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Interplay of mass imbalance and frustration in correlated band insulators
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We report the emergence or broadening of exotic magnetic metallic phases upon explicit breaking of SU (2)
symmetry by introduction of mass imbalance in a variant of Hubbard model, known as the ionic Hubbard model
in the presence of frustration at half filling on a square lattice. The ionic Hubbard model has in addition to
hopping (∼t) and onsite Coulomb repulsion (∼U ), a staggered ionic potential (∼�) which breaks translational
symmetry of the underlying lattice. In the low to intermediate ranges of U and �, we use unrestricted
Hartree-Fock theory to construct the phase diagram in the U − � plane for a fixed mass imbalance (∼η).
Where as in the limit where both U, � are comparable and much larger than the first (∼ tσ ) and second
(∼ t ′

σ ) neighbor hopping amplitudes, we employ the technique of generalized Gutzwiller approximation and
subsequently use renormalized mean field theory to construct the phase diagram for varying values of hopping
asymmetry. In both cases, starting from a correlated band insulator with weak antiferromagnetic spin density
wave order, if we tune U/�, we observe the opening of novel magnetically ordered metallic phases such as spin
imbalanced ferromagnetic metal, ferrimagnetic metal, and antiferromagnetic half metal. We also study singlet
superconductivity in the d-wave and extended s-wave channels in the strong coupling limit of this model in the
presence of mass imbalance.
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I. INTRODUCTION

Many condensed matter systems show rich phenomenol-
ogy like high Tc superconductivity, Mott insulating properties,
spin liquid behavior, etc. An idealistic model which accounts
for these phenomena in at least a qualitative way is the
Hubbard model (HM) [1]. In principle, the HM captures
many nontrivial physical phenomena which are also found
in realistic complicated systems which belong to the same
“Universality class”. An interesting variant of the Hubbard
model is the ionic Hubbard model (IHM) which has an on-
site Coulomb interaction term (∼U ) and a staggered ionic
potential term (∼�) applied to itinerant electrons. The IHM
has been studied extensively in the past using dynamical
mean field theory (DMFT) [2–10], determinantal quantum
Monte Carlo (DQMC) [11,12], cluster DMFT [13], density
matrix renormalization group (DMRG) [14], coherent poten-
tial approximation [15], and renormalized mean field theory
(RMFT) [16–18]. While U prefers single occupancies on
sites, � prefers a staggered charge density ordering. The
competition between these insulating tendencies can give rise
to interesting metallic, half-metallic, bond-ordered, or super-
conducting phases [3,4,6,11–13,15,18].

An interesting question to ask is what will happen if we
introduce hopping asymmetry in the IHM. Introducing mass
imbalanced ultracold fermionic species like 6Li, 40K on an
optical lattice and tuning interspecies Coulomb interaction
via magnetic Feshbach resonance can provide us an ideal
platform for investigation in this direction. Moreover, the
staggered ionic potential can be created by interference of
counterpropagating laser beams. Indeed, IHM was experi-
mentally realized on an optical honeycomb lattice but using

single species ultracold fermionic atoms [19]. A state depen-
dent optical lattice was realized for 40K fermionic atoms by
using magnetic field gradient modulated in time which tuned
the relative amplitude and sign of the hopping depending
on the internal spin state [20]. This allows for the investi-
gation of effective mass imbalanced physics by using only
single species fermionic atoms. Some experimental studies
have also been reported where mass imbalanced Fermi-Fermi
atomic mixtures have been successfully realized [21–26].
Also, mass imbalanced fermionic species have been stud-
ied theoretically in different contexts including superfluidity,
Mott transition, etc. [27–44]. Further, effective mass imbal-
ance can also be achieved in solid-state systems having bands
of varying bandwidths which can show orbital selective Mott
transition [45–49]. Moreover, mass imbalance is tunable in
optical lattices by changing the lattice depth of the optical
trap. In fact, the lattice depth and hence the hopping amplitude
can be different for same species components in different
hyperfine levels without mass imbalance [50].

