in Appendix A and we summarize the results as
follows. As a function of a detuning parameter we define as

δ = 2ω − ω0, (58)

there are two possible regimes. If |δ| < �, it is convenient to
define the quantity

�̃ =
√

�2 − δ2, (59)

in terms of which

u(t ) = 3�2

2
(
γ 2

s −�̃2
){

1−e−γst

[
cosh(�̃t )+γs

�̃
sinh(�̃t )

]}
.

(60)

Thus from the behavior of the hyperbolic function, �̃ adopts
the role of � in Eq. (57) and the relevant convergence rate
becomes γ̃s = γs − �̃. By contrast, when |δ| > �, so that the
detuning of the driving frequency exceeds the driving thresh-
old, it is convenient to define the quantity

δ̃ =
√

δ2 − �2, (61)

in terms of which

u(t ) = 3�2

2
(
γ 2

s + δ̃2
){

1 − e−γst

[
cos(δ̃t ) + γs

δ̃
sin(δ̃t )

]}
.

(62)
Because all the hyperbolic functions become trigonometric,
the sole remaining exponential convergence is governed by
γs, leading to the result that the convergence is conventional.
We note in this case that slow oscillations arise at frequency

FIG. 10. Dependence of the inverse driving timescale, �̃max, on
the frequency, ω0, of the driving phonon, shown for four values of
the driving strength, D.

δ̃, which may cause the triplon number to overshoot before it
converges to its NESS limit (example data not shown).

Although one might assume that the resonant case, 2ωk =
ω0, described by Eq. (56) will provide the highest threshold
value, making �̃max = �, the complicated dependence of � on
k [Eq. (55)] makes it possible that, for a given ω0, a slightly
detuned mode at k �= kres yields a higher �̃. In particular, for
frequencies close to but outside the two-triplon band, detuned
driving will be of primary importance. To capture these pos-
sible effects, we compute �̃max by variation of k at each fixed
ω0, and the results are shown in Fig. 10.

Clearly �̃max is finite throughout the in-band regime, al-
though it drops to zero at the band center (ω0 = 2J) due to
a matrix-element effect (y′

k|k=π/2 = 0). Although the depen-
dence of �̃max on ω0 is both direct and indirect, occurring
both through proximity to the resonance condition (2ωkres =
ω0) and through the momentum dependence of yk and y′

k , it
shows an almost linear rise with frequency towards the two
band edges. Because we consider the linear driving regime of
Sec. III, it is also a linear function of D. Importantly, �̃max

is also finite outside the two-triplon band as a consequence
of detuned driving, although for the parameters in Fig. 10
it falls rapidly (in fact over a frequency window of order
DJ) beyond the band edges. For any given D, the function
�̃max(ω0) indicates the values of the triplon damping, γs, for
which unconventional convergence can occur, and it is no
surprise to find that in-band frequencies near the two band
edges are the most likely candidates [Fig. 4(a)]. From Fig. 10,
and specifically from the value of �̃max at ω0 = 2ωmin, one
may read that, at the level of our analysis, the value of γs

ensuring conventional or slow convergence at all frequencies
for driving D = 0.01 (Sec. IV) is approximately 0.007. We
comment on the minor discrepancy with our numerical find-
ings in Fig. 8, where NESS formation was verified at all ω0

with γs = 0.005, in Sec. V B.
Here we make three quantitative side remarks to this anal-

ysis. First, the effective driving timescale, �̃max, is not easily
read from the external driving parameters, because it depends
crucially on the phonon amplitude. Even in the weak-coupling
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FIG. 11. Creation of the NESS established with a/γ = 0.2
and g = 0.1J (driving parameter D = 0.02) for driving frequency
ω0/J = 1.5 and spin damping γs = 0.01J; these are the parameters
of the green line in Fig. 4(a). (a) nph(t ). (b) nx(t ). (c) uk=0. (d) uk=π .
(e) ukres . Also shown is the relaxation of each variable when the
driving is removed after 3000 time steps.

regime, meaning small g as defined in Sec. III, we have seen
that the oscillations of the driven phonon are not entirely
independent of the spin system for in-band driving frequen-
cies. Second, we do not consider the additional complexity
of a k-dependent γs, although the framework developed here
could be used without alteration. Third, the effect of nonlinear
processes occurring at multiples of ω0, is not included in our
discussion of � and �̃, although it could be incorporated by
considering a very weak effective D.

To illustrate the phenomenon of slow convergence at
switch-on, we consider driving field a/γ = 0.2 and g = 0.1J ,
which is the situation in Fig. 4(a). For the in-band driving
frequency ω0 = 1.5J and spin damping γs = 0.01J , we show
in Figs. 11(a) and 11(b) the driven phonon and triplon num-
bers. The driving strength is the same as that in Fig. 2(a),

and thus nph(t ) first rises towards the plateau value of 0.04
in a time dictated by 1/γ , but is pulled down again to an
average value nph0 � 0.02 [Fig. 3(b)] in a time dictated by
1/γ̃s. This is a direct reflection of the “inertia” of the spin
system as it begins to absorb some of the input phonon energy,
a topic we analyze in more detail in Sec. VI A. The values
of γs and �̃ (Fig. 10) place the system very close to the
threshold specified by Eq. (57), with the result that the spin
NESS [Fig. 11(b)] is reached only after approximately 1200
time steps [Fig. 4(c)], indicating that 1/γ̃s ≈ 3/γs. For a more
quantitative understanding of the transient phenomena in this
regime, in Figs. 11(c) to 11(e) we show the k = 0-, π -, and
kres-components of uk (t ). It is not a surprise to confirm that
the majority of the slow-convergence behavior is indeed con-
centrated in ukres (t ) [Fig. 11(e)], which is both the largest and
the most slowly converging component, apparently requiring
50% longer than nx0(t ) to converge within 2% of its final
value. However, it is somewhat surprising to find that the
nonresonant uk (t ) components actually rise above their NESS
values (on a timescale dictated by γs) before falling again as
the driving phonon amplitude reaches its final NESS value [on
the timescale dictated by ukres (t )].

B. Existence of NESS

In Secs. III, IV, and V A, we have used parameters allowing
the formation of NESS in order to analyze their response to
the driving parameters and their internal dynamical properties.
Having established this foundation, we now discuss the cru-
cial issue of whether a NESS can exist at all for strong driving
over long driving times. Clearly, unlimited driving would lead
to heating of the system on a finite timescale, and we defer
a discussion of this topic until Sec. VI; here we continue to
assume that the heat sink represented in Fig. 1 maintains a
steady, low system temperature despite the injection of energy
from the laser. The focus of our present discussion is the
possibility that the lattice or spin system could be driven so
strongly that it breaks down rather than converge to a NESS.

The integrity of the driven lattice is easy to establish. A
straightforward application of the Lindemann criterion, whose
details we present in Appendix B, leads to the result that
lattice melting due to phonon driving would become an is-
sue for average phonon mode occupancies on the order of
nph0 = 3. Thus the driving parameters we consider here, and
the resultant nph0 values, pose no threat to the periodic lattice.
By contrast, based on the discussion of Sec. V A, one might
expect that Eq. (57) represents a threshold of driving strength
(D) beyond which triplon creation exceeds their relaxation
and nx should diverge exponentially, meaning that NESS for-
mation is impossible. Here we discuss two criteria for the loss
of NESS. The first is breaching of the condition on the triplon
occupation, nx(t ) < nmax

x = 0.2 (Sec. III), beyond which the
formalism of Sec. II can no longer be applied to the spin
system. The second is breaching of the positivity of γ̃s as
defined in Eq. (57).

