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We investigate the effect of a metal plate on the variable range hopping (VRH) conductivity of a two-
dimensional electron-glass (EG) system. The VRH conductivity is known to have a stretched exponential
dependence on temperature, with an exponent p that depends on the shape of the EG’s single-particle density of
states (DOS). For constant DOS p = 1

3 and for linear DOS p = 1
2 , also known as Mott’s and Efros-Shklovskii’s

VRH, respectively. The presence of the plate causes two effects on the EG system, static and dynamic. The
well-known static effect accounts for the additional screening of the Coulomb repulsion in the EG and for
the partial filling of the Coulomb gap in the DOS. This in turn causes an increase of the conductivity at very
low temperatures. Here, we investigate the complementary dynamical effect, which is related to the polaronic
phenomena. Our main result is the dynamical suppression of the standard phonon-assisted hopping and, thus,
suppression of the conductivity in a much wider range of temperatures as compared to the low-temperature static
effect. The relation to experiments is discussed.
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I. INTRODUCTION

Disordered systems have attracted much attention since
Anderson’s seminal work on localization transition [1].
Deep in the localized phase transport is dominated by
phonon-assisted hopping. The characteristic behavior is the
well-known variable range hopping (VRH) with the con-
ductivity showing the stretched exponential dependence on
temperature:

σ ∝ e−(T0/T )p
. (1)

Neglecting electron-electron interaction Mott [2] obtained the
above expression for the conductivity with T0 = (g0ξ

D)−1,
where ξ is the localization length, g0 is the constant single-
particle density of states (DOS) in vicinity of the Fermi
energy, D is the dimension of the system, and p = 1/(D +
1). Further, considering the Coulomb interactions Efros and
Shklovskii [3] (ES) found that the DOS has a soft gap
(Coulomb gap) around the Fermi energy in the form of g(E ) ∝
|E |D−1 and obtained p = 1

2 for all dimensions, with T0 =
e2/κξ , where κ is the dielectric constant in natural units. Fur-
thermore, a crossover as a function of decreasing temperature
from Mott’s to ES VRH conductivity was found theoretically
and experimentally [4–7]. The crossover is caused mostly by
the formation of the Coulomb gap.

The effect of long-range interactions on the VRH conduc-
tivity has been further investigated by placing a metal layer
in proximity to the disordered sample [8–13], and similarly in
quantum dot arrays [14,15]. The metallic plate is separated
from the disordered sample by an insulating layer, whose
thickness d is usually of the order of the typical nearest hop-

ping distance in the disordered sample. The main effect of the
metallic plate is considered to be enhanced screening in the
disordered sample. For large distances (r � d) the screened
interactions acquire a dipole form (∼1/r3), giving rise to an
approximately constant DOS at the center of the Coulomb
gap [13,16]. Under these circumstances one should expect a
reentrance of the Mott regime and an enhanced conductivity
at low temperatures, which was indeed predicted theoretically
[16] and measured experimentally [12,14,15]. We denote this
effect as static effect.

Yet, other experiments [8,11] in different materials show an
opposite effect, where in the temperature range available for
the experiment the metal plate induces (1) an overall reduction
in the conductivity and (2) activation (p = 1) functional de-
pendence of the conductivity at lowest available temperatures.
An explanation for the activation behavior in certain temper-
ature regimes was provided by Larkin and Khmelnitskii [17]
by an accurate account for the length-dependent screening.

In this paper, we investigate the complementary dynamical
effect of the electrons in the metallic layer on the VRH con-
ductivity in the EG layer. This is a polaronic effect related to
the dynamical rearrangement of electrons in the metallic layer
resulted from the hopping of an electron in EG.

The essence of this effect can easily be understood in a
hypothetical situation of a metallic plate being kept at zero
temperature, whereas the EG and the phonons have a finite
temperature. To each charge configuration of the EG there
corresponds a ground state of the electrons in the metallic
plate. These states are mostly orthogonal to each other. Their
energies are fully accounted in the effect of static screening.
Directly after a hopping event of an electron in the EG, the
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electrons in the metallic plate are no longer in their ground
state (the new ground state is orthogonal to the old one). Thus,
extra energy has to be supplied by the thermal phonons to the
electrons in the metallic plate on top of the activation energy
provided to the hopping electron in the EG. This reduces the
conductivity in the EG. We show that this effect dominates
even if the metallic plate has the same temperature as the EG
and the phonons.

We describe the system as an electron glass coupled to
two uncorrelated environments: phonons, and electrons in the
metallic layer. The phonons are responsible for the original
VRH mechanism (within the single-phonon approximation),
and the electrons in the metallic plate both statically screen
the Coulomb interaction and dynamically dress the tunneling
amplitude. In principle, the electronic environment could also
provide the activation energy for VRH, yet this mechanism
turns out to be subdominant.

We use a field-theoretical approach in order to obtain an
effective action for the EG. We extract the part of the effective
action responsible for the static screening and combine it with
the original unscreened action of the EG. We then derive
the conductivity to leading order in the dynamically dressed
tunneling amplitude. We find that the polaronic effect has an
approximated logarithmic dependence on hopping distance
(for r > d where r is the hopping distance) and, therefore,
it practically does not change the exponent p. This is in
contrast to the static effect as discussed above. Yet, the po-
laronic dressing suppresses the tunneling amplitude and thus
the conductivity. We find a wide temperature regime where
the polaronic effect is dominant compared to the static effect,
resulting in an overall reduction of the conductivity.

The paper is organized as follows. In Sec. II we present the
main ideas and the results of the paper. In Sec. III we derive
the effective action that consists of the EG model coupled to
bosonic field that represents both the phonon displacement
field in the EG system and the potential field of the metal. By
solving the saddle-point equations we show how the EG-metal
interaction is screened. This is crucial for setting the right
scale of the effective interaction between the EG system and
the electronic bath. In Sec. IV we obtain a general expression
for the conductance between two localized states in the EG
system. In Sec. IV A we further consider a more realistic
scenario of a diffusive metallic plate. Finally, in Sec. IV B
we present a regime where the polaronic effect is dominant
as compared to the static effect and demonstrate the reduction
in conductivity as a function of temperature. We then discuss
our results in view of experimental data. Finally, we conclude
in Sec. V.

II. MAIN RESULTS

We first review here our main results. The technical de-
tails are given in the following chapters. The physical picture
described in Sec. I is fully contained and is the conductance
σi j between two localized EG sites i and j, which is needed to
evaluate the conductivity of the EG within the resistor network
model. The conductance takes the form

σi j = 2πβ|ti j |2ni(1 − n j )P(Ei j, ri j ). (2)

Here, β is the inverse temperature, ti j is the tunneling am-
plitude between sites i and j, ni is the Fermi occupation
on site i with energy Ei, Ei j = Ei − Ej , ri j = ri − r j is the
distance between sites i and j and P(Ei j, ri j ) is the probability
per energy for the EG system to emit (absorb) energy Ei j to
(from) the phononic and electronic environments for Ei j > 0
(Ei j < 0). The static screening by the metallic plate is already
taken into account in the energies Ei and, most importantly, in
their density of states. The ri j dependence originates from the
interaction of the extended phononic and electronic environ-
ments with the localized EG. The ri j dependence is crucial
for the polaronic influence on the VRH hopping as further
explained in Sec. IV. The function P(Ei j, ri j ) is given by a
convolution of the contributions of the two environments:

P(E , r) =
∫ ∞

−∞
dE ′Pel(E ′, r)Pph(E − E ′, r), (3)

where Pel and Pph represent the electronic and phononic
environments, respectively, the energies and distances are rep-
resented in a continuous form, ri j → r and Ei j → E = EI −
EF . Equation (3) emphasizes the distribution of the energy
emitted (absorbed) by the EG between the two environments.
The main effect discussed in this paper relates to the regime
in which the activated tunneling takes place, i.e., E < 0,
|E | > T . Due to its Ohmic spectrum the distribution Pel is
concentrated at low positive values (with respect to the cutoff
frequency of the electronic environment) of E ′ [see Eq. (55)].
This “forces” the phonons to provide extra activation energy
to the electron-hole (e-h) excitations in the metal (see discus-
sion in Sec. IV C). This requires phonons of higher frequency,
whose thermal occupation is smaller, which results in a lower
conductivity.