We now look into the aspect of frustration in the context
of IHM. Often, strong quantum fluctuations make a critical
phase unstable or metastable. These phases can be stabilized
by introducing frustration in the system [51]. Frustration can
be geometric in nature or can be due to the introduction of
next nearest neighbor hopping (for, e.g., on a square lattice).
Two recent studies [10,18] exploit this property of frustration
in IHM for stabilizing intermediate phases. In Ref. [10], IHM
is solved with finite second neighbor hopping at half filling on
a square lattice using DMFT with CTQMC impurity solver
and Hartree Fock mean field theory where the authors find
correlation induced paramagnetic (PM) metallic, ferrimag-
netic metallic and antiferromagnetic (AF) half metallic phases
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starting from a band insulator. The correlation induced metal-
lic phase was observed earlier in a DMFT study [3] (with first
neighbor hopping) in the PM sector at half filling. However,
when AF order was allowed, instead of an intervening metallic
phase, a direct transition from band insulator to AF insulator
was observed [5,13]. The other work [18], co-authored by us,
shows unconventional superconductivity at half filling in the
IHM with first (∼t) and second (∼t ′) neighbor hoppings on
a square lattice in the regime where U ∼ � � t, t ′ using a
generalization of projected wave functions method.

In this paper, we study the interplay between mass imbal-
ance and frustration in the IHM at half filling on a square
lattice. Specifically, we study the model for low to interme-
diate values of U,� using unrestricted Hartree-Fock theory
and in the limit U ∼ � � tσ , t ′

σ we use a generalization of
Gutzwiller approximation [52–54] following which renormal-
ized mean field theory is used to develop the phase diagram.
The IHM was studied with mass imbalance in the presence
of nearest neighbor hopping featuring a weakly first order
transition from a predominantly density modulated phase to
a predominantly spin alternating phase [55]. For all U � 0,
period 2 charge modulation and alternating spin density was
found to coexist. However with second neighbor hopping, we
observe exotic metallic phases which are symmetry broken
and have potential applications in the field of spintronics [56].
The ferrimagnetic metallic phase, earlier observed in the mass
balanced frustrated IHM in a relatively narrow regime of the
phase space [10], is broadened significantly in the presence
of mass imbalance. Further, we also find AF half metallic
phases in both the limits studied. Especially in the strong
coupling limit we find both types of spin polarized AF half
metals which can be switched by tuning U/�. However, the
most interesting and novel phase that we find is that of a spin
imbalanced ferromagnetic metallic phase where the spins on
alternate sites are oriented in the same direction but differ
in magnitude between sublattices, similar to ferrimagnetic
phase where the spins on different sublattices are oriented
opposite to each other but with different magnitude. Accord-
ing to Stoner criteria [57,58], ferromagnetism can arise if
UD(εF ) > 1 where U is the Coulomb interaction and D(εF )
is the density of states at the Fermi level for noninteract-
ing electrons. Further, according to Nagaoka [57,58], in the
U → ∞ limit the HM admits a ferromagnetic ground state
in the presence of exactly one hole in the system. Also,
the system can show flat band ferromagnetism [57,58] if a
dispersionless band exists at the bottom of the spectra. Both
Nagaoka and flat band ferromagnetism occur when U/�E →
∞, �E being the noninteracting bandwidth, either because
U/t → ∞ or the relevant band is flat. The existence of fer-
romagnetism at finite values of U/�E was first addressed by
Tasaki [57,58] who showed ferromagnetism can be stabilized
at nonsingular values by ring exchange mechanism where
triangular plaquettes connecting sites through nonzero hop-
ping is essential. This indicates the necessity of introducing
frustration in the system for stabilizing ferromagnetic phases
by killing AF order. Also since mass imbalance effectively
reduces the bandwidth of the heavier species creating almost
flat bands, the divergence of density of states at the Fermi level
is expected to create metallic ferromagnetism in the system.
Experimentally, itinerant ferromagnetism has been observed

in Fermi gases of ultracold atoms which are in two different
pseudospin levels [59]. Subsequently, theoretically a mass
imbalanced Fermi gas with repulsive interactions was used
to study the observed ferromagnetism [60]. Mass imbalance
provided a clearer signature of ferromagnetic phase. Also, the
correlated states of moire lattices which appear at commensu-
rate fillings can be ferromagnetic due to the presence of quasi
flat bands in the system [61]. The modulation in the magni-
tude of neighboring spins in the observed spin imbalanced
ferromagnetism can be compared to mixed spin ferromagnets
which have been studied in the past [62].