Considering first the maximum triplon occupation, in
Fig. 12 we show the threshold value of the driving strength,
(a/γ )t, required to drive the triplon occupation of the
spin NESS above nmax

x . Red colors are chosen to represent
regions of small (a/γ )t, because this indicates efficient triplon
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FIG. 12. Threshold value, (a/γ )t, of the normalized laser electric
field strength required to achieve the maximum steady-state triplon
occupation of nx = 0.2, shown as a function of γs and ω0 for fixed
g = 0.05J and γ = 0.02ω0. We draw attention to the 3 regimes of be-
havior demarcated by ω′

1 = 2ωmin and ω1 = 2ωmax. Also marked are
the frequencies ω′

2 = ωmin and ω2 = ωmax, where unlike Fig. 8(a) no
additional structure is visible in (a/γ )t.

occupation, and these are found at driving frequencies corre-
sponding to the lower and upper edges of the two-triplon band,
intensifying as γs becomes smaller (Sec. IV). As in Fig. 8(a),
it is evident that the system does not respond as efficiently for
in-band frequencies near the band center, and that very strong
driving is required when ω0 lies above the two-triplon band.
In contrast to Fig. 8(a), (a/γ )t does not reflect the presence
of the two-phonon response feature at and above ω0 = ωmin,
underlining that the nx0 values arising due to these processes
are indeed small.

Nevertheless, one may worry that nmax
x = 0.2 is an arbitrary

criterion, which would have no relevance if a more sophis-
ticated treatment of the spin sector were implemented, and
thus that the driving criterion should give a more rigorous
statement on the existence of NESS. However, here we en-
counter departures from the idealized analytical discussion
of Sec. V A. There we also remarked on the observation in
our numerical results that the driven phonon does not reach
the average occupation, nph0, expected from Fig. 3(a) because
of the effects of the spin system that it drives. While this
result was visible at g = 0.1J for the ω0/J = 1.5 phonon in
Fig. 3(b), it is not absent in what we have called the weak-g
regime, as one may observe from the value of nph0 in Fig. 6(a).
This is one example of a feedback effect between the lattice
and spin systems, which we will encounter again in Sec. VI A.

Its consequence for the analysis in Sec. V A is that one may
no longer assume a fixed driving strength, D, but because
of this downwards renormalization one should work with an
effective driving, Deff . The deviation between D and Deff

becomes larger as D is increased. We have also encountered
strong feedback effects as γs becomes very small and as nph0

becomes large enough to alter the dimerization, λ, of the spin
system. What all of these feedback effects have in common is
that they are significant only when the triplon occupation is
large, meaning nx > nmax

x , and thus the constraint nmax
x = 0.2

adopts additional significance. Feedback is a complex topic
that will be important in discussing driven systems with strong
g, but lies beyond the scope of our current exposition.

Even without a driving criterion, it is nonetheless instruc-
tive to ask how the breakdown of NESS occurs. We perform
only a brief and numerical examination of how the model
of Sec. II behaves when NESS formation is precluded, for
which we set γs = 0. In Fig. 13 we depict the time-evolution
of the lattice and spin systems for different driving frequencies
with a fixed driving strength, D = 0.01. For in-band driving at
ω0/J = 1.5 and a spin damping γs = 0.01J , Fig. 13(a) shows
the NESS of Fig. 6. However, when γs = 0, Fig. 13(b) shows
how the triplon number is driven rapidly to a regime well
beyond nmax

x , which in turn causes the phonon occupation
to become unstable and creates complex, aperiodic feedback
phenomena.

When ω0 lies above the two-triplon band, one may read
from the detuning discussion, and also directly from Fig. 12,
that two possibilities exist. If ω0 is sufficiently far beyond
2ωmax, as shown in Fig. 13(c) for the case ω0/J = 3.0, a NESS
can be formed even with γs = 0. In this case, the phonon
driving cannot cause the direct occupation of triplons and
the steadily driven state of the spin sector remains only very
weakly excited. Any feedback from the spin to the lattice
sector under these circumstances is negligible, and thus the
latter is also unaffected by the value of g. The beating envelope
in nx(t ) in Fig. 13(c) is a consequence of transient signals in
individual components of uk (t ) that are never damped with
γs = 0. The second possibility arises when ω0 lies above but
very close to 2ωmax, in which case the driving phonon acts as
a detuned pump of the spin response at the upper band edge
and the physics is that of Figs. 13(a) and 13(b).

Finally, the situation for driving frequencies below the
lower two-triplon band edge is somewhat more complicated.
Once again there is a regime of potentially divergent behavior
due to detuned driving when ω0 lies slightly below 2ωmin

(Fig. 12). [This phenomenon also allows one to understand
why the lower and upper two-triplon band edges do not create
extremely sharp features, or even discontinuities, as a func-
tion of ω0 in the response observed in Figs. 7 and 8.] At
frequencies below the detuned regime, the generic situation
is that illustrated in Fig. 13(d) for a frequency ω0 = 0.75J .
The phonon does indeed approach a NESS, but this essentially
steady driving does not create a spin NESS because high-order
processes always exist that pump the undamped spin system
on some potentially very long timescale. In Fig. 13(d) the
higher-order process involves the second harmonic, and it is
necessary both to follow the spin dynamics to multiples of
104 time steps and to use long chains (here N = 3000) to
verify the situation. In general, driving of the system by a
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FIG. 13. Time dependence of the phonon number, nph(t ), and
triplon number, nx(t ), shown with a/γ = 0.2 and g = 0.05J (D =
0.01). (a) When ω0/J = 1.5 and γs = 0.01J (the parameters of
Fig. 6), the system converges to a NESS on a conventional timescale.
(b) When ω0/J = 1.5 and γs = 0, nx(t ) increases rapidly beyond
nmax

x , destabilizing the phonon occupation. (c) When ω0/J = 3.0,
the driving frequency lies sufficiently far above the two-triplon band
that NESS exist even when γs = 0. (d) When ω0/J = 0.75, the driv-
ing frequency lies well below the two-triplon band but the second
harmonic, 2ω0, lies within it. In this case, when γs = 0 the lattice
approximates a NESS, but with this near-constant driving of the spin
system a NESS cannot be formed.

multiphonon process can be captured by the same analytical
arguments applied for in-band frequencies, although the ef-
fective value of D should be replaced by the amplitude of the
relevant higher harmonic. As a result, the qualitative situation
at arbitrary below-band frequencies is that of Fig. 13(d), but

quantitatively the required timescale may extend to millions of
steps. We conclude this analysis by stressing again that NESS
formation is the most natural behavior in the model of Fig. 1
at all frequencies for realistic values of a and γs, as shown in
Fig. 13(a), as well as throughout Sec. III.

C. Relaxation at switch-off

The process of relaxation of a system with Lindblad damp-
ing is the recovery of thermal equilibrium in the absence of
the drive. In our analysis, the system started at temperature
T = 0 before the drive was switched on, and thus it relaxes
back to this state. The present analysis is readily extended
to finite T by including (1) a thermal phonon occupation,
(2) a more sophisticated treatment of the spin system [92],
and (3) the thermal factors in the definition of the bath prop-
erties that are already contained in the Lindblad formalism
(Sec. II C). However, this extension would not account for
the fact that the driving introduces energy to the system, and
hence causes heating; for this we appeal to the heat sink repre-
sented in Fig. 1, which corresponds to the cooling apparatus in
any condensed-matter experiment. We will discuss the issues
associated with the system temperature, particularly in the
presence of the laser drive, more deeply in Secs. VI and VII.

For the purposes of this subsection, in Fig. 11 we have
switched off the phonon drive after 3000 time steps. It is
clearly visible in all cases that the phonon sector [charac-
terized by nph(t )] relaxes to its equilibrium, nph = 0, over a
timescale governed by 1/γ and the spin sector [characterized
by nx(t )] over a timescale governed by 1/γs. This behavior
is independent of the value of ω0 at which the system was
being driven and of the amplitude of the driving (data not
shown). In this sense, relaxation can be considered as similar
to the process of “pumping up” the NESS with a very low
drive, so that the system remains far from the driving-induced
timescale obtained in Sec. V A. Thus one may conclude that
unconventional transient processes appear only when the sys-
tem is driven, and indeed driven near its band edges, whereas
relaxation dynamics are straightforward.