The polaronic effect results in a total reduction of the
conductivity obtained in Eqs. (45) and (55) and plotted in
Fig. 3. The apparent weaker temperature dependence than
found experimentally is mainly a consequence of the strong
screening in the metal. In Fig. 4 we show that by assuming
smaller screening and thus larger effective interaction between
the EG electrons the metal electrons, a good fit to experiment
is obtained.

III. THE MODEL AND DERIVATION
OF THE EFFECTIVE ACTION

A. Model

We consider a two-dimensional (2D) EG layer coupled to
phonons and to electrons in a metal layer separated by an
insulator of width d , as illustrated in Fig. 1. The Hamiltonian
of the system reads as

H =
∑

i

εini + 1

2

∑
i �= j

ui jnin j + 1

2

∑
i �= j

c†
i ti jc j

+
∑

q

ωqa†
qaq +

∑
i,q

giq(a†
q + a−q)ni

+
∑

k

Ek f †
k fk + 1

2

∑
q

V (2)
q ρqρ−q +

∑
i,q,


V (1)
qi ρqni. (4)
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FIG. 1. Illustration of the system.

Here ci (c†
i ) are the operators annihilating (creating) an

electron in the EG at the localized site i, ni ≡ c†
i ci. The on-

site energies εi are randomly distributed within the interval
[−W,W ], and ti j ∝ e−ri j/ξ , typically small compared to W ,
represents the tunneling of electrons between the localized
sites i and j. Here, ξ is the localization length [18]. The
Coulomb interaction between sites i and j is given by ui j =

e2

κri j
, where κ is the dielectric constant. The operators fk and f †

k

stand for the conduction electrons in the metallic plate and Ek

is the free-electron energy with wave number k. The electron
density in the metallic plate is given by ρq = ∑

k f †
k fk−q. The

bare Coulomb interaction in the metal is given by V (2)
q = 2πe2

L2q .
The Coulomb coupling between the EG and the metallic plate
is described by

V (1)
qi = 2πe2

κL2q
e−iqri−qd = V (1)

q e−iqri , (5)

where ri is the location of site i in the two-dimensional EG,
and d is the distance between the metal layer and the EG
system which we denote also as the layer separation. Fi-
nally, aq and a†

q describe phonons and gqi = gqe−iqri is the
electron-phonon (el-ph) interaction in the deformation poten-
tial approximation |gq| ∝ √|q|.

Starting from the microscopic model we wish to derive an
effective action for the EG degrees of freedom. We consider
the partition function Z = ∫

D�̄ D� exp[−S], where � rep-
resents symbolically all the fermionic and bosonic fields in
the problem. The action S can be obtained by performing the
Legendre transform [19,20]

S[�̄,�] =
∫ 1

0
dτ [�̄∂τ� + H (�̄,�)]. (6)

Here and throughout the paper h̄ = 1, kB = 1, the energy (fre-
quency) is measured in units of temperature and the imaginary
time in units of inverse temperature. The proper units are
reinstalled in the final results.

The microscopic action is composed of four parts:

S = SEG + St + Sph + Sel. (7)

Here, SEG describes the onsite energies and the Coulomb
interaction in the EG, whereas St describes tunneling in

the EG:

SEG =
∑
i,ω

c̄i,ω(−iω + εi )ci,ω + 1

2

∑
i �= j,


ui j n̄i,
n j,
,

St = 1

2

∑
i �= j,ω

c̄i,ωti jc j,ω. (8)

The Matsubara Fourier transforms are defined as ci,ω =∫ 1
0 dτ eiωτ ci(τ ) and ni,
 = ∫ 1

0 dτ ei
τ ni(τ ) = ∑
ω c̄i,ωci,ω−
,

where ω denotes the fermionic Matsubara frequencies (2π +
1)n and 
 are the bosonic ones 
 = 2πm.

The phonons and their coupling to the EG are described by

Sph =
∑
q,


āq,
(−i
 + ωq)aq,


+
∑
i,q,


giq(āq,−
 + a−q,
)ni,
. (9)

Since phonons can propagate also through the insulator and
the substrate we consider a three-dimensional phonon DOS.
The two-dimensional metal layer is represented by the jellium
model:

Sel =
∑
k,ω

f̄k,ω(−iω + Ek ) fk,ω + 1

2

∑
q,


V (2)
q ρ̄q,
ρq,


+
∑
i,q,


V (1)
qi ρ̄q,
ni,
. (10)

The presence of the density-density interaction in the metal
allows us to systematically derive the screening of the EG-
metal interaction (V (1)) which results from the response of the
metal electrons to the localized electrons in the EG system.

In what follows, we derive the effective action and conduc-
tivity for a ballistic metal layer. In Sec. IV A we show how
disorder in the metal is an important addition that can cause a
substantial effect on the conductivity.

B. Microscopic description of the electromagnetic and phononic
fluctuations

The first step in calculating the effective action is to
eliminate the Coulomb interactions in the metal via the
Hubbard-Stratonovich transformation and then integrate over
the metal’s electron fields [19,21]:

S = SEG + St + Sph + 1

2

∑
q,


�̄q,


(
V (2)

q

)−1
�q,


− Tr ln
(−G−1

V (1),�

)
, (11)

where

G−1
V (1),�

≡ G−1
0 − V̄ (1)n̄ − i�̄. (12)

Here, G−1
0 is the inverse propagator of the free electron in

the metal with matrix elements G−1
0kω

= iω − Ek , �̄k−k′,ω−ω′ =
�̄q,
 = �−q,−
 is the potential field in the metal (introduced
by the Hubbard-Stratonovich transformation), and the cou-
pling to the EG system is represented by the matrix V̄ (1)n̄ with
the matrix elements V (1)∗

k−k′,in̄i,ω−ω′ = V (1)∗
qi n̄i,
 = V (1)

−qini,−
.
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Equation (11) is exact but not solvable. Here, we con-
sider the mean-field (MF) approximation for the field �. In
Appendix B we validate the MF approximation by consider-
ing fluctuations around the MF solution. The MF solution �0

solves the MF equation

0 = δS
δ�̄0

q,


= (
V (2)

q

)−1
�0

q,
 + 2i
∑
k,ω

(GV,�0 )(k,ω),(k+q,ω+
).

(13)

Due to the presence of the EG contributions in (12), this is still
a complicated equation to solve. We assume the metal to be
an almost perfect screener within itself. This means the total
potential in (12) must be small. We denote this total potential
��0, i.e.,

i��0
q,
 = i�0

q,
 +
∑

i

V (1)
qi ni,
, (14)

and expand the propagator (12) in ��0. Expanding Eq. (12)
to the linear order in ��0 and substituting this to the MF
equation (13) we obtain the following MF solution (for details
see Appendix A):

i�0
q,
 = −

∑
i

(1 − fq
)V (1)
qi ni,
. (15)

The function fq
 is found to be the inverse random phase
approximation (RPA) dielectric function

fq
 = 1/εRPA
q
 = 1

1 − V (2)
q
 �q


, (16)

with the polarization function

�q
 = 2
∑
k,ω

G0kωG0k+q,ω+
 = 2
∑

k

Nk,k+q

Ek,k+q + i

. (17)

Here, Nk,k+q ≡ Nk − Nk+q, where Nk is the Fermi occupation
of state with energy Ek in the metal, and Ek,k+q = Ek − Ek+q.
Note that the MF potential �0 is a dynamical one due to the
dynamics of the localized charges ni(τ ).

We can now check how justified was the expansion to the
linear order in ��0. From Eq. (15) we obtain

��0
q,
 =

∑
i

fq
V (1)
qi ni,
. (18)

In the static long-wavelength limit we have

fq
 ≈ q

q + qTF
≈ q

qTF
<

1

qTFd

 1, (19)

with qTF = 2/aB, aB is the Bohr radius, and the long-
wavelength expansion is defined as

Ek,k+q ≈ k · q/m; Nk,k+q ≈ −δ
(
k2 − k2

F

)
2k · q, (20)

where kF is the Fermi wave number. Evidently from Eq. (5),
the EG-metal separation serves as a cutoff for the e-h
wavelengths qd < 1 which justifies the long-wavelength ap-
proximation. Thus, the expansion is justified provided that the
layer separation is large enough such that maximum relevant
wave number (1/d) is much smaller than Thomas-Fermi (TF)
wave number qTFd � 1 (an inequality which we consider
throughout).