There also arises a possibility of superconductivity (SC)
co-existing with magnetic order in this model in the U ∼
� � tσ , t ′

σ limit. We observe a metastable singlet d-wave
or extended s-wave SC phase in the presence of mass
imbalance which may become partly stable and continue co-
existing with weak magnetic order for low values of mass
imbalance. However, an interesting inhomogeneous Fulde-
Ferrell-Larkin-Ovchinnikov (FFLO) state [28,41,44,63–65]
may become a favored ground state and can arise espe-
cially because of high Zeeman field owing to large uniform
magnetization admitted by the system at high values of
mass imbalance. Other superfluid phases like breached pair
state [66] or Sarma phase [30,67] can also arise in this system.

The paper is organized as follows. In Sec. II, we discuss
our results for low to intermediate values of U,� using unre-
stricted Hartee-Fock theory. In Sec. III, we briefly discuss the
limit U � �, tσ , t ′

σ qualitatively. Next in Sec. IV, we discuss
our results for the limit U,� � tσ , t ′

σ in details. Lastly, in
Sec. V we conclude.

II. HARTREE-FOCK THEORY

We first solve the mass imbalanced IHM with frustration
in the limit of low to intermediate values of correlation and
onsite ionic potential using unrestricted Hartree-Fock (HF)
theory. The mass imbalanced IHM is described by the follow-
ing Hamiltonian,

H = −
∑
i, jσ

(ti jσ c†
iσ c jσ + H.c.) − μ

∑
i

ni

− �

2

∑
i∈A

ni + �

2

∑
i∈B

ni + U
∑

i

ni↑ni↓, (1)

where ti jσ = tσ is the hopping amplitude connecting i, j sites
which are nearest neighbors while ti jσ = t ′

σ is the hopping
amplitude connecting i, j sites which are next nearest neigh-
bors. ti jσ = 0 for farther neighbor bonds. Here, U is the
onsite Coulomb repulsion and −�/2 is the ionic potential
on the A sublattice whereas �/2 is the ionic potential on
the B sublattice. μ is the chemical potential which fixes the
average density to be unity. We define the hopping asymmetry
parameter, η = M↑/M↓ = t↓/t↑ = t ′

↓/t ′
↑, which is defined as

the ratio of the down-spin and up-spin nearest or next-nearest
neighbor hopping amplitudes and is inversely related to the
mass of the fermionic species carrying up and down pseu-
dospins. Asymmetry in hopping amplitudes arise because the
heavier mass fermion moves slower as compared to the lighter
mass fermion. In the HF analysis, we consider t↓ = 1 and
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FIG. 1. (a) and (b) show staggered magnetization ms and uniform
magnetization mf as a function of � for different values of U for η =
2. The nature of ms changes above a threshold value of U ∼ 1.8t↓ in
the sense that at � = 0, nonzero ms develops only for U > 1.8t↓.
mf is nonzero over a range of � for U � 1.8t↓ which indicates the
coexistence of ms and mf both for these parameter values, and hence
there can be a spin imbalanced ferromagnetic and/or ferrimagnetic
phase. (c) and (d) show density of states at the Fermi level, ρ(ω ∼
0) for U = 0.6t↓ and U = 3.2t↓, respectively. (c) tells us that the
spin imbalanced ferromagnetic and/or ferrimagnetic phase is metallic
and also there exists a down-spin polarized AF half-metallic phase.
(d) tells us that between two insulating phases there is a broad phase
of down-spin polarized AF half metal.

t↑ = 0.5t↓. Similarly, t ′
↓ = 0.3t↓ and t ′

↑ = 0.15t↓, such that
η = 2, unless otherwise mentioned.

Within HF theory we decompose the Coulomb term keep-
ing nonzero expectation values for spin resolved densities,
nασ where α ∈ A, B, which we solve self-consistently. The
details of the calculation are given in Appendix A. From nασ ,
we construct linear combinations which are defined as the
staggered magnetization, ms = (mA − mB)/2, and the uniform
magnetization, m f = (mA + mB)/2, where mα = nα↑ − nα↓ is
the sublattice magnetization. We also calculate density dif-
ference between two sublattices, δ = (nA − nB)/2, which is a
positive quantity since the A sublattice prefers higher particle
density than the B sublattice owing to the potential energy
wells at A and hills at B.