VI. ENERGY FLOW AND SYSTEM HEATING

A. Energy flow

Particularly valuable for both conceptual and practical pur-
poses is to consider the energy flow through the spin-lattice
system. For a true NESS, the rate of energy throughput should
be constant from the driving to the final stage of dissipation.
Figure 14 provides a schematic representation of the situation,
which we characterize using seven separate stages of the flow
process. The energy flow (energy per unit time) is a power
and is defined to be positive in the direction of the arrows
in Fig. 14. Clearly the input power is the uptake of laser
energy by the driven phonon, part of which also drives the
spin sector through the effect of the spin-phonon coupling.
Energy absorption by the lattice, which is also the bath, will
determine the temperature of the system; while this is limited
by possible melting of the crystal, the loss of coherence in
the quantum spin states is a much more stringent criterion. To
avoid a monotonic rise in the lattice, or bath, temperature, we
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FIG. 14. Schematic representation of energy flow into and out of
the NESS of the combined lattice and spin system.

model the system as being connected to a large and efficiently
conducting heat sink.

To compute the different energy flows in Fig. 14, the fol-
lowing two relations may be read directly from the differential
equation of Eq. (38c), which describes the time evolution of
the number of energy quanta in the driven phonon. The energy
flow from the laser into this phonon, normalized to the number
of dimers, is given by

PL,P(t ) = −E (t )ω0 p(t ), (63)

while the energy flowing from it and directly to the bath is
given by

PP,B(t ) = γω0[nph(t ) − n(ω0)]. (64)

The energy flowing out of the driven phonon due to the pres-
ence of the spin-phonon coupling is given by using the same
equation to obtain

PP,SP(t ) = gω0[U (t ) + V (t )]p(t ). (65)

By considering energy conservation for the phonon we obtain
the sum rule

PL,P
0 = PP,SP

0 + PP,B
0 (66)

for the temporal averages of each power. We remark that all of
the powers in Fig. 14 have a temporal oscillation in the NESS
at multiples of the driving frequency, in the same way as all the
other quantities discussed in Secs. III and IV. However, these
oscillations are not very relevant to the overall energy flow
or system temperature and we focus on their average values,
which are the m = 0 harmonics of Sec. IV, so we denote them
by PX,Y

0 .

Turning to the spin sector, Eq. (41a) gives the energy flow
into the spin system as

PSP,S(t ) = 2gq(t )
1

N

∑
k

y′
kωkwk (t ). (67)

The same equation also states that the energy flow from the
spin system into the bath is given by the decay rate of all the
triplons, which yields

PS,B(t ) = γs

N

∑
k

ωk[uk (t ) − 3n(ωk )]. (68)

Once again, energy conservation within the spin system en-
forces the sum rule

PSP,S
0 = PS,B

0 (69)

on the time-averaged values. However, if one considers
Eq. (65) as the work done by the phonon on the spin system
and Eq. (67) as the work received by the spin system due to
the phonon, it is evident that there is no mathematical reason
for these two quantities to be equal. To obtain the physical
sum rule, it is necessary to consider in detail the spin-phonon
coupling term, Hsp in Eqs. (1) and (21a). In the mean-field
approximation, we have by construction

1

N
〈Hsp〉(t ) = gq(t )(U + V )(t ), (70)

and hence the time derivative

1

N
∂t 〈Hsp〉 = g[(∂t q)(U + V ) + q∂t (U + V )]. (71)

Using Eqs. (38a), (41a), and (41b) to evaluate the partial
derivatives on the right-hand side yields

1

N
∂t 〈Hsp〉 = gω0(U + V )p − 1

2
gγ q(U + V ) (72a)

+ gq
1

N

∑
k

yk{2gqy′
kwk − γs[uk − 3n(ωk )]}

(72b)

−gq
1

N

∑
k

y′
k[2(gqyk + ωk )wk + γsvk]. (72c)

By inspection, the first term in Eq. (72a) is PP,SP(t ) and the
second term in Eq. (72c) is PSP,S(t ), while the first terms in
Eqs. (72b) and (72c) cancel, as a result of which the expres-
sion takes the form

1

N
∂t 〈Hsp〉 = PP,SP(t ) − PSP,S(t ) (73a)

−gq(t )

(
1

2
γ + γs

)
(U + V )(t ). (73b)

The second line suggests rather strongly the definition

PSP,B(t ) = gq(t )
(

1
2γ + γs

)
(U + V )(t ) (74a)

= (
1
2γ + γs

)〈Hsp〉(t ), (74b)

where −PSP,B(t ) describes a relaxation of 〈Hsp〉(t ) towards
zero. This quantity corresponds to a flow of energy from
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FIG. 15. Average energy flows, PX,Y
0 , through the combined lat-

tice and spin system depicted in Fig. 14, normalized to the number
of dimers and shown as a function of ω0 for γ = 0.02J , a/γ =
0.2, g = 0.05J , and γs = 0.01J . (a) Power delivered to the driving
phonon (PL,P

0 ) and power dissipated directly to the bath from this
phonon (PP,B

0 ), whose difference is the power transferred towards
the spin system from this phonon (PP,SP

0 ). For clarity we show PX,Y
0

normalized by ω2
0. (b) Work done by the phonon system due to the

spin system (PP,SP
0 ) and power delivered to the spin system (PSP,S

0 ),
with their difference (PP,SP

0 ) represented on the logarithmic scale as
a modulus with a solid (dashed) line for a positive (negative) power.
PSP,S

0 is identically equal to the power dissipated by the effect of the
bath on the spin system (PS,B

0 ).

the spin-phonon coupling towards the bath and its temporal
average completes the balance

PP,SP
0 = PSP,S

0 + PSP,B
0 , (75)

which results from the fact that the time-average of the deriva-
tive ∂t 〈Hsp〉 must vanish in a NESS. Thus the definition of
Eq. (74a) and the additional sum rule of Eq. (75) provide
the appropriate linkage to describe energy conservation in the
coupled spin-phonon system.

In Fig. 15 we show how the energy flows of Eqs. (63)–(65),
(67), (68), and (74a) depend on the driving frequency. All of
the powers we compute obey the steady-state sum rules of
Eqs. (66), (69), and (75), which describe every stage of the

process. This is clearest when considering the spin system,
shown in Fig. 15(b), where the forms of PSP,S

0 and PS,B
0 re-

flect the exponential increase in its sensitivity to driving at
frequencies near the edges of the two-triplon band, which we
have seen already in Secs. IV and V B. This is particularly
true in Fig. 12, which can in fact be understood as a graph of
energy absorption by the spin system (red colors being high
values). Although both energy flows bear a close resemblance
to Fig. 8(a), we note from the latter that the quantity summed
to obtain the net power contains an additional weighting factor
of ωk; among other effects, this acts to make the heights of the
peaks at 2ωmin and 2ωmax more symmetrical in Fig. 15(b) than
in Sec. IV.

Turning to the phonon system, in Fig. 15(a) we show the
input energy flow from the laser, PL,P

0 , the energy flowing out
of the driven phonon due to the spin system, PP,SP

0 , and the
output flow directly from this phonon to the bath, PP,B

0 . Our
first observation is that, in the regime of weak spin-phonon
coupling considered here, the majority of the laser energy
flows directly to the bath, while the quantity central to our
analysis, PP,SP

0 , is always relatively small. Next we observe
that it peaks around ω0 = 2ωmin and 2ωmax, as anticipated
from Sec. IV. To illustrate the relative importance of the
energy in the spin-phonon coupling term, Hsp, we show PP,SP

0
once more as the green line in Fig. 15(b) for comparison with
PSP,S

0 . Their difference, PSP,B, remains at the percent level for
all driving frequencies within the two-triplon band, indicating
that Hsp does not act to store significant energy, but in essence
transmits it from the phonon to the spin system as expected
physically. At very high and very low frequencies, |PSP,B|
becomes a more significant fraction of the energy in the spin
system, but this energy is in turn a very small fraction of the
total (laser) energy flowing through the system. We take these
results as evidence that treating the spin-phonon term as a per-
turbation in the mean-field approach is well justified, and by
extension that the neglect of higher spin-phonon correlations
is appropriate for the relevant driving frequencies.