Substituting now �0 into Eq. (11) and expanding Tr ln
up to the second order in ��0 we obtain the following MF
action:

SMF = SEG + St − Tr ln
(−G−1

0

)
− 1

2

∑
i, j,
,q

(1 − fq
)2
(
V (2)

q

)−1
V (1)∗

qi V (1)
q j n̄i,
n j,


+ 1

2

∑
i, j,
,q

�q
 f 2
q
V (1)∗

qi V (1)
q j n̄i,
n j,
, (21)

which gives [using (16)]

SMF = SEG + St + 1

2

∑
i j


Kel
i j
n̄i,
n j,
, (22)

with

Kel
i j
 =

∑
q

fq
�q
V (1)∗
qi V (1)

q j . (23)

The constant Tr ln(−G−1
0 ) has been dropped.

For a noninteracting metal one would obtain instead of
(23) a kernel of the form

∑
q �q
V (1)∗

qi V (1)
q j . Therefore, we

denote K in Eq. (23) as the screened kernel. As expected, for
d = 0 the screened kernel together with the EG interaction
give the known RPA interaction between impurities in the
metal, ui j + Kel

i j
 = ∑
q fq
V (2)

q e−iqri j which further validates
our MF approximation. Given the typical distance between
sites in the EG system being much larger than the Thomas-
Fermi wavelength, the RPA is a good approximation.

The screened kernel (23) can be alternatively derived by
expanding Eq. (11) to second order in V (1) + i� and perform-
ing a Gaussian integration over �; this means that fluctuations
of the field � are taken into consideration already at the MF
level. Nevertheless, the MF analysis has a faster convergence
than the perturbative loop expansion, at least for the given
model, thus the MF approach should be useful for the cal-
culation of higher-order corrections.

Reinstalling back the phonon action Sph and integrating
over the phonon degrees of freedom the total action reads as

SMF = SEG + St + 1

2

∑
i j


Ki j
n̄i,
n j,
, (24)

with Ki j
 = Kel
i j
 + Kph

i j
, where Kph
i j
 is the phonon kernel:

Kph
i j
 = −

∑
q

|gq|2 2ωq

ω2
q + 
2

eiqri j , (25)

and we use the identities gq = g∗
−q and ωq = ω−q. To see how

the effective interaction renormalizes the EG parameters we
split the kernel [Eqs. (23) and (25)] to a static and a dynamic
part Ki j
 = Ki j0 + K ′

i j
:

Ki j0 =
∑

q

(
V (1)

q

)2
fq0�q0eiqri j − 2

∑
q

|gq|2
ωq

eiqri j ,

K ′
i j
 =

∑
q

(
V (1)

q

)2
( fq
�q,
 − fq0�q,0)eiqri j

+ 2
∑

q

|gq|2 
2

ωq
(
ω2

q + 
2
)eiqri j
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=
∑

q

(
V (1)

q

)2
fq0 fq
(�q,
 − �q,0)eiqri j

+ 2
∑

q

|gq|2 
2

ωq
(
ω2

q + 
2
)eiqri j . (26)

Consequently, the renormalized EG interaction (recasting
back to units of energy) takes the known form

ũi j = ui j + Ki j0 ≈ ui j + Kel
i j0 ≈ e2

κri j
− e2

κ
√

r2
i j + 4d2

, (27)

where Kph
i j0 is neglected since we are interested in the case

of weak el-ph interaction. Also, in the last step we used the
long-wavelength expansion (20) and the inequality qTFd � 1.
Equation (27) is the EG interaction screened by the presence
of the metal [16,22]. As can be seen, the interaction ũi j

behaves as 1/ri j for ri j 
 d and 1/r3
i j for ri j � d . The ho-

mogeneous shift of the onsite energies, due to Kii0, is ignored.

C. Dressed tunneling amplitude

In this section we obtain the generic model of the dressed
tunneling amplitude coupled to environmental modes (along
the lines of Ref. [23]). Performing the Hubbard-Stratonovich
transformation to decouple the dynamical part of the interac-
tion [last term in Eq. (24)] and a gauge transformation of the
form

ci(τ ) → ei�i (τ )ci(τ ), (28)

we obtain our final effective action:

Seff = S̃EG + S̃t + Sφ

= S̃EG +
∫ 1

0
dτ

∑
i �= j

c̄i(τ )t̃i jc j (τ )

+ 1

2

∫ 1

0

∫ 1

0
dτ dτ ′ ∑

i �= j

φi(τ )(K ′)−1
i j (τ − τ ′)φ j (τ

′),

(29)

where S̃EG is the EG action with the renormalized interaction
[Eq. (27)], φi is the local potential on site i introduced by the
Hubbard-Stratonovich transformation, and the dressed tunnel-
ing amplitude is

t̃i j = ti je
i�i j (τ ), (30)

where �i j (τ ) = �i(τ ) − � j (τ ) and �i(τ ) = ∫ τ

0 dτ ′φi(τ ′).
The kernel K ′ is given in Eq. (26). Note that the potential field
does not have a static part, i.e., φi,
=0 = 0, since the kernel
K ′

i j,
=0 = 0 by definition. Thus, �i(τ ) is periodic.

IV. CONDUCTIVITY

In this section we use our effective action [Eq. (29)] to
derive the DC conductance between sites i and j to leading
order in the weak dressed tunneling amplitude t̃i j . In Sec. IV A
we show how to generalize our results to the case of diffusive
metallic plate. Finally, in Sec. IV B we apply Mott’s prescrip-
tion to evaluate the dependence of macroscopic conductivity

of the EG on temperature and use it to compare the conduc-
tivities with and without the metal layer.

We present here the main steps of the derivation of the
conductance between sites i and j, for further details see Ap-
pendix C. For the response function we obtain [see Eq. (C4)]

CI
i j (τ − τ ′) = −〈Ii(τ )I j (τ

′)〉|χ=0 + δ(τ − τ ′)

×
∑
l ( �=i)

(δi j − δ jl )〈c̄i(τ )t̃il cl (τ ) + H.c.〉
∣∣∣
χ=0

,

(31)

where

Ii(τ ) =
∑
j( �=i)

[c̄i(τ )t̃i je
iχi jτ c j (τ ) − c̄ j (τ )t̃∗

i je
−iχi jτ ci(τ )] (32)

is the current entering (leaving) the site i [defined in Eq. (C2)]
and χi(τ ) = ∫ τ

0 dτ ′Ui(τ ′) where Ui(τ ) is the classical external
potential field at site i in the EG system. The first and second
terms in Eq. (31) are called the paramagnetic and diamagnetic
contributions, respectively.

To find the conductance to order |t̃ |2, we evaluate the
paramagnetic term to zeroth order in the dressed tunneling
action S̃t (since the current operator is proportional to t̃) and
the diamagnetic term we calculate to first order. Substituting
Eq. (30) and calculating the averages explicitly we obtain

CI
i j
 ≈

∑
l

(δi j − δ jl )|til |2
∫ 1

0
dτ (1 − ei
τ )eJil (τ )

×[ni(1 − nl )e
Eil τ + nl (1 − ni )e

−Eil τ ]. (33)

Here, Eil = Ei − El where Ei are the onsite energies, which
take into account the EG Coulomb interactions screened by
the metallic plate. These are already included in S̃EG of
Eq. (29). Furthermore, Ji j is the correlation function of the
gauge field �i j = �i − � j :

Ji j (τ ) = 〈�i j (τ )�i j (0)〉0φ − 〈�i j (0)2〉0φ, (34)

where the average is done with respect to Sφ defined in
Eq. (29). Performing the analytical continuation to real time
and frequency [24] and then taking the limit ω → 0, we obtain
the DC conductance between sites i and j (in dimensionful
units) given in Eq. (2) with

P(Ei j ) = 1

2π

∫ ∞

−∞
dt eJi j (t )+iEi j t . (35)

From this point on, real times, energies and frequencies are
in dimensionful units. The correlation function of the gauge
field can be divided into the contributions of the electron and
phonon environments, respectively, Ji j (t ) = Jel

i j (t ) + Jph(t ),
which are given by (see derivation in Appendix D)

Jel
i j (t ) =

∫ ∞

0

dω

ω2
Sel

i j (ω)F (ω, it ),

Jph(t ) =
∫ ∞

0

dω

ω2
Sph(ω)F (ω, it ), (36)

with

F (ω, it ) = coth

(
βω

2

)
[cos(ωt ) − 1] − sin(ωt ), (37)
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where the long-wavelength limit is performed. The spectral
functions at low energies are given by