In Fig. 1, we show staggered magnetization ms and uniform
magnetization m f as a function of ionic potential � for a wide
range of U values. For values of U � 1.8t↓, at � = 0 (asym-
metric HM), ms = 0. Increasing U further makes ms nonzero
at � = 0. We see that with increase in U , ms increases in
general and remains nonzero throughout the parameter space
because of the explicit breaking of SU (2) symmetry. m f exists
for U � 1.8t↓ over a range of � and it increases with increase
in U before going to zero for higher U values. It is to be
noted that there is a significant enhancement in the value of
m f in the mass imbalanced case as compared to the case
of mass balanced frustrated IHM [10]. For these parameter
values, ms and m f coexist giving rise to a spin imbalanced
ferromagnetic and/or ferrimagnetic phase where spins align
parallel/antiparallel to each other on alternate sites but with

FIG. 2. (a) and (c) give the plot of individual sublattice mag-
netizations for U = 0.6t↓ and U = 3.2t↓, respectively. From (a) we
find that there is a region of parameter space for which mA, mB > 0
but mA 
= mB (apart from � = 0 where mA = mB). Thus, in general
this phase is a spin-imbalanced ferromagnetic phase. There is also
a regime of � where mA > 0, mB < 0 and mA 
= |mB|. This is a
ferrimagnetic phase and as shown earlier both phases are metallic
in nature. For U = 3.2t↓ such phases are absent. (b) and (d) give
the spin resolved densities nασ as a function of �. It shows that
magnetic order mα = (nα↑ − nα↓) exists for all parameter values
and also nA � nB signifying positive density difference between the
sublattices.

unequal magnitudes. The exact nature of the phase is dis-
cussed following Fig. 2. The single particle density of states
is defined as ρσ (ω) = −1/2

∑
k,α ImGασ (k, ω+)/π , where

Gασ (k, ω) is the spin resolved single particle Green’s function
for α ∈ A, B sublattice. Panels (c) and (d) show the single
particle density of states at the Fermi level ρ(ω ∼ 0) as a
function of � for U = 0.6t↓ and U = 3.2t↓, respectively. We
find that the spin imbalanced ferromagnetic and/or ferrimag-
netic phase is metallic having finite density of states in both
spin channels such that ρ↑(ω ∼ 0) 
= ρ↓(ω ∼ 0). For U =
0.6t↓, the spin imbalanced ferro/ferrimagnetic phase leads to
a down-spin polarized AF half-metallic phase before it goes
to an insulating phase upon increasing �. For U = 3.2t↓, the
broad down-spin polarized AF half-metallic phase is bounded
by insulating phases on both sides. It is understandable that
due to the heavier up-spin species and mobile down-spin
species, the AF half-metallic phases are down-spin polarized.
For higher values of U , the constant plateau regions at low and
high values of � in the ms curves indicates insulating phases.

Figure 2 shows the plots of sublattice magnetization
mα and the spin resolved densities nασ for U = 0.6t↓ and
U = 3.2t↓. For U = 0.6t↓, mA, mB > 0 but mA 
= mB (at
� = 0, mA = mB) for a range of � which means this
is a spin imbalanced ferromagnetic phase. This phase is
unique to the mass imbalanced case and has not been
observed in the mass balanced frustrated IHM. In Fig. 8
of Appendix C, the difference of the spin resolved density
of states for both sublattices tells us about the relative
magnitude of the sublattice magnetizations in the spin
imbalanced ferromagnetic phase. The spin imbalanced
ferromagnetic phase leads to a regime where mA > 0, mB < 0
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but mA 
= |mB|. This is basically a ferrimagnetic phase. Both
these phases are metallic in nature as discussed earlier.
Beyond the ferrimagnetic metallic phase, mA = −mB such
that m f = 0 and the phase is insulating. For U = 3.2t↓,
mA = −mB for the entire parameter space. If we now
look at the spin resolved densities for U = 0.6t↓, we
find that at � = 0, nAσ = nBσ which makes δ = 0 in
contrast to the U = 3.2t↓ case where we find δ 
= 0 even
at zero ionicity. This is purely a mass imbalance effect
which can be seen from the self-consistent equation