We comment in passing that PSP,B can in fact have a
negative sign, implying a small energy flow from the bath
due to the spin-phonon coupling term. While this may at
first appear counterintuitive, we stress that the splitting of
the system Hamiltonian into the three parts Hp, Hs, and Hsp

[Eq. (1)] is somewhat arbitrary, and combining Hs and Hsp

would remove this feature. In total, there is no violation of the
fact that energy flows from the combined spin-phonon system
into the bath, and indeed one may compute this net power,
PP,B

0 + PSP,B
0 + PS,B

0 , which by the sum rules at each step of
Fig. 14 matches PL,P

0 . We do not calculate PB,H
0 , assuming

simply that it matches the power flowing into the bath.
Because PL,P

0 is the average power, or fluence, taken up by
the combined spin-lattice system, it is closely related to quan-
tities that might be measured in an absorption experiment. To
make contact with experimental methods it is necessary to
generalize our treatment. In comparison with a conventional
pump-probe procedure, we have considered only the pumping
step, because in a NESS there is no concept of a delay time
before probing. Further, we have considered pumping only
at the frequency of one hypothetical phonon, lying at any
value of ω0, which we have varied to probe the behavior of
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FIG. 16. PL,P
0 shown as a function of ω for γ = 0.02ω0, a/γ =

0.2, g = 0.1J , and γs = 0.01J , for systems with one phonon (coupled
to the J bond as in Sec. II) at a frequency (a) ω0/J = 1.0, (b) ω0/J =
2.0, and (c) ω0/J = 3.0.

the spin system. By contrast, in a real material there is only
one, or a small number of, phonon(s) coupled strongly to the
primary magnetic bonds, but it is relatively straightforward to
pump the system at all frequencies ω �= ω0. Thus in Fig. 16
we depart from the conventions used so far in our study and
adjust the frequency of the driving laser in order to illustrate
the fluence as a function of ω for systems with one strongly
coupled phonon, which lies at a frequency below, in, or above
the two-triplon band.

In this type of experiment it is clear that the resonant
phonon at ω0 dominates the absorption. However, the finger-
prints of the two-triplon band are visible as, for the parameters

chosen, 0.1%-level effects across the full frequency range of
the band. This nonresonant absorption is naturally stronger
in a material where the relevant phonon lies close to the
frequencies 2ωmin and 2ωmax. We recall that the net fluence
at the phonon peak increases with ω2

0, and thus that pumping
higher-lying phonons may result in a stronger signal if these
are suitably coupled to the spin system.

However, for driving a phonon that lies very close to a
resonant frequency of the spin system, we draw attention to
an additional phenomenon. The blue line in Fig. 15(a) shows
that the absorption peak at ω = ω0 is actually suppressed
when ω0 lies in the spin band, most strongly so for phonons
resonant with 2ωmin and 2ωmax. This “self-blocking” effect
appears initially to be counterintuitive, as one might expect
stronger absorption when more system degrees of freedom
are at resonance with the incoming laser. However, the spin
system is not coupled directly to the light, being excited only
by the driven phonon, and this situation suggests a heuristic
image of the spin system as an extra “inertia” that the driven
phonon must move. While we also used this word Sec. V A,
a rather more specific description of the physics can be read
from the prefactor of p(t ) in Eq. (38c), where one observes
that the spin system acts against E (t ), making it more difficult
for the phonon to draw energy from the laser electric field
by oscillating maximally. Once this self-blocking effect is
taken into account, the difference between the blue and red
dashed lines in Fig. 15(a) shows the additional absorption of
the incoming fluence actually taken up by the spin system
[shown again in more familiar form in Fig. 15(b)].

B. Heating

Both conceptually and experimentally, extended continu-
ous driving must inevitably lead to heating, which without
remediation would destroy the coherence of the system, and
later the system itself. Throughout this work we have assumed
that the heat sink represented in Figs. 1 and 14 will be able
to maintain a constant, low system temperature despite the
steady drive, and our brief analysis of relaxation to equi-
librium in Sec. V C was predicated on this assumption. We
now turn to a quantitative investigation of the reality of the
situation in driven condensed-matter systems.

We comment first on the physical meaning of the Lind-
blad bath model. Because the energy flowing directly from
the driven phonon to the bath, PP,B in Eq. (64), is directly
proportional to the phonon damping and phonon occupation,
γ nph0/ω0 of the phonon energy is transferred to the bath in
every period. Thus for the parameters we use, an energy of
ω0 per dimer is dissipated after approximately 1500 cycles;
we recall that in our model the Einstein phonon modes are
present on every bond in the system, meaning that the laser
driving is a bulk effect. To introduce some typical numbers
for quantum magnetic materials, we consider the inorganic
compound CuGeO3, which forms a quasi-1D spin-1/2 system
and has been well characterized in the context of quantum
magnetism at equilibrium. In fact CuGeO3 was studied in
detail [94,95] due to its spin-Peierls behavior, by which is
meant that it shows a lattice transition from a uniform to
an alternating chain that is driven by reducing the energy in
the magnetic sector. This type of transition is a ground-state
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phenomenon not related to the phonon driving we consider
here, and our present analysis would in principle be applica-
ble to the distorted state; however, CuGeO3 also possesses
second-neighbor and interchain interactions, and thus the
nature of the transition has remained the subject of some
debate. Although CuGeO3 is known for its strong spin-
phonon coupling, meaning that its g value lies outside the
weak-coupling regime we consider here (for analyzing driven,
out-of-equilibrium physical properties), we borrow its thermal
parameters to analyze energy transfer and heating.

CuGeO3 has leading magnetic exchange constants of ap-
proximately 10 meV [96], and so we use this value for
illustrative energy estimates. Taking the triplon band width
into account, we will assume that a phonon driving the system
near 2ωmin also has h̄ω0 = 10 meV ≈ 2.4 THz ≈ 80 cm−1.
The phonon spectrum of CuGeO3 contains Raman and IR-
active modes over a wide range of frequencies [97], with
the lowest-lying IR-active modes at 6.0, 11.9, and 16.4 meV.
Because all of these normal modes involve some motion of
all the atoms in the unit cell, a quantitative model of the type
we consider would have J and J ′ modulated simultaneously
by the driven phonon. Proceeding with the illustrative phonon
frequency of 10 meV, from Eq. (64) we obtain for the parame-
ters of Secs. III and IV (nph0 = 0.04 and γ = 0.02ω0) that the
energy deposited in the bath by the driving phonon is

PP,B
0 = 1.95×10−11 Js−1 per dimer

= 5.89×1012 W per mole of spins. (76)

As noted in Appendix B, this value of nph0 poses no risk
of melting the lattice. However, to understand the effect of
the energy in Eq. (76) on the lattice temperature, we use the
result [98] that the low-temperature specific heat of CuGeO3

is given approximately by the standard pure-phonon form,
C = βT 3, with prefactor β ≈ 0.3 mJ/(mol K4). Thus the time
required for the driven system to reach a temperature Tmax in
the absence of any cooling apparatus would be

th = β

4PP,B
0

[
T 4

max − T 4
init

] ≈ 1.2×10−17
[
T 4

max − T 4
init

] s

K4 .

(77)
Starting at Tinit = 0 or 2 K, the time required to reach a
temperature Tmax = 20 K is th = 2.04×10−12 s. We assume
that this Tmax is a realistic estimate of the temperature where
one could no longer argue for quantum coherence of spin
processes taking place in a triplon band whose minimum lies
at 5 meV. The resulting th corresponds to only five cycles
of the driving phonon and is clearly too short by a factor of
several hundred when compared with the results of Secs. III
to V.

Even allowing for considerable latitude with system pa-
rameters and materials choices, it is clear that the study of spin
NESS in a quantum magnet is not realistic without an efficient
heat sink attached to the sample (Figs. 1 and 14). To address
the effect of the heat sink, it is necessary to introduce further
materials parameters, specifically for sample dimensions and
the thermal conductivities removing heat from the sample.
As will shortly become clear, there are two reasons why an
experiment of the type we analyze is relevant for a very thin
sample, and thus we illustrate the heat flow for a thickness of

20 nm. Using that the mass of one mole of spins in CuGeO3

is 184 g and the density is 5.11 g cm−3 [99], a sample of
area A = 1 mm2 would be 5.54 × 10−10 moles of CuGeO3,
meaning from Eq. (76) that a laser power

Plaser = 3.26 kW, (78)

should be transported through this area to the heat sink. First,
for the sample itself, the thermal conductivity of CuGeO3

at low temperatures is neither constant nor isotropic, but an
approximate value for the cross-chain (b-axis) direction is
κ = 0.1 W/(K cm) [100]. For the rate at which heat leaves
the sample, we compute

Pκ = κA�T/�l = 9.0 kW, (79)

where we have set �T = Tmax − 2 = 18 K as the tempera-
ture difference across the sample (�l = 20 nm). Thus the
qualitative conclusion from this crude estimate is that the
thermal conductivity of the sample can match the power to
be dissipated if a sufficiently thin film can be prepared. In
slightly more detail, an energy-flow balance would dictate that
�T should stabilize around 8.5 K.