Sel
i j (ω) ≈ αi jωe−ω/ωc ,

Sph(ω) ≈ ωs

ω̃s−1
�

(
ωph

c − ω
)
, (38)

where s is the dimensionality of the phonon environment, ωc

and ω
ph
c are the cutoff frequencies of the EG-metal and el-ph

interactions, respectively, and ω̃ is an energy scale inversely
proportional to the deformation potential. The dimensionless
coupling constant to the electronic environment (metal layer)
is

αi j = 1

4πκ2

1

kF d
ln

[
1

2
+ 1

2

√
1 +

( ri j

2d

)2
]
. (39)

The general form of Eq. (2) is of course intimately related
to the equilibrium transition rates 2π |ti j |2ni(1 − n j )P(Ei j )
obtained in [23]. Given that the bare tunneling amplitude is
typically small compared to the disorder energy, the expres-
sion for the conductance given in Eq. (2) is applicable for
a wide range of coupling strengths of the phonon and metal
environments. A Fourier transform of Eq. (35) gives P(Ei j ) as
a convolution of contributions of metallic plate and phonons
and we obtain Eq. (3). The conductance between two sites
with energies EI and EF separated by distance r then reads as

σI→F

= 2πβ|t (r)|2nI (1 − nF )
∫ ∞

−∞
dE ′Pel(E ′, r)Pph(E − E ′),

(40)

where nI ≡ nF (EI ) and nF ≡ nF (EF ). The electronic absorp-
tion and emission probability density reads as

Pel(E ) = 1

2π

∫ ∞

−∞
dt eJel (t )+iEt , (41)

and similarly for the phononic one Pph(E − E ′), with Jel re-
placed by Jph. The phonon correlation functions can be further
divided into two parts [see Eq. (D1)], the Debye-Waller term
and the rest Jph = −W ph + J̃ph, where W ph ≡ 〈�ph

i j (0)2〉. For
the electronic Ohmic environment such a division does not
make sense as both parts would strongly diverge, whereas
W ph has a finite value. We thus choose to separate it from the
phonon correlation function Jph:

Pph(�E ) = e−W ph 1

2π

∫ ∞

−∞
dt eJ̃ph(t )+i�Et , (42)

with �E = E − E ′ and e−W ph
is the well-known Debye-

Waller factor. The Debye-Waller exponent is given by

W ph = 1

ω̃s−1

∫ ω
ph
c

0
dω ωs−2 coth

(
βω

2

)
, (43)

where we substitute the phonon spectral function given
in Eq. (38). To obtain the single-phonon-assisted tunnel-
ing we expand Eq. (42) to leading order in J̃ph and

obtain

Pph(�E ) ≈ e−W ph
∫ ∞

−∞

dt

2π
ei�Et [1 + J̃ϕ (t )]

= e−W ph

{
δ(�E ) + 1

ω̃2
|�E |[nph(|�E |)

+�(�E )]

}
, (44)

where nph is the phonon occupation in the EG sys-
tem. As explained in the previous section we consider a
three-dimensional (3D) phonon spectral function [s = 3 in
Eq. (38)]. In that case we have ω̃2 = 2π h̄3ρc5

3γ 2 where c is speed
of sound, ρ is the mass density, and γ is the deformation
potential. Substituting Eq. (44) back in Eq. (40) we obtain our
final form of the single-phonon conductance:

σI→F = 2πβ|t (r)|2nI (1 − nF )e−W ph

{
Pel(E , r) + 1

ω̃2

×
∫ ∞

−∞
dE ′Pel(E ′, r)|�E |[nph(|�E |) + �(�E )]

}
,

(45)

where the arguments r, EI , and EF are suppressed in Eq. (45)
for compactness. As can be seen, negative energy difference,
E < 0, describes assisted tunneling while E > 0 describes the
dissipation to the e-h and phonon environments. As expected,
without the metal layer (setting Jel = 0) the conductance re-
duces to the typical form given in usual analysis of resistor
network [18,25]:

σ0,I→F = 2πβ|t (r)|2nI (1 − nF )
e−W ph

ω̃2
|E |

× [nph(|E |) + �(E )]. (46)

The resonant tunneling term does not contribute in Anderson
insulators and therefore neglected in the calculation of σ0.
The phonon Debye-Waller factor is usually discarded in the
resistor network analysis assuming it is of order unity. This is
based on the assumption that the el-ph interaction is weak with
respect to disorder energy and the near-neighbor Coulomb
interaction in the EG system. An additional reason is that
the Debye-Waller exponent usually has an infrared (IR) cutoff
which further decreases W ph. The IR cutoff can be estimated
self-consistently via variational calculation of the free energy
[26–28]. Regardless, in what follows we calculate the ratio of
the conductivities given in Eqs. (45) and (46), which is not
dependent on the phonon Debye-Waller factor.

A. Weak disorder in the metal

In most realistic systems the metallic layer is diffusive.
Thus, it would be interesting to estimate the e-h spectral func-
tion [Eq. (38)] and its dependence on the hopping distance in
the presence of disorder. For weak disorder, kF l � 1, where
l is the mean-free path in the metal, the polarization function
can be estimated by the diffusion approximation [29,30]

�D
q
 = − νL2Dq2

|
| + Dq2
, (47)
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where ν = m/π h̄2 is the DOS of the electrons in the metal,
L is the size of the sample, and D = vF l/2 is the diffusion
constant. Equation (47) is applicable for large length scales
and timescales,

ql 
 1, 
τs 
 1, (48)

where the scatting time is τs = l/vF given the Fermi velocity
vF . The diffusive kernel for the disordered metal is then ob-
tained by replacing � → �D in the screened kernel given in
Eq. (23). The dynamical part of the kernel takes the form

K ′D
i j
 = β

∑
q

νL2|
|q
(|
| + DqqTF)qTF

V (1)∗
qi V (1)

q j , (49)

and its static part remains unchanged and therefore is given in
Eq. (26). To obtain the conductivity of the EG system in the
presence of disorder in the metal we consider the correlation
function Jel of the electronic bath [see Eq. (36)] in three

regimes: (1) l > d , (2) 0 < l <
√

d
qTF

, and (3)
√

d
qTF

< l < d .

Regime No. 1 is dominated by a ballistic motion in the metal
and therefore Jel is given by Eq. (36). Regime No. 2 is domi-
nated by the diffusive motion in the metal. For timescales and
length scales obeying Eq. (48), the conductivity is obtained
by replacing the correlation function Jel in Eq. (41) by the
disordered one JD

i j (τ ) = 〈�D
i j (τ )�D

i j (0)〉0φ − 〈�D
i j (0)2〉0φ .

To calculate JD we use the diffusive kernel [Eq. (49)]
instead of the screed kernel in the action [Eq. (29)] and then
repeat the steps done in Appendix D. As can be seen, the
diffusive kernel is not analytic, thus, to perform the Matsubara
summation we choose a contour of integration that avoids the
real frequency axis. For the upper complex plane the integra-
tion contour is a semicircle shifted slightly above the real axis
with radius R → ∞. Similarly for the lower plane the contour
is slightly shifted below the real axis. Following these steps
we find that the correlation function JD has the same form as
in Eq. (36), i.e.,

JD
i j (t ) =

∫ ∞

0

dω

ω2
SD

i j (ω)F (ω, t ), (50)

with the spectral function

SD
i j (ω) = ω

kF lκ2
GD

i j (x̃1), (51)

and a form factor

GD
i j (x̃1) =

∫ ∞

0
dx

xe−2x

x2 + x̃2
1

[1 − J0(xRi j )]. (52)

Here, x = qd , x̃1 = ω/ω1, ω1 = DqTF/d = vF
qTFl
2d is the cut-

off frequency of the EG-metal interaction, Ri j = ri j/d , J0 is
the Bessel function, and the inequality (qTFd ) � 1 is used.
The low-energy behavior of the spectral function is Ohmic
with the dimensionless coupling constant:

αD
i j = GD

i j (0)

kF lκ2
= 1

kF lκ2
ln

[
1

2
+ 1

2

√
1 +

( ri j

2d

)2
]
. (53)

For simplicity, in the next section we model Eq. (52) with an
exponential cutoff [see discussion below Eq. (55)]. Compar-
ing Eqs. (53) and (39) one can see that the coupling with and

without the disorder has the same dependence on the hopping
distance ri j at the low-frequency limit.