of δ = −1/N2 ∑
k,σ �̃σ /

√
�̃2

σ + 4t2
σ (cos(kx ) + cos(ky))2,

where �̃σ = U (δ − σms)/2 is the effective ionic potential
that the system feels for � = 0. This equation is valid in the
insulating phase for larger values of U at zero ionicity. We
see that the asymmetry in the hopping parameter is the reason
behind a weak density difference at � = 0 for larger values
of U . Figure 9 in Appendix C shows the density difference
between the sublattices for different η values. We also see that
nA � nB for all parameter values which means due to potential
wells at A sites, particle density is more on the A sublattice
than on the B sublattice. We now comment about the nature
of insulating phases. It is seen that both charge order and spin
order exist for the insulating phases which is specific for the
mass imbalanced case. However, when � is low, the gap in
the spectrum is predominantly due to spin order in the system
whereas when � is high the gap is predominantly due to
charge order prevailing in the system. We call the insulating
phase at low values of �, an AF insulating phase (though it
has weak charge modulation), and the insulating phase at high
values of �, a correlated band insulator with weak AF spin
density wave (SDW) order. Also, we observe from the plot of
spin resolved densities that the probability of occupancy of
the up-spin species on the A sublattice is more compared to
the down-spin species which is reversed for the B sublattice
in most of the parameter space. This is particularly striking
in the higher ionicity region where spontaneously induced
magnetization does not exist and magnetization is mass
imbalance induced. This is because the heavier mass up-spin
species prefers to sit at the potential wells as compared to the
lighter mass down-spin species.

The phase diagram in the U − � plane is shown in
Fig. 3 for η = 2. When � = 0, the asymmetric HM shows
a metal-insulator transition from a ferromagnetic metal-
lic phase to AF insulating phase with increasing U . For
U = 0, the system again shows a metal-insulator transition
with increasing �. This noninteracting limit is exactly solv-
able with eigenenergies, λ1,2

kσ
= −μ − 4t ′

σ cos(kx ) cos(ky) ∓√
4t2

σ (cos(kx ) + cos(ky))2 + �2/4. The conduction band min-
ima occurs at (kx, ky) = (±π/2,±π/2) with λ2,min

σ = �/2
for bands of both spin polarity, whereas the valence band max-
ima occur at (kx, ky) = (0,±π ), (±π, 0) with λ1,max

σ = 4t ′
σ −

�/2. Approaching from the band insulating side, the band
gap between the bands of down-spin species closes first at
� = 1.2t↓ (taking t ′

↓ = 0.3t↓) where there is a metal-insulator
transition. But since the conduction band minima corresponds
to �/2 for both spin polarity bands, for � � 1.2t↓, the con-
duction band of the up-spin species also crosses the Fermi
level. Therefore both spin species show metallicity simulta-
neously at half filling, and we get a ferrimagnetic metallic

FIG. 3. Figure shows phase diagram constructed using unre-
stricted HF theory for η = 2 in the U − � plane. Between the AF
insulating phase and the band insulator phase with weak AF SDW
order, there is a broad range of magnetically ordered metals like spin
imbalanced ferromagnetic metal, ferrimagnetic metal, and AF half
metal.

phase. On further lowering of �, we get a spin imbalanced
ferromagnetic phase. When U,� are both nonzero, we get a
broad intermediate range of SU (2) symmetry broken metals
consisting of an AF half metal, a novel spin imbalanced ferro-
magnetic metal which is unique to the mass imbalanced case,
and a significantly broader range of ferrimagnetic metal than
observed in an earlier study of frustrated IHM without mass
imbalance [10] between two insulating phases.

Density of states and momentum distribution functions for
different phases used for determining the above phase diagram
have been discussed in Appendix C. Further, Fig. 11 of Ap-
pendix C shows the phase diagram for the cubic lattice for
the same parameter values as that of the square lattice in the
U − � plane. As evident, features of the phase diagram are
dimensionality independent and universal. In the following
sections we will discuss other limits of this model in detail.

III. U � �, tσ, t ′
σ LIMIT

In the limit U � �, tσ , t ′
σ , double occupancies are en-

ergetically expensive on both A and B sublattices and
should be eliminated from the low energy Hilbert space.
For this, we do a similarity transformation, Heff = e−iSHeiS ,
where S= − i

U

∑
α∈A,B(H+

t ′ α→α
−H−

t ′ α→α
) − i

U+�
(H+

t A→B −
H−

t B→A) − i
U−�

(H+
t B→A − H−

t A→B). H+
t/t ′ represent hopping

processes which increase the number of double occupancies
and holes by one and H−

t/t ′ represent hopping processes which
decrease the number of double occupancies and holes by one.
The effective low energy Hamiltonian at half filling in this
limit is given by

H =
∑
〈i j〉

4t↑t↓U

U 2 − �2

(
Sx

iASx
jB + Sy

iASy
jB

) + 2U (t2
↑ + t2

↓ )

U 2 − �2

×
(

Sz
iASz

jB − 1

4

)
+

∑
i

4�(t2
↑ − t2

↓ )