This worked example illustrates that Plaser is directly pro-
portional to �l and Pκ inversely proportional, making the film
thickness a crucial parameter. Nevertheless, the penetration
depth of light into insulating matter is not well characterized
for frequencies where the light is resonant with phonon exci-
tations, and further with the spin sector. As a consequence, a
thin film is indeed the most reliable geometry for ensuring that
the bulk is uniformly irradiated by the incident laser beam.
Materials that are difficult to prepare as thin films therefore
suffer the twin disadvantages that their thermal conductivity
becomes a bottleneck in the energy-flow process and that at-
tenuation of the laser electric field inside the sample becomes
a concern. While a significantly more detailed and materials-
specific analysis is required for planning an experiment, our
considerations indicate that it it always possible to study spin
NESS in thin-film systems.

Certainly an optimized cooling system is a prerequisite for
such studies, even at the nominally weak driving strengths
(nph0 = 0.04) we have considered in Secs. III to V. The heat
sink should be a highly conducting metal able to remove
the input power efficiently, and thus no bottleneck should
arise due to its thermal contact or the thermal conductivity.
However, metals are not known to have a high heat capacity,
and thus we estimate the thermal energy that could be taken up
by a metal block. We consider high-quality Al (residual resis-
tivity ratio RRR = 30) and note first that κAl = 1 W/(K cm)
[101], which is well in excess of the value in CuGeO3. The
specific heat has the form C = γAlT with γAl ≈ 0.05 J/(kg
K2) at low temperatures [101], and hence for a block with
area 1 cm2 and thickness 5 mm (giving a mass m = 1.35 g
[101]), the energy absorbed by increasing the temperature
from Tinit = 2 K to Ths is

�E = 1
2γAlm

[
T 2

hs − T 2
init

] = 7.1 ×10−4 J (80)

if the temperature of the heat sink is limited to 5 K. With an
input power of 3.26 kW, the time to overheating of the block
is

tsink = 2.2×10−7 s, (81)
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which corresponds to over half a million cycles of the 2.4 THz
driving phonon. Thus an Al heat sink has plenty of reserve
capacity for the purposes of a NESS experiment.

Returning to the beginning of the experimental process de-
picted in Figs. 1 and 14, we have assumed that the parameter
a is freely variable. The maximum electric field in a modern
THz laser source is approximately E = 3×108 Vm−1 [78]. If
one assumes that the field acts on an oxygen ion, one obtains

a = 1√
2
2eEqosc = 4.8 meV (82)

where qosc = 1.1×10−11 m when computed using MO. For
comparison, the value we have used to ensure nph = 0.04
in Secs. III to V corresponds with h̄ω0 = 10 meV to a =
0.16 meV. Thus even for predominantly reflective surfaces,
values of a suitable for probing the energy range of J and ω0

typical in inorganic quantum magnets are readily achievable.
In summary, experiments of the type we discuss to estab-

lish and to control bulk quantum spin NESS are possible in
real magnetic materials. The sole caveat is that it should be
possible to prepare the system with a thickness in the range
of tens of nanometres. Even at the rather modest phonon oc-
cupations required to observe nontrivial nonequilibrium spin
states, maintaining the spin system at a low temperature over a
long period of steady driving does pose a significant challenge
to the cooling capacity of a conventional cold finger, which
normally is designed to control the system temperature with
high precision using liquid 4He coolant, rather than function-
ing as an optimized heat sink. We assume that both of the
issues we have identified can be solved for a wide range of
quantum magnets. However, in the event of a materials system
that does not allow the driving energy to be removed quickly
enough to avoid heating, one solution may lie in altering
the experimental geometry away from laser irradiation of the
entire sample, as we discuss in more detail in Sec. VII B.

VII. DISCUSSION

A. Approximations: Time, coupling, and intensity scales

In constructing our description of the phonon-driven and
dissipative quantum magnetic system we have appealed to a
number of approximations. In fact establishing the validity
of the framework presents an interlinked problem involving
(a) the treatments we have adopted for the laser, for the
spin and phonon sectors, and in the master-equation method,
(b) the fast and slow timescales of the spin-lattice system,
(c) the coupling constants, and (d) the intensities or mode oc-
cupations. As examples, the magnetic interactions determine
our treatment of the dimerized chain, a relatively weak spin-
lattice coupling is intrinsic to our treatment of both sectors,
the timescales of the dynamics in these sectors should allow
the Born-Markov and rotating-wave approximations within
the quantum master equation, and if mode occupations are too
high anharmonic or nonlinear effects can set in.

1. Triplons as bosons

A first approximation is that we treat the triplons as
noninteracting bosons, diagonalizing them by a standard Bo-
goliubov transformation. The triplons in a system of coupled

dimers are in fact hard-core bosons, because at most one may
be present at each site, and finite intertriplon interactions are
well known when the quasiparticles are adjacent to each other
in real space. However, for relatively low densities (below
our threshold of nmax

x = 0.2) and weak interdimer coupling,
λ = J ′/J � 0.5, approximating the triplons as interaction-free
bosons is well justified [92], as discussed in Sec. II A. To
study the regime of larger interdimer coupling, the standard
Bogoliubov transformation can be replaced by a unitary trans-
formation controlled to high orders in λ [102–104].

2. Laser and mean-field decoupling

As noted in Sec. II, we have described the laser field driv-
ing the optical phonon as a classical oscillating field. In view
of the fluences commonly used in experiment, which make
the quantum fluctuations of the laser field negligible relative
to its expectation value, this approximation is perfectly justi-
fied. The time-dependent mean-field decoupling of the driven
phonon and the spin system [Eq. (21a)] is a further approxima-
tion, although we have demonstrated in Sec. VI that it is well
justified at all relevant driving frequencies. From the definition
of Eq. (37), O(10−2) values nph on every bond mean that the
optical phonon is macroscopically occupied (the phonon num-
ber, being proportional to the system size, is extensive). Thus
the relative size of the quantum fluctations is again negligible,
justifying a mean-field treatment of the phononic field. While
we cannot exclude completely that more complex physics
occurs for particularly large spin-phonon coupling, such as
triplon-phonon bound-state formation, this would need to be
built first into the ground states and then into the driven dy-
namics.

3. Lindblad damping of driven phonon

The damping rate, γ , of the driven phonon should be
significantly smaller than its energy, and we have set it to
a value of order 2% of the phonon energy. The way that γ

enters, which leads to the description of the driven phonon
as a classical damped harmonic oscillator, is well justified for
the reasons stated in the preceding paragraph. The Lindblad
framework treats the relaxation of a degree of freedom by
using its established damping term. More generally, funda-
mental theorems about the Lindblad formalism [42] state that
the dynamics of an open quantum system can always be cap-
tured by decay rates for certain Lindblad operators, which we
labeled Al in Eq. (34); at this level, the only open issue is
which operators in system Hamiltonian are the relevant Lind-
blad operators, but this is manifestly obvious for the driven
Einsein phonon considered here.

A more physical question concerns the microscopic mech-
anism of this damping. Clearly, the only bath in an insulator at
the energies we consider consists of the optical and acoustic
phonons. Due to anharmonic effects, the driven phonon can
decay into two (or more) other phonons. Compared to the
single driven phonon, the large number of other phonons in
a 3D material constitute a large bath, which is not strongly
influenced by the driven phonon, except in cases where the
driving exceeds the heat-sink capacities in the sense of Sec. VI
and heating effects enter. The fact that the phonon lines ob-
served in inelastic scattering studies are usually rather sharp
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demonstrates that the coupling of a given phonon to the bath
represented by the other phonons is weak, as a result of which
the Born approximation is fully justified.