Finally, in the intermediate regime No. 3, the diffusive
and ballistic contributions are comparable. The qualitative
behavior of the conductivity is obtained by using the diffu-
sive correlation function [Eq. (50)] for timescales and length
scales obeying Eq. (48) and the ballistic correlation function
[Eq. (36)] for short timescales and length scales:

Jel
i j (t ) = 1

kF lκ2

∫ 2d
l2qTF

0

dx̃1

x̃1
GD

i j (x̃1)F (x̃1, t )

+ 1

4πkF dκ2

∫ ∞

d
l

dx1

x1
Gi j (x1)F (x1, t ). (54)

Here, 1/l serves as the upper cutoff of the diffusive form fac-

tor GD
i j (x̃1) = ∫ d

l
0 dx xe−2x

x2+(x̃1 )2 [1 − J0(xRi j )], and the lower cut-

off for the ballistic form factor Gi j (x1) = ∫ ∞
d
l

dx e
−2
√

x2+x2
1√

x2+x2
1

[1 −

J0(
√

x2 + x2
1Ri j )]. We assume that the crossover between the

ballistic and diffusive regimes is captured qualitatively by the
integration limits [31] (note that x̃1/x1 = qTFl and therefore
the integration limits of the ballistic and diffusive contribu-
tions are complementary).

Comparing the dimensionless Ohmic coupling constants
given in Eq. (54) one can show that even in regime No. 3 (i.e.,√

d
qTF

< l < d) the diffusive contribution dominates and the

ballistic contribution can be safely neglected. Bearing this in
mind we continue to the next section considering specifically
the diffusive case (l/d � 1) for the calculation of the macro-
scopic VRH conductivity.

An accurate description for the ballistic-diffusive crossover
(given in Ref. [32]) coincides with our result in the diffusive
limit, which is the relevant regime in our work, as stated
above.

B. Qualitative estimation of the polaronic reduction of the
conductivity

To estimate the conductivity, we consider the diffusive
regime of the metallic plate where the mean-free path is
smaller than the EG-metal separation l/d � 1. Using Mott’s
method [2] we calculate the ratio σ (T )/σ0(T ) as a function of
temperature, where σ and σ0 are, respectively, the conductiv-
ities with and without the presence of the metal layer.

We start from evaluating Eq. (41). Using Eq. (38) and
invoking the scaling limit βωD

c , ωD
c t � 1, we get [33,34]

Pel(E ) ≈ 1

2πωD
c

eE/2T

�(αr )

∣∣∣�(αr

2
+ iE

2πT

)∣∣∣2( ωD
c

2πT

)1−αr

,(55)

where E is the energy difference between the initial and final
states, αr is the EG-metal dimensionless coupling strength
given in Eq. (53), ri j = r, and � is the gamma function. Since
we are interested in the low-energy behavior we approximate
for simplicity an exponential cutoff to the diffusive spectral
function [Eq. (51)] e−ω/ωD

c . The upper frequency cutoff can be
roughly estimated to be

ωD
c ≈ min(ω1, 2π/τs, 2π/τBL) ∼ 103 K. (56)
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g0

E

gd

E2E1
E

g

FIG. 2. Schematic description of the DOS in the presence of a
metal layer in units of κ2

e4 . The three regimes are (1) constant DOS at

high energies g0 for E > E2 ≈ g0
(e2/κ )2

2/π
[3], (2) constant DOS at low

energies gd = 0.1(κ/e2d ) [16] for E < E1 ≈ (gd/g0 )E2, and (3) ES
DOS at intermediate values (i.e., linear with the energy). The dashed
line indicates ES DOS without the metal layer.

The three different frequencies are (1) ω1 is the cutoff fre-
quency of the EG-metal interaction [see Eq. (52)], (2) 2π/τs

is the diffusion cutoff. Environmental modes with higher
frequencies have a ballistic motion, and (3) 2π/τBL is the tun-
neling frequency, where τBL = r/vB is the Büttiker-Landauer
(BL) tunneling time [35], r is the hopping length, and v is
the imaginary velocity determined in the inverted potential
barrier. Environmental modes with higher frequencies than
the tunneling frequency respond adiabatically to the tunneling
electron and should not be included in the polaronic response.
Note that one can estimate the typical v to be associated with
tunneling barriers of the order of the disorder energy W [38].
It is argued in Refs. [36–38] that the typical disorder energy
is larger than the Fermi energy in the EG system, thus, v is
generally larger than the Fermi velocity.

The energies E in Eq. (55) are distributed according to
the DOS g(E ) of the electrons in the EG, described by the
Hamiltonian

H̃EG =
∑

i

εini + 1

2

∑
i �= j

e2

κ

⎛
⎝ 1

ri j
− 1√

r2
i j + 4d2

⎞
⎠nin j, (57)

where the interaction term is given in Eq. (27). H̃EG is obtained
from the Legendre transform of S̃EG given in Eq. (29). For the
screened Coulomb interaction given in Eq. (57) the DOS has
three distinct regions, as can be seen schematically in Fig. 2.

The crossover energy between the constant DOS, g(E ) =
g0, at high energies to the gapped ES DOS, g(E ) ∝ |E |, is
given by the width of the ES gap, i.e., E2 ≈ g0

(e2/κ )2

2/π
[3]. The

screening of the metal results in a second (lower) crossover
energy E1 to constant DOS g(0) ∝ e2/κd [16], up to loga-
rithmic accuracy. E1 ≈ (gd/g0)E2 is obtained similarly to the
approach used in Ref. [3].

To find the VRH exponent (p) in a given regime, we use
Mott’s method [2,17,25] which goes as follows: Assuming

the temperature is sufficiently lower than the characteristic
energy difference of two localized sites (E � T ) one can
approximate the conductance between two localized sites as
an exponential σ ∝ e−h(E ,r) where r is the hopping distance
and E serves as the effective hopping energy difference. After
representing E in terms of r, one defines the optimal hopping
distance r̃(T ) as the minimum point of h(E (r), r). r̃ is then
substituted back to the exponent which results in the known
VRH form given in Eq. (1). Repeating these steps for the
conductance in the presence of the polaronic effect [Eq. (45)],
we find numerically a small deviation from the r̃ obtained by
ES’s and Mott’s VRH (for localization lengths not too large,
ξ � d). Therefore, one can conclude that polaronic effect has
a small effect on the exponent p. This can be explained by
the fact that the coupling αr has logarithmic dependence on
r/d (for r > d) which is weaker than the r dependence of
E (r), i.e., E (r) ∝ 1/r for ES DOS [17] and E (r) ∝ 1/r2 for
constant DOS [2]. For r < d , the coupling α(r) is sufficiently
weak which also results in a small polaronic effect. Our nu-
merical evaluation is conducted only for the assisted hopping
process (E < 0), a process which serves as the bottleneck of
the conductance. Since the dynamical polaronic effect does
not affect appreciably the ES-Mott crossover we consider its
effects in the ES and Mott VRH regimes separately. In the ES
VRH we use the optimal hopping length given without taking
into account the polaronic effect rES [3,17,25]:

r̃(T ) = rES(T ) =
(π

2

)1/4
ξ

√
Uξ

2T
,

EES(T ) = E (rES(T )) =
(π

2

)1/4√
2Uξ T , (58)

where Uξ = e2/κξ and we used the relation EES(T ) =√
π
2

e2

κrES(T ) .
Mott’s and ES’s VRH arises from constant and gapped

DOS, respectively. Thus, the structure of the DOS as depicted
above gives rise to a Mott-ES-Mott crossover. We denote
these as the low- and high-temperature crossovers. The ES
VRH is given in the temperature range T1 < T < T3. The
low-temperature ES-Mott crossover is given by [16]

T1 = (Ud/75)(ξ/d ), (59)

with Ud = e2/κd . The high-temperature ES-Mott crossover is
given by [3,39]

T3 =
√

π3

2
(g0ξ

2)2U 3
ξ . (60)

For temperatures lower than T1, the constant DOS near Fermi
energy is larger than without the metal layer. This contributes
to the increase in the conductivity [16] and counteracts the
reduction caused by the polaronic effect. However, we con-
sider the intermediate, ES regime where the increase of the
DOS as a result of the screening is negligible. In this regime,
the polaronic effect is dominant at temperatures lower than T2

where the hopping length is comparable to d , i.e., rES(T2) = d
which gives T2 = 1