U 2 − �2

(
Sz

iA − Sz
jB

)
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+
∑
〈〈i j〉〉,

α ∈ A, B

4t ′
↑t ′

↓
U

(
Sx

iαSx
jα + Sy

iαSy
jα

) + 2(t ′2
↑ + t ′2

↓)

U

×
(

Sz
iαSz

jα − 1

4

)
. (2)

Here, the kinetic energy term is completely projected out
due to the half-filling constraint which means even holes are
not allowed in the low energy Hilbert space in addition to
doublons. There exist two competing asymmetric Heisenberg
terms on the nearest neighbor and next nearest neighbor bonds
which try to create singlet pairs on the nearest or next nearest
neighbor bonds, respectively. In addition to these, there is a
purely mass imbalance induced staggered magnetic field term
which is ∝ (t2

↑ − t2
↓ ). Due to the singly occupied frozen state

in this limit, no metallic phases are possible. We now look at
a more interesting limit which admits metallic phases in the
following section.

IV. U ∼ � � tσ, t ′
σ LIMIT

The limit U ∼ � � tσ , t ′
σ is interesting in the sense that

even in this strongly correlated limit finite nearest and next
nearest neighbor hoppings survive in the system at half
filling. Even though large U and � independently promote

insulating tendencies, e.g., the Mott insulator and the band
insulator, respectively, when they are simultaneously present,
they compete with each other and can open up a plethora
of charge dynamical phases with the help of low energy
hoppings. In this limit at half filling, holes are energetically
expensive on the A sublattice where the ionic potential is
−�/2 and doublons are expensive on the B sublattice where
the ionic potential is �/2. We do a similarity transformation,
Heff = e−iSHeiS , which does a site selective projection
of doublons or holes. The similarity operator in this case
is S = − i

U

∑
α∈A,B(H+

t ′ α→α
− H−

t ′ α→α
) − i

U+�
(H+

t A→B −
H−

t B→A) − i
�

(H0
t A→B − H0

t B→A). H0
t are hopping processes

which do not change the number of double occupancies or
holes in the system. Interestingly, the low energy Hilbert space
allows hopping processes H+

t B→A and its conjugate process
H−

t A→B where we can create a doublon on the A sublattice
and a hole on the B sublattice from single occupancies
and vice versa. The low energy effective Hamiltonian is
separated as H0 the unperturbed part of the Hamiltonian
which is basically the energy of the doublons on the A
sublattice and holes on the B sublattice, Hhopp the kinetic
energy terms, Hd the dimer terms, and Htr the trimer terms.
All these terms are in the projected space where holes are
not allowed on the A sublattice and doublons are not allowed
on the B sublattice represented by the projection operator,
P = ∏

i, j (1 − (1 − niA↑)(1 − niA↓))(1 − n jB↑n jB↓).

H0 =
∑

i

U − �

2
[niA↑niA↓ + (1 − niB↑)(1 − niB↓)] (3)

Hhopp = −
∑
〈i j〉,σ

tσ (c†
iAσ c jBσ + H.c.) −

∑
〈〈i j〉〉,
σ, α

t ′
σ (c†

iασ c jασ + H.c.) (4)

Hd =
∑
〈i j〉

2t↑t↓
U + �

(
Sx

iASx
jB + Sy

iASy
jB

) + (t2
↑ + t2

↓ )

U + �

(
Sz

iASz
jB − (2 − niA)n jB

4

)
+ (t2

↑ − t2
↓ )

U + �

×
(

2 − niA

2
Sz

jB − n jB

2
Sz

iA

)
+

∑
〈〈i j〉〉,

α

[
4t ′↑t ′↓

U

(
Sx

iαSx
jα + Sy

iαSy
jα

) + 2(t ′2
↑ + t ′2

↓)

U
Sz

iαSz
jα

]

− 2(t ′2
↑ + t ′2

↓)

U

∑
〈〈i j〉〉

(
(2 − niA)(2 − n jA)

4
+ niBn jB

4

)
−

∑
〈i j〉,σ

t2
σ

�
[(1 − niAσ̄ )(1 − n jB) + (niA − 1)n jBσ̄ ] (5)

Htr = −
∑
〈i jk〉,

σ

t2
σ

�
[c†

kAσ
n jBσ̄ ciAσ + ciBσ (1 − n jAσ̄ )c†

kBσ
] − t↑t↓

�

∑
〈i jk〉,

σ

[ciAσ̄ c†
jBσ̄ c jBσ c†

kAσ
+ ciBσ c†

jAσ c jAσ̄ c†
kBσ̄

]