A further required property of the bath is to obey the
Markov approximation, that its correlations should decay
significantly faster than the decay dynamics of the quan-
tum system (specified by the Hamiltonian). This property is
difficult to verify without a detailed knowledge of all the
phonons and their anharmonicities, but an estimate is possible.
In general the spectrum of phonons covers the energy range
from zero to the Debye energy, h̄ωD, and hence 1/ωD sets
the timescale for the decay of bath correlations. The Debye
energy is typically 50–100 meV (12–24 THz). For driving
frequencies in the 1–10 THz regime and a decay rate, γ , which
is 1/50 of these, it is clear that the correlation time scale,
1/ωD, is indeed shorter than the timescale 1/γ of the phonon
damping (with the possible exception of very soft materials).
Finally, the rotating-wave approximation is the statement that
one may neglect fast oscillations to focus only on the slow
variables (as we did in Sec. V A) [42], and again this is clearly
justified because the oscillatory terms for a phonon driven at
ω0 are fast on the timescale of the damping.

4. Lindblad damping of triplons

The previous arguments can be repeated to justify the use
of tk as the Lindblad operators in the spin sector. We observed
in Sec. II C that these operators break spin conservation, so
that our treatment is relevant for systems with finite spin-orbit
coupling. If this coupling is low, spin conservation requires
that one consider terms of the type Ckq = t†

k tq, which we
discuss in the next subsection (Sec. VII B). However, weak
spin-orbit coupling also implies that the damping of spin
excitations due to a phononic bath is weak, and thus it is
not unreasonable to treat any magnetic excitations, which
here are the triplons, as weakly damped oscillators. Because
the strongest effects of driving the magnetic system occur
when the driving frequency, ω0, matches the magnetic ener-
gies, 2ωk , estimates for the validity of the Born-Markov and
rotating-wave approximations [42] are the same as for the
driven phonon. We defer comments on momentum conserva-
tion in Ckq to Sec. VII B.

In summary, while the validity issue is a complex one, all of
the approximations we have made are appropriate, and in fact
for a typical condensed-matter system there is a reasonable
amount of parameter space (Sec. VI). A broader discussion of
materials and experiment may be found in Sec. VII C below.
From a theory standpoint, our current approach is by design
the simplest available, whose explicit intent is to establish the
basic phenomenology, and a more detailed discussion of any
given issue may require more sophisticated methodology. One
example of this would be the use of flow-equation methods
[105] to extend the regimes of validity, in the hierarchy of
timescale approximations, of the equations of motion.

We close this part of the discussion by recalling that the
intrinsic properties of the phonon-driven spin system lead
to a number of phenomena occurring over a range of dif-
ferent frequencies and times. By frequency, the key regimes
of driving are (1) in the spin band, where the response is
resonant, (2) below the spin band, where it is controlled by

multiphonon processes, and (3) above the spin band, which
is the Floquet regime, featuring weak energy absorption and
coherently superposed phase- and frequency-shifted states. By
time, transient phenomena at switch-on occur (mostly) on the
scale of the inverse damping (Sec. V A), drive-induced heating
occurs on a strongly ω0-dependent timescale, and relaxation
phenomena at switch-off follow the Lindblad form to restore
the starting state (Sec. V C).

B. Bath models and system heating

The equations of motion whose solutions we have studied
in Secs. III to V are intrinsic to one type of bath. As stated
in Sec. II C, the physical content of the Lindblad formalism is
that the spin operators are damped by bath operators that also
appear in the spin Hamiltonian. However, the nature of these
terms must reflect the physics of the entire system, by which
is meant the manner in which energy can be dissipated by spin
and phononic processes. Here we comment briefly, and with
one specific example, on how our analysis would be extended
in the case of more complex bath terms.

It is clear in Sec. II C that our use of tk as the sole type of
spin-bath operator delivers the most straightforward equations
of motion, and we have exploited the complete independence
of all k states to explore a wide range of phenomena. However,
it is also clear that damping processes involving a single tk
operator are spin-non-conserving, allowing a triplon to decay
into a phonon. In a truly 1D system, meaning a spin chain in
a 1D lattice, momentum conservation would restrict the phase
space available for such processes, raising problems with the
applicability of the Lindblad formalism (which requires that
the bath contain a continuum of energy states [42]) that would
at minimum mandate a significant k-dependence of the decay
rate, γs(k). However, as explained in Sec. II C, such concerns
are not relevant to the present analysis because the 1D triplons
are embedded in a real lattice, meaning with 3D phonons. In
this case, for each momentum, h̄k, along the spin chains, there
is a continuum of perpendicular momenta, h̄�k⊥, and hence
the annihilation of the triplon can occur for a wide range of
�k⊥ values, with the bath phonons that are created covering a
broad energy range. This energetic continuum will depend on
k, but only weakly, which both justifies using the Lindblad
formalism and indicates a constant, momentum-independent
damping rate, γs.

Nevertheless, the conventional spin-phonon coupling in
any 3d transition-metal compound, and hence the spin-
damping effect of its phononic modes, takes the form of Hsp

in Eq. (17), and the spin-isotropic nature of this interaction
means that phonon modes cannot alter the spin state (the
number of excited triplons) directly. The most straightforward
spin-conserving bath operators appropriate to this situation,
based on the operators tk in the spin-system Hamiltonian,
would be of the form Ckq = t†

k tq, and for the reason given
above need not be momentum-conserving. Bath operators
with the form of Ckq manifestly act to mix wave-vector states
of the system and thus lead to a significantly more involved set
of equations of motion, with in general N2 coupled equations
rather than only N . We defer a detailed analysis of this case to
a follow-up study.
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As already noted, the type of bath studied in the present
work provides a meaningful description of systems with spin-
dependent phonon scattering processes. These can arise in
systems with appreciable spin-orbit coupling, meaning 4d and
especially 5d magnetic ions, where the resulting anisotropic
interactions include may Dzyaloshinskii-Moriya (DM), ex-
change anisotropies (XXZ and XY Z), or even bond-selective
interactions. However, only in rather exceptional circum-
stances would these dissipative channels be stronger than
spin-conserving damping terms, and thus the consideration
of more advanced bath operators is required to discuss real
experiments. In addition to the question of spin conserva-
tion, it is also necessary to address the issue of spin-system
dimensionality, which as in the present study may be lower
than the phonon-system dimensionality (which is 3D), and
hence to establish the level at which to enforce conservation
of momentum.

The nature of the bath reflects directly on the heating of
the system, which was discussed for the simple, spin-non-
conserving case in Sec. VI. In a more complex bath, one may
expect the redistribution of energy through the modes of the
spin system to be more efficient, although this is in general
a small contribution to the (phonon-dominated) system tem-
perature. Of more practical relevance to the issue of quantum
coherence is the fact that a momentum-mixing bath operator
would also impact the coherence of individual k-components
of the spin system. From this standpoint one may consider
“reservoir engineering” [106], meaning influencing the form
of Ckq (for example by promoting forward-, backward-, or
skew-scattering in the bath), as an alternative to controlling
the system temperature only through the balance between the
laser driving strength and the cooling apparatus (Sec. VI).

With a view to maintaining quantum coherence in the
spin sector, we turn to some more general considerations for
controlling the temperature of the system. We remark that in
some classes of system it is possible to decouple the degrees of
freedom in such a way as to obtain effective electronic or spin
temperatures different from the lattice temperature. However,
this is not an option in a system of spins localized on the sites
of a lattice, where the temperature controlling the response of
the spin system is that of the lattice. Similarly, our model is
also far from the paradigm of a spatially separate system and
bath, where different effective temperatures for the two com-
ponents are related by controllable coupling constants. Within
the confines of the situation we consider, we mention two
approaches to temperature control, namely, system geometry
and the laser driving protocol.

In the present work we have considered only bulk driving
by the electric field of the laser, meaning that the Einstein
phonon of every bond is stimulated. In Sec. VI B we showed
that this “bulk” system should in fact be rather thin (tens of
nanometres). However, it is certainly possible that a device
of μ or mm length is illuminated only at one end, caus-
ing the phonon and spin excitations to propagate through
the equilibrium material over a distance far larger than the
nonequilibrium irradiated portion, and possibly larger than
the penetration depth of the light. Such a situation would
require a model for spatial gradients of heat, magnetization,
and temperature, which would certainly be of direct interest
for switching and transport in spintronic devices. To date some

experiments already present this type of situation [72], and
certain theoretical discussions have also invoked the frame-
work of driving only at the ends of the system [51,52,107].