2

√
π
2 Ud

ξ

d . For temperatures higher than T2

we have rES(T ) < d; in this range the coupling αr is small
and decreases as r2 [see Eq. (53)]. Furthermore, a dominant
polaronic effect with respect to the static effect is obtained
for T2 > T1, which is in agreement with parameters of the
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T

0.1
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0.3

0.4

0.5
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0.9
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σ / σ0

ξ/d = 1/3

ξ/d = 1

ξ/d = 4
T[K]

FIG. 3. Polaronic reduction given by the ratio of the conductivity
in the presence of the metal plate [Eq. (45)] and the conductivity
in the absence of the metal plate [Eq. (46)], plotted as function of
temperature for kF l = 4, κ = 1 in Eq. (54) (see discussion in the last
paragraph of the section) and different values of ξ/d ( 1

3 , 1, and 4 for
upper, middle, and lower curves, respectively) where ξ is the local-
ization length and d is the EG-metal separation. The blank squares
are taken from experiment [40]. The ratio is calculated for ω̃ = 3 K,
d = 10 nm, ωD

c ≈ 1500 K (for Au layer) and κ = 3 for optimal
hopping length [Eq. (58)], values which are also compatible with the
estimated parameters in Ref. [8]. As expected, increasing the value
of ξ/d leads to a larger value of optimal hopping length [Eq. (58)]
and consequently to a larger polaronic reduction [Eq. (55)]. The
experimental data of Ref. [8] are two orders of magnitude smaller
than the data presented in squares, therefore, it is presented only in
logarithmic scale as indicated by circles in Fig. 4 below. Note that
σ includes only the dynamical effect of the metal plate. The static
effect of the metal plate, within the ES regime given in Eq. (61), is
small and therefore neglected.

experiment [8,40]. This range of temperatures is given by (for
T2 < T3)

1

75
<

T

Ud

d

ξ
�

( π

23

)1/2
, (61)

which is compatible with the experiment’s entire temperature
range [8,40] (for ξ � d). This is since the increase of the
DOS is small in dielectrics, unlike in the case of disordered
semiconductors where a total increase in the conductivity is
observed [9] for T < T1. We therefore assume henceforth that
within the regime given by Eq. (61), the static effect is small
and therefore neglected.

The polaronic reduction in the macroscopic conductivity
as a function of temperature is then given by substituting
Eq. (58) in the conductivities with and without the metal layer
[Eqs. (45) and (46), respectively]. The resulted ratio between
the conductivities with and without the metal as a function
of temperature is presented in Fig. 3 (for parameters compat-
ible with Ref. [8] see caption). As can be seen, the polaron
causes a reduction in the conductivity which becomes more
appreciable at low temperatures. The blank circles represent
the unpublished data [40]. Our results show an appreciable
reduction, yet a much weaker temperature dependence, com-
pared to the experimental data.

We note that our results have strong sensitivity to the
magnitude of the screening of the EG-metal interaction. Re-

4 10 50 100
T

1
0.5

0.1

0.02

0.002

σ/σ0

T[K]

FIG. 4. Log plot of the ratio of the conductivities with and with-
out the metal layer as a function of temperature. The experiments
are given by squares [40] with Au metal layer and circles [8] with
Ag metal layer. In both cases ωD

c = 1500 K, κ = 3, d = 10 nm and
ω̃ = 3 K. The solid lines are the theory given by the ratio of Eqs. (45)
and (46). The fit to squares is given with ξ/d = 0.22, with a fitting
multiplication factor to Eq. (53) of C

kF lκ2 = 2.3. The fit to circles with

ξ/d = 1.3, with fit parameter C
kF lκ2 = 2.

duction in the screening induces an increase in the effective
interaction, and with it a stronger polaron effect and stronger
reduction of the conductivity at low temperatures. In Fig. 4
we fit the experimental data allowing enlarged effective in-
teraction. This allows very good fits to experiments with
other parameter values being compatible with experimental
values. Investigating the origin of such an increase in the
effective interaction between the EG and the metallic layer
is beyond the scope of this paper. Yet, possible mechanisms
are scattering sources in the metal which effectively reduce
the screening or plasma modes which serve as an additional
source of dissipation.

As can be seen from Eqs. (53) and (55) the polaronic
effect is sensitive to the sample parameters such as scattering
length and dielectric constant. This is consistent with the large
differences in the conductivity observed for different samples
[8,40] (see also Fig. 4). Furthermore, an additional source
for the said differences in the samples can be disorder in
the EG layer. One can see that for larger disorder in the EG
layer (lower curve in Fig. 4), there is a stronger reduction in
the conductivity (caused by the presence of the metal layer).
This may originate from the screening within the EG layer,
allowed by its finite width, which decreases for larger disorder
and consequently increases the EG-metal interaction. Thus, a
larger disorder may allow for a stronger EG-metal interaction.

In the case where Mott VRH dominates the low-
temperature regime (i.e., for T3 ∼ T1), one should replace
Eq. (58) by the optimal hopping distance compatible with
constant DOS (g0). In this regime we find qualitatively similar
behavior as shown in Fig. 3 for the same temperature range.

Throughout the paper we neglected spatial variation and
frequency dependence of the dielectric constant (κ). Taking
such variations into account will have only a quantitative
effect on our results, which can be negated by making cor-
responding changes to other unknown parameters in the
system. In general, we note that for the dynamical (polaronic)
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FIG. 5. Ratio of the EG conductivity in the presence and in the
absence of a metal layer [Eqs. (45) and (46)] is plotted as function
of phonon temperature. The orange curve (upper solid curve) has the
same parameters as the orange curve plotted in Fig. 3 and describes
the situation of metallic plate having the same temperature as that of
phonons. To demonstrate the contribution of the metal electrons to
the phonon-assisted tunneling in the EG we plot the above ratio of
conductivities keeping the temperature of the metal constant at 2 K
represented by the solid black curve (lower solid curve) and at 20 K
(dashed black line).

response [given in Eq. (54)] we expect dielectric constant
values to be smaller than static dielectric constant values, in
accordance with fitting values chosen in our calculations.

C. Microscopic explanation of the polaronic reduction

In this paper we discuss the effect of the electrons in the
metallic plate on the phonon-assisted tunneling in the EG.
This is not the only effect of the metallic plate. As Eq. (3)
suggests, the electrons of the metallic plate can also assist hop-
ping in the EG by providing the thermal energy and can even
make hopping possible in absence of phonons. Our results
show that this is a subdominant effect as long as the tem-
peratures of the metallic plate and that of phonons are equal.
Thus, in total, the metallic plate causes an overall suppression
of the conductivity. In Fig. 5 we present a detailed analysis
attesting to the competing effect of the metal electrons on
the phonon-assisted tunneling in the EG. Keeping the metal
electrons at a constant low temperature (lower than the phonon
temperature in the whole relevant domain), one makes the
suppression by the metallic plate even stronger. However, if
the temperature of the metal electrons becomes higher than
that of the phonons, we find an enhanced conductance, in
accordance with the above picture.

Furthermore, comparing between the processes in which
the electronic and phononic environments assist the EG elec-
tron at the same temperature [i.e., comparing Pel(E < 0) and
ω̃−2|E |nph(|E |), respectively, see Eq. (45)], one can show that
for a given energy the electronic assistance is much smaller
than the phononic assistance. This can be explained by the
small ratio of the prefactors of each process: ω̃/ωD

c 
 1
[where ω̃ and ωD

c are defined in Eqs. (D6) and (56), respec-
tively]. Thus, we expect that for ω̃/ωD

c ∼ 1 the electronic
environment would give rise to an overall increase in the con-

ductance. One should note though that this condition might
not exist in real systems.

V. CONCLUSIONS

In this work we studied the polaronic effect on the con-
ductivity of a two-dimensional electron-glass system coupled
to phonons and in proximity to a metal layer. The metal
layer effectively screens the Coulomb interactions, and also
dresses the electron’s tunneling amplitude in the EG system.
The latter is also known as the polaronic effect. Using field-
theoretical approach we have derived an effective action for
the system and obtained an expression for the conductivity
to leading order in the dressed tunneling amplitude. Since
the disorder is the largest energy scale in the EG system
the approximated conductivity is valid for a wide range of
coupling strengths to the phonon and electron environments.
We further approximated the conductivity retaining only the
single-phonon process and found that the polaronic effect
causes, in a wide temperature regime, a reduction in the
VRH conductivity by up to an order of magnitude. The main
mechanism of the dynamical polaronic effect is that extra
activation energy must be provided by the phonon-assisted
tunneling process in the EG, thus reducing its probability. We
also found that the logarithmic dependence of the polaronic
reduction on distance does not change the exponent p in both
ES’s and Mott’s VRH regimes. Our results are in agreement
with the overall trend in experiment [8,40]. However, to ob-
tain good quantitative fit with experiment, we must assume
an effectively larger coupling constant. This may originate
from an additional contribution of plasma modes, dynamical
response of the insulator, or a reduced screening caused by
additional scattering mechanisms in the metal. Furthermore,
the conductivity varies greatly between different samples [40].
This can be the result of the polaronic effect being sensitive to
small changes in the mean-free path, dielectric constant, and
the effective screening of both layers.
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APPENDIX A: SOLUTION OF THE MEAN-FIELD
EQUATION

To solve the MF equation we expand the general-
ized propagator [Eq. (12)] in powers of ��0 [defined in
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Eq. (14)]:

2i
∑
k,ω

(GV,�0 )(k ω),(k+q ω+
)

= 2i
∑
k,ω

G0k+q,ω+


∑
n

〈k, ω|(G0i��̄0)n|k + q, ω + 
〉

≈ 2i
∑
k,ω

G0k+q,ω+
〈k, ω|
∑
k′, ω′
q′, 
′

G0k′ω′
(
i��0

q′,
′
)|k′, ω′〉

×〈k′ + q′, ω′ + 
′|k + q, ω + 
〉
= −2

∑
k,ω

G0kωG0k+q,ω+
 ��0
q,
 ≡ −�q
 ��0

q,
, (A1)

where in the last equality we used Eq. (17). The zeroth-order
contribution cancels because of electroneutrality. Substituting
Eq. (A1) in the MF equation [Eq. (13)] we get

0 = (
V (2)

q

)−1
�0

q
 − �q
��0
q,
. (A2)

Solving then for �0 we obtain Eq. (15).

APPENDIX B: GAUSSIAN CORRECTIONS TO MF
SOLUTION

Representing the action in terms of the deviation from the
saddle-point solution δ�, we get

S = SEG + St + 1

2

∑
q,


δ�̄q,


(
V (2)

q

)−1
δ�q,


− 1

2

∑
i, j,
,q

(1 − fq
)2
(
V (2)

q

)−1
V (1)∗

qi V (1)
q j n̄i,
n j,


+ i
∑
j,
,q

(1 − fq
)
(
V (2)

q

)−1
V (1)

q j n j,
δ�̄q,


− Tr ln
(−G−1

0 + i��0 + iδ�̄
)
, (B1)

where ��0 is given in Eq. (14).
The leading terms coming from the fluctuations around the

MF solution �0 can be found by expanding Eq. (B1) to second
order in δ�:

SFL = SEG + 1

2

∑
i, j,


K̃i j n̄i,
n j,
 + Tr

[∑
n�3

F n

n

]

− 1

2
Tr

[
(1 − F )−1G0δ�̄(1 − F )−1G0δ�̄

]
+ 1

2

∑

,q

δ�q,


(
V (2)

q

)−1
δ�q,
, (B2)

where F = iG0��̄0, and the constant Tr ln(−G−1
0 ) is disre-

garded [see discussion below Eq. (21)]. Note that given our
MF solution is approximate, a linear term should be finite,
however, since we consider (qTFd )−1 
 1 [see Eq. (16)] it
is neglected. Furthermore, from now on we keep track only
on corrections to the two-body terms of the EG degrees of
freedom, assuming that the three-body and higher terms are
negligible. This is typical in localized systems where the
disorder is larger than the average near-neighbor interactions.

Denoting the first line in Eq. (B2) as SMF [see Eq. (22)], and
integrating over δ� fields we obtain

SFL = SMF + Tr lnA , (B3)

with

Aqq′

′ = (
V (2)

q

)−1
δq,q′δ
,
′ − Mqq′ωω′ , (B4)

where

Mqq′

′ =
∑
n, m
k, ω

k1, ω1

G0k1ω1 G0k+q′,ω+
′

×(F n)kk1ωω1 (F m)k1+q,k+q′,ω1+
,ω+
′

≈ M (0)
qq′

′ + M (1)

qq′

′ + M (2)
qq′

′ . (B5)

Here, M (i) is the ith-order term:

M (0)
qq′

′ = �q
δqq′δ

′ ,

M (1)
qq′

′ =

∑
i,ω,k

G (1)
qq′

′ fq−q′,
−
′V (1)

q−q′,ini,
−
′ ,

M (2)
qq′

′ =

∑
i, j,k,ω

G (2)
qq′

′ fq1,
1 fq−q′−q1,
−
′−
1

×V (1)
q1,i

V (1)
q−q′−q1, jni,
1 n j,
−
′−
1

+
∑

i, j,k,ω

G (3)
qq′

′ fq+q1,
+
1 fq′+q1,
′+
1

×V (1)
q+q1,i

V (1)∗
q′+q1, jni,
+
1 n̄ j,
′+
1 , (B6)

with

G (1)
qq′

′ = (G0k+q′−q,ω+
′−
 + G0k+q,ω+
)

×G0kωG0k+q′,ω+
′ ,

G (2)
qq′

′ =

∑
q1,
1

(G0k+q−q1,ω+
−
1 + G0k+q′−q,ω+
′−
)

×G0kωG0k+q′,ω+
′G0k−q1,ω−
1 ,

G (3)
qq′

′ =

∑
q1,
1

G0kωG0k+q′,ω+
′G0k+q,ω+
G0k−k1,ω−
1 .

(B7)

Substituting Eqs. (B4) and (B5) back into Eq. (B3) we find

δS = SFL − SMF ≈ Tr ln[
(
V (2)RPA

)−1 − M (1) − M (2)], (B8)

where we denote the corrections to the MF action as δS .
Further expanding Eq. (B8) to order Tr(F 2) we obtain

δS ≈ −Tr ln(V (2)RPA) −
∑

,q

V (2)RPA
q
 M (2)

q


− 1

2

∑

,q,
′,q′

(
V (2)RPA

q


)2
M (1)

qq′

′M
(1)
q′q
′
 , (B9)

where V (2)RPA
q
 = fq
V (2)

q is the screened interaction in the
metal layer in the RPA approximation. Comparing the gen-
eral form of the correction terms to the kernel obtained from
the MF (zeroth-order) contribution, one can see that the first
and second corrections in Eq. (B9) go as ∼G4 f 3V (2)(V (1) )2,
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∼G6 f 4(V (2) )2(V (1) )2, respectively, while the MF kernel
is K̃ ∼ G2 f (V (1) )2. Since we consider the regime where
1/qTFd 
 1 we can roughly approximate fq � 1/qTFd [see
Eq. (19)], therefore, the MF term (which has the smallest
power in f ) is larger than the fluctuation corrections. Further-
more, as can be seen from Eq. (B6), the M (1) and M (2) terms
involve high-order correlations of the free-electron propagator
G0. Roughly speaking, a larger correlation means integra-
tion over effectively smaller phase space than less correlated
terms, such as the RPA.