Finally, another means of controlling the system temper-
ature lies in driving by repeated short pulses. In its simplest
form, this allows the system to relax back to its cold state by
the action of the heat sink (Sec. V C), although the required
pulse separation would be a very slow timescale (Sec. VI B).
At a more sophisticated level, pulsed driving processes allow
new degrees of control over the system, including the impo-
sition of dynamics on new timescales quite separate from the
driving frequency, as in the case of Floquet engineering of the
electronic band structure [34]. While certain types of driving
protocol have already been proposed for controlling small
numbers of quantum spins [4] and ensembles of effectively
S = 1/2 quantum dots [56,57], for now we leave open the
application of these ideas to the many-body spin systems
considered here.

C. Experiment

As stated in Sec. I, the last decade has seen an enormous
expansion in the technological capabilities of laser sources,
both in ultrafast timescales and in high intensities, with ap-
plications both for pump-probe experiments and for steady
driving. Where in Sec. I the focus of our remarks was the
new physics made possible by these new sources, it is also
worth commenting on the new technologies that have led to
such growth in the application of lasers to condensed matter.
For decades this was limited by the “Terahertz gap,” the prob-
lem that light at the energies of most interest to the intrinsic
processes in condensed matter was neither easily generated
nor easily guided or focused, but was easily absorbed and
scattered. Starting with the initial compilation of methods
making it possible to engineer transient states of condensed
matter [108], further technological solutions have been devel-
oped and applied to frontier science challenges [109]. The best
review of terahertz enabling technologies, both for generation
and for beam control, may be found in Ref. [110]. On the gen-
eration side, one has not only new free-electron laser sources
but also a range of new “table-top” techniques, including
plasma-based sources and high-harmonic generation, many
made possible by exploiting new materials. On the control
side, beam guiding, transport, focusing, and diagnostics have
also benefited strongly from the optical properties of certain
materials. Together this progress has led to a qualitative ex-
pansion in the type of physics that can be probed, or indeed
created, in condensed matter, and the aim of the present study
is to extend these capabilities to quantum magnetic materials.

For the purposes of this preliminary analysis, we have fo-
cused on well-dimerized (and thus robustly gapped) quantum
spin chains, meaning that the system we consider does not,
either at equilibrium or in its driven state, approach a phase
transition to a magnetically ordered, to a gapless quantum
disordered, or to any other different magnetic state. In a 1D
system with only Heisenberg spin interactions, the primary
requirement is simply that the spin gap (the one-triplon band
minimum, ωmin = ωk=0) does not close, including on laser
driving of a selected phonon. An excellent example of an
inorganic compound realizing quasi-1D alternating S = 1/2
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spin chains is Cu(NO3)2 [111], which is thought to have no
anisotropy, negligible second-neighbor interactions, and a gap
of approximately 0.38 meV (compared to a band width of
0.12 meV, yielding λ = 0.14). This material also shows no
evidence of strong phonon coupling to the spin excitations
[111], which indicates that it belongs in the weak-coupling
regime we study. However, the magnetic energy scales in
Cu(NO3)2 are lower by a factor of 20 than the test-case num-
bers presented in Sec. VI, presenting a different balance of
slower heating rates, slower convergence to NESS, and altered
damping ratios.

A recently discovered class of alternating spin-chain ma-
terials includes AgVOAsO4 [112] and NaVOAsO4 [113],
which have magnetic coupling constants in the 5 meV
range. Although here λ is at the upper validity limit of our
present simple treatment of the spin chain (Sec. II A), as
noted earlier, more sophisticated approaches are available
for this purpose and no part of the equations of motion
(Sec. II C) is invalidated. Another class of candidate sys-
tems is the set of metal-organic TTF compounds [114,115],
and even purely organic TCNQ compounds [116], in which
the spin-Peierls transition has been observed and the dis-
torted (low-temperature) state is an alternating spin chain. A
further category of interest in quantum magnetism has been al-
ternating antiferromagnetic-ferromagnetic (AF-FM) S = 1/2
chains, primarily because of a tendency to Haldane physics
in the strong FM regime, but in the remainder of the param-
eter space, which includes the materials Na3Cu2SbO6 (λ =
−0.79) [117] and (CH3)2NH2CuCl3 (λ = −0.92) [118], our
analysis remains fully applicable regardless of the signs of the
interactions.

In addition to CuGeO3, which we introduced in Sec. VI
to consider its thermal properties, (VO)2P2O7 [119,120] con-
stitutes a further system that in fact realizes alternating S =
1/2 spin chains with significant interchain interactions. How-
ever, the anomalously large g values that made both of these
compounds attractive for equilibrium experiments in quantum
magnetism do place them outside the weak-coupling regime
we analyze here. In a later study we will extend our consider-
ations to the regime of strong spin-phonon coupling, which is
also described by the equations of motion derived in Sec. II.
Here one may anticipate nonlinear driving effects (Figs. 3
and 5), which could allow experiments at lower laser intensi-
ties, stronger mixing of frequency harmonics (Figs. 6 and 7),
stronger below-band multiphonon processes (Fig. 12), more
delicate driving-induced anomalous convergence (Sec. V A),
and stronger transfer of spectral weight between different
frequencies (Fig. 16).

Returning to the spin sector alone, our present formalism
is readily extended to alternating chains with different gap-to-
bandwidth ratios, although an accurate treatment of systems
with small gaps would require a more numerical approach
for the systematic summation of perturbative terms to high
orders, as in the method of continuous unitary transforma-
tions (CUTs) [102–104]. Other 1D gapped spin systems to
which our considerations are immediately applicable include
even-leg S = 1/2 spin ladders and Haldane (S = 1) chains. A
parallel class of systems that could be treated by very similar
considerations would be that of magnetically ordered quantum

spin systems, which includes many 2D and 3D materials of
all spin quantum numbers; this would involve the straight-
forward adoption of a (constrained) spin-wave framework
to describe the spin sector. Ordered magnetic systems also
provide the simplest cases in which to analyze the effects
of anisotropic magnetic interactions, such as single-ion, DM,
XXZ , and other terms, which have recently attracted intensive
interest with a view to creating topological magnons [58–61],
vortices [63], skyrmions [64], and other means of encoding
protected quantum information [2]. More complex spin sec-
tors include anisotropic systems such as Ising and XY models
without magnetic order, gapless spin chains, and gapped or
gapless nonordered states in higher dimensions, meaning in
the former category Z2 quantum spin liquids and in the latter
algebraic spin liquids and quantum critical systems. Here the
challenge is not only to find a suitable framework in which to
describe the complex correlated spin sector, especially if this
is changed by using laser driving to push it across a magnetic
quantum phase transition, but also to deal with the situation
where the excitations of the spin system extend to arbitrarily
low energies, thus interacting strongly with even the acoustic
phonons.

In addition to an adequate treatment of the spin sector, the
quantitative analysis of real materials will require accurate
lattice dynamics calculations to give the phonon modes and
frequencies, and the corresponding oscillator strengths. The
normal modes can be used to estimate spin-phonon coupling
strengths and the frequencies to choose the laser excitation
parameters. Typically, the phonon spectrum in inorganic ma-
terials extends up to the Debye energy, which rarely exceeds
100 meV (24 THz), while a lower limit for optical phonons
is perhaps 5–10 meV. Spin energy scales can extend up to a
one-magnon band maximum of 300 meV (70 THz) in cuprates
and have no lower limit. There is no established relationship
between the two, as materials with predominantly high-energy
phonon modes can have a very low-energy spin sector, and
those with high spin energies need have no special phonon
properties. However, metal-organic systems do tend to have
a softer phonon sector, due to the nature of the interactions
between weakly polar organic groups, and very low magnetic
energies due to the long paths between magnetic ions. Thus it
is safe to say that a very wide range of frequency scales and
phononic modulation possibilities is available for planning
experiments of the type we discuss.