APPENDIX C: GENERATING FUNCTIONAL AND THE
CONDUCTIVITY

In order to obtain the matrix of conductances σi j we define
a generating functional by adding a source term to the effec-
tive action [given in Eq. (29)] as SU = i

∫ 1
0 dτ

∑
i Ui(τ )ni(τ )

where Ui(τ ) is the classical external potential field at site
i in the EG system. Performing a gauge transformation to
eliminate SU amounts to a shift of the gauge field given in
Eq. (29), �i j (τ ) → �i j (τ ) + χi j (τ ):

Seff[χ ] = S̃EG +
∫ 1

0
dτ

∑
i �= j

c̄i(τ )t̃i je
iχi j (τ )c j (τ )

+ 1

2

∫ 1

0

∫ 1

0
dτ dτ ′ ∑

i, j

φi(τ )(K ′)−1
i j (τ − τ ′)φ j (τ

′),

(C1)

where χi j = χi − χ j and χi(τ ) = ∫ τ

0 dτ ′ Ui(τ ′). Starting from
the current,

〈Ii(τ )[χ ]〉 = i
δ

δχi(τ )
lnZ[χ ]

=
∑
j( �=i)

〈[c̄i(τ )t̃i je
iχi jτ c j (τ ) − c̄ j (τ )t̃∗

i je
−iχi jτ ci(τ )]〉,

(C2)

and expanding to linear order in U we get

〈Ii
[χ ]〉 ≈ − 1




∑
j

CI
i j
Uj,
, (C3)

where CI
i j
 = ∫ 1

0 dτ ei
τCI
i j (τ ) is the response function de-

fined by the generating functional Z[χ ]:

CI
i j (τ − τ ′) = 1

Z
δ2

δχ j (τ ′)δχi(τ )
Z[χ ]|χ=0. (C4)

Here, the average is defined as

〈O〉 = 1

Z[χ ]

∫
D[c̄, c, φ]Oe−Seff[χ], (C5)

where O is some functional operator and the generating func-
tional is

Z[χ ] =
∫

D[c̄, c, φ]e−Seff[χ], (C6)

where Seff[χ ] is defined in Eq. (C1). Performing then the
variational derivatives in Eq. (C4) gives Eq. (31).

The DC conductance between sites i and j is obtained by
the following steps: (1) we calculate the response function
CI

i j
 according to Eq. (C4), (2) expand CI
i j
 to leading order

in the dressed tunneling amplitude, (3) perform the analytical
continuation to real time and then to real frequency, (4) take
the static limit, and (5) represent Eq. (C3) in terms of potential
drop between sites i and j, Ui j . The DC conductance matrix
σi j is then defined as follows:

〈Ii〉 ≈ − lim
ω→0

i

βω

[∑
j

CI
i j
Uj,


]∣∣∣∣∣

→−iβω+δ

= − lim
ω→0

i

βω

∑
j

CI
i jωUj,ω =

∑
j

σi jUi j . (C7)

The analytical continuation to real time (frequency ω) of
Eq. (C4) is implemented by the prescription given in Ref. [24].
The last equality in Eq. (C7) is the definition of the conduc-
tance matrix [7,25]; this form is obtained by substituting the
expression given in Eq. (33) for the response function CI

i jω.

APPENDIX D: CORRELATION FUNCTION OF THE
GAUGE FIELD

Using Eqs. (26) and (29) we calculate the correlation func-
tion of the gauge field �i j with respect to the free action of
the potential field φ:

Ji j (τ ) = 〈�i j (τ )�i j (0)〉0φ − 〈�i j (0)2〉0φ

=
∑

 �=0

e−i
τ − 1


2
(K ′

ii
 + K ′
j j
 − K ′

i j
 − K ′
ji
)

≡ Jel
i j (τ ) + J ph

i j (τ ), (D1)

where Jel
i j (τ ), Jph

i j (τ ) are, respectively, the e-h and phonon
contributions which are given by

Jel
i j (τ ) = 4

∑
k, q


 �= 0

(
V (1)

qi j

)2
fq0 fq


e−i
τ − 1

(i
)2
(�q
 − �q0),

Jph(τ ) = 4
∑

q, 
 �= 0

|gq|2 e−i
τ − 1

ωq
(
ω2

q + 
2
) , (D2)

with V (1)
qi j = V (1)

q sin ( qri j

2 ) and �q
 given in Eq. (17). For the
phonon correlation function we take the limit qri j � 1 which
gives sin2 ( qri j

2 ) ≈ 1
2 . This is valid for ri j/ξ � 1 where ξ is

the localization length [18,25]. This is since the ri j-dependent
term of the phonon-mediated interaction is short ranged and
decays sufficiently fast for the typical near-neighbor distance.
Since our main interest is the polaron induced by the metal
layer we keep the distance dependence of the e-h correlation
function Jel. To perform the summation over 
 in Eq. (D2) we
represent it as an integral over the complex frequency plane
with a contour that excludes the poles of the integrand and also
the point 
 = 0. The exclusion of 
 = 0 gives an additional
residue at the point 
 = 0 in Jel (and Jph), which turns out
to have exactly zero value. Performing the summation over

 in Eq. (D2) and introducing the e-h and phonon spectral
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functions [Sel(ω), Sph(ω), respectively] we obtain

Jel
i j (τ ) =

∫ ∞

0

dω

ω2
Sel

i j (ω)F (ω, τ ),

Jph(τ ) =
∫ ∞

0

dω

ω2
Sph(ω)F (ω, τ ), (D3)

where

F (ω, τ ) = coth

(
βω

2

)
[cosh(ωτ ) − 1] − sinh(ωτ ). (D4)

As usual, the phonon spectral function in the deformation
potential approximation is superOhmic [18]:

Sph(ω) ≡
∑

q

|gq|2δ(ω − ωq) ≈ ωs

ω̃s−1
�

(
ωph

c − ω
)
, (D5)

where s is the spatial dimension. For s = 3,

ω̃2 = 2π h̄3ρc5

3γ 2
, (D6)

c is speed of sound, ρ is the mass density, and γ is the
deformation potential averaged over the transverse and lon-
gitudinal directions. Furthermore, the form factor of the el-ph
interaction has a power-law cutoff [1 + (ω/ω

ph
c )2]−3 with the

cutoff frequency ω
ph
c = 2c/ξ [18]. Since we are interested in

the low-energy behavior we approximate the phonon form
factor with a step cutoff.

The e-h spectral function is given by the imaginary part of
the retarded electronic kernel Kel [given in Eq. (23)]. Using
Eq. (D2) and the definition in Eq. (D3) we obtain

Sel
i j (ω)

≡ − 1

π
lim
η→0

Im

[
4

∑
q

(
V (1)

qi j

)2
fq0 fq,ω+iη(�q,ω+iη − �q0)

]

= − 4

π
lim
η→0

| fq,ω+iη|2
(
V (1)

qi j

)2
Im[�q,ω+iη]

= 4
∑
k,q

(
lim
η→0

| fq,ω+iη|2
)(

V (1)
qi j

)2
Nk+q,kδ(ω − Ek,k+q )

≈ 1

4πκ2

1

kF d
ωGi j (ω/ωc), (D7)

where we perform the analytical continuation of the metal’s
kernel Kel

i j
 → Kel
i j,ω+iη, Nk+q,k is defined below Eq. (47), and

we used the long-wavelength limit [Eq. (20)]. The form factor
is

Gi j (x1) =
∫ ∞

0
dx

e−2
√

x2+x2
1√

x2 + x2
1

[
1 − J0

(√
x2 + x2

1 Ri j
)]

, (D8)

where x = qd , Ri j = ri j/d , J0 is the Bessel function, x1 =
ω/ωc with the cutoff frequency ωc = 2EF /kF d , and the in-
equality (qTFd ) � 1 is used. As can be deduced from Eq. (16),
the factor fqω diverges at the plasma frequency. Thus, in the
approximation given in Eq. (D7) we assume that the plasma
modes do not overlap with the e-h modes and, therefore,
we approximate fq,ω+iη as constant in the relevant regime
(0 < q < 1/d), i.e., we set limη→0 | fq,ω+iη|2 ≈ | fq,ω|2 ≈ f 2

q,0.
The low-frequency behavior of the e-h spectral function is

valid for

x1Ri j = ω

ωc

ri j

d

 1, (D9)

which gives an Ohmic spectral function in the zeroth order
(x1 = 0). Together with an approximated exponential cutoff
[see Eq. (D8) for x1 > 1 values] we can approximate a simple
form for the spectral function:

Sel
i j (ω) ≈ αi jωe−ω/ωc . (D10)

The resulted dimensionless coupling constant is

αi j ≈ 1

4πκ2

1

kF d
Gi j (0), (D11)

where

Gi j (0) = ln

[
1

2
+ 1

2

√
1 +

( ri j

2d

)2
]
. (D12)

The correlation functions of the e-h and phonon baths do
not include the static contribution by definition [see Eq. (D1)],
i.e., Jel/ph(τ = 0) = 0. The static contribution is known as the
Debye-Waller exponent which takes the form

W =
∫ ∞

0

dω

ω2
S(ω) coth

(
βω

2

)
. (D13)

For an Ohmic bath, S(ω) ∝ ω, W has an infrared divergence
which is responsible for the overall convergence of Jel(τ ).
However, for the superOhmic phonon bath S(ω) ∝ ωs with
s > 2, W has a finite value as in the case of phonons in three
dimensions.
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