Finally, it is also necessary to consider how to measure all
of the physical quantities characterizing the spin system using
a terahertz laser. In Sec. VI A we presented the example of
absorption of the incident laser fluence (Fig. 16), while further
quantities that are also functions of frequency and temperature
include reflection, polarization rotation (due to birefringence
changes or the Faraday effect), and the two-magnon response.
It is not generally possible to probe the wave-vector response
of the spin sector, except in special cases possessing a strong
coupling to one well-characterized “probe phonon” mode. In
most such measurements, the signal arising due to the spin
system will be weak in comparison with the many other con-
tributions to the total response of a sample, and here we point
to the strong frequency-selectivity allowed by the phonon-
coupled model, and visible in Figs. 15 and 16, as the primary
means of ensuring that the spin signal is detectable.
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VIII. SUMMARY

We have investigated the nonequilibrium steady quantum
mechanical states of a lattice spin system under the continu-
ous, coherent laser excitation of phonons at a single frequency
and in the presence of a realistic dissipation. In real ma-
terials, this dissipation is dominated by the many phonons
of the lattice system, and its inclusion at the operator level,
which we effect within the Lindblad formalism, goes beyond
much of the work on driven many-body systems presently
in the literature. We have focused for pedagogical purposes
on a simple example of a gapped quantum mechanical spin
system, the dimerized spin chain, and a simple example of
a driving phonon, a bulk Einstein mode, but stress that the
framework we have established can be extended, with addi-
tional numerics, to fully realistic examples of both systems.
By establishing and solving the quantum master equations
governing the time-evolution of this model system, we have
demonstrated the establishment of quantum spin NESS and
investigated their dependence on all of the parameters de-
scribing the lattice and spin sectors, including their driving,
dissipation, and coupling.

We have performed a detailed analysis of the internal
dynamics of the driven quantum spin NESS, and of the ac-
companying behavior of the driven lattice system. We find
that the NESS amplitude shows a dramatic sensitivity to the
frequency of the driving phonon, peaking strongly at the up-
per and lower edges of the band of two-triplon excitations.
Beyond the frequency, we characterize this response as a func-
tion of the driving electric field, the lattice and spin damping
coefficients, and the spin-phonon coupling, which causes a
rapid onset of strong mutual feedback between sectors. We
use the Fourier transform to analyze the components of the
spin NESS appearing at different harmonics of the driving
frequency even in the weak-coupling regime. By investigating
the k-resolved response of the spin system we demonstrate
that resonance in frequency is also strongly k-selective.

Our equations of motion are valid at all times and we
use them to study both the transient behavior of the system
when driving is switched on and the relaxation to equilibrium
when the driving is removed. At switch-on we find a complex
phenomenology where even the weakly coupled system can
be driven close to thresholds, in triplon occupation and rate of
excitation, at which its characteristic timescales are renormal-
ized strongly. We have computed the energy flow through the
composite spin-lattice system, from its arrival as the driving
laser light to its dissipative loss. The energy offers a new
window on frequency-sensitivity, allows us to gauge the self-
consistency of our analysis by applying sum rules, and shows
an unexpected “self-blocking” effect, whereby the spin system
suppresses the uptake of laser power near resonance. Because
the Lindblad formalism gives direct access to the energy flow
into the bath, we have used our framework to estimate heating
timescales and hence the practical requirements, in the form
of driving limits, sample geometry, and cooling capacity, of a
NESS experiment in a real material.

The framework we establish makes it possible to perform
quantitative investigations of many different types of spin
system, including those with magnetic order, with small or
vanishing gaps, with topological properties, or with nontrivial

quantum entanglement. It also enables the analysis of more
complex types of bath, most notably ones describing spin-
conserving dissipative processes, and hence the modeling of
real materials with laser-driven phonons. With appropriate
treatment of spatial gradients (in driving, magnetization, and
temperature), one may also model real device geometries,
leading to spintronic applications where the challenge is to
preserve quantum coherence over the timescale required for
reading and processing the quantum information encoded in
the spin sector.
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APPENDIX A: DETUNED TRIPLON PAIR CREATION

In Sec. V A we analyzed the gradual change of the diagonal
triplon components, uk (t ), in the resonant case, by which is
meant for ω0 = 2ωkres . Henceforth we omit the subscript k.
If this resonance condition is not met, we state that there is
a finite detuning, δ = 2ω − ω0. In this Appendix we present
the differences between the derivations for the detuned and
resonant cases (Sec. V A). In the detuned case, Eq. (52a) still
holds, but the definition of Eq. (52b) changes to

F (t ) =
∫ t

0

[
ũ(t ′) + 3

2
eγst ′

]
e−iδt ′

dt ′, (A1)

which implies that F (t ) is no longer real, but complex. Equa-
tion (53a) still holds, but Eq. (53b) is modified to

ũ(t ) = eγst u(t ) = �2 Re

[ ∫ t

0
eiδt ′

F (t ′) dt ′
]
, (A2)

with � as defined in Eq. (55). We stress that the validity of
replacing the rapidly oscillating terms by their average, as
performed in Eq. (51), is justified if |δ| � ω0. If the detuning
becomes too large, the deviations from the full result may
become large, but comparing our analytical approximation
to the results of a numerical integration revealed very good
agreement over a broad range of parameter space.

Equation (A2) does not lead to a closed differential equa-
tion by double differentiation because of the restriction caused
by taking the real part. It is necessary instead to take three
derivatives of ũ(t ) and define x(t ) = dũ/dt (t ), for which we
obtain

d2x

dt2
(t ) = (�2 − δ2)x(t ) + 3

2
�2γse

γst . (A3)

Clearly, the nature of the solutions to this differential equation
depends crucially on the sign of the prefactor, �2 − δ2. As
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in the resonant case (Sec. V A), if it is positive then expo-
nentially increasing and decreasing functions appear, whereas
if it is negative then oscillating trigonometric functions
appear. Solving Eq. (A3) for the initial conditions x(0) = 0
and dx/dt (0) = 3�2/2 and then integrating the resulting ex-
pression yields ũ(t ), from which the expressions given for u(t )
in Eqs. (60) and (62) follow.

APPENDIX B: LINDEMANN CRITERION

Breakdown of the lattice is governed by the Lindemann
criterion [121], which dates to Lindemann’s introduction of
the concept that a solid will begin to melt when 〈q2〉 ≈ ρ2a2

0,
meaning when the fluctuations, q, of its atoms around their
equilibrium positions exceed a fraction, ρ, of the interatomic
distance, a0. While Lindemann used the concept to relate 〈q2〉
to the melting temperature, Tm, for our purposes it is sufficient
to relate 〈q2〉 to nph.

It has been established for a broad range of condensed-
matter systems that Lindemann’s proposed relation holds,
with the value of ρ being in the range 0.1–0.15 [122–124].
To relate this result with nph, for a local phononic oscillation
the potential energy is half of the total energy,

1

2
Mω2

0〈q2〉 = 1

2
h̄ω0

(
nph + 1

2

)
, (B1)

which implies

〈q2〉
q2

osc

= nph + 1

2
, (B2)

where qosc is the oscillator length,
√

h̄/(Mω0). The Born-
Oppenheimer approximation [125] implies that the charac-
teristic length scale of the atomic motion, qosc, is a fraction
(me/M )1/4 of the electronic length scale, which we identify
crudely with a0; here me is the mass of an electron and M the
mass of the oscillating atom. Thus one obtains from Eq. (B2)
that

〈q2〉
a2

0

√
M

me
= nph + 1

2
, (B3)

and hence

nph + 1

2
≈ ρ2

√
M

me
. (B4)

Using the mass of the oxygen atom as a generic value for M,
and ρ2 ≈ 0.02 for the Lindemann ratio, we conclude that the
phonon number should not exceed

nph ≈ 3 (B5)

if the sample is to remain solid. Here nph is the total number
per atom of phonons polarized in one direction and the con-
ventional Lindemann criterion applies because we assume the
chains to be embedded in a 3D crystal (no low-dimensional in-
stability need be considered). From the estimates made above,
it is clear that the Lindemann threshold is in no way threatened
by the driven phonon occupations we consider, and thus that
the integrity of the periodic lattice is not an issue.
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