+
∑
〈k j〉,
〈〈ik〉〉σ

tσ t ′
σ (U + �)

2U�
[c†

iAσ (1 − nkAσ̄ )c jBσ − c†
jAσ nkBσ̄ ciBσ ] +

∑
〈k j〉,
〈〈ik〉〉σ

tσ t ′
σ̄ (U + �)

2U�

× [c†
iAσ̄ c†

kAσ
ckAσ̄ c jBσ + c†

jAσ c†
kBσ̄

ckBσ ciBσ̄ ] + H.c. (6)

The detailed derivation of these terms in the SU (2) sym-
metric case can be found in Ref. [16], co-authored by us.
However, the derivation of the explicit mass imbalance in-
duced staggered magnetic field term is shown in Appendix B.
Now in order to solve this effective Hamiltonian in the

unprojected space, we renormalize the couplings with ap-
propriate statistical weight factors which take into account
the site dependent projection of holes or doublons ap-
proximately and are known as Gutzwiller factors. Detailed
derivation of Gutzwiller factors can be found in Ref. [16],
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FIG. 4. (a) and (b) show the staggered magnetization ms and
uniform magnetization mf for different values of η for U = 10t↑.
ms flips in sign as U/� is decreased for finite mass imbalance. mf

remains positive for a small regime (which diminishes with increas-
ing mass imbalance) and remains negative in most of the nonzero
regime for finite mass imbalance. (c) shows the density of states at
the Fermi level, ρ(ω ∼ 0) for η = 0.4, which shows that between
two opposite polarity AF half metals, there is a regime which can
be a spin imbalanced ferromagnetic and/or ferrimagnetic phase. The
offset shows the AF half-metallic phases more clearly. These metallic
phases are bounded by insulating phases on both sides.

co-authored by us. However, we give a list of all the
Gutzwiller factors used in our calculation in Appendix B.
After obtaining the renormalized Hamiltonian, we solve it
using mean field theory keeping the following mean fields
in our calculation: (a) staggered and uniform magnetization,
ms = (mA − mB)/2, m f = (mA + mB)/2, where mα, α ∈ A, B
is the sublattice magnetization, (b) density difference be-
tween two sublattices, δ = (nA − nB)/2, (c) intrasublattice
Fock shifts on the A(B) sublattice, χαασ = 〈c†

iασ ci±2x/2yασ +
H.c.〉 and χ ′

αασ = 〈c†
iασ ci±x±yασ +H.c.〉, and (d) intersublat-

tice Fock shifts, χ
(1)
ABσ = 〈c†

iAσ c jBσ 〉, j = i ± x, i ± y, χ (2)
ABσ =

〈c†
iAσ c jBσ 〉, j = i ± 2x ± y or i ± 2y ± x. For studying singlet

pairing, we do a two step Bogoliubov-deGennes (BdG) cal-
culation where interband pairing has been considered to be
weak, keeping singlet pairing amplitude �AB = 〈c†

iA↑c†
jB↓ −

c†
iA↓c†

jB↑〉 as a mean field parameter. Here (i, j) are nearest
neighbor sites. We consider two pairing channels: d-wave and
extended s-wave. For d-wave, �±y

d = −�±x
d and for extended

s-wave, �
±y
s = �±x

s , where ±x and ±y denote nearest neigh-
bors in positive or negative x, y directions. The above mean
fields are then solved self-consistently. We present the results
of this renormalized mean field theory for t↑ = 1, t ′

↑ = 0.3t↑
and varying t↓, t ′

↓ for U = 10t↑.
In Figs. 4(a) and 4(b), we plot staggered magnetization

ms and uniform magnetization m f for different values of η

for U = 10t↑. The mass balanced case, i.e., η = 1 shows a
first order transition from an AF ordered state to a PM state
where ms goes to zero. For finite η, however, ms remains
nonzero throughout the parameter space due to breaking of
SU (2) symmetry. For high values of U/�, ms increases with
increasing hopping asymmetry which is because of the intro-

FIG. 5. (a) shows the sublattice magnetization, mα, α ∈ A, B for
U = 10t↑, η = 0.5. Also shown is the negative of twice the uniform
magnetization, −2mf . For large U/�, mA > 0, mB < 0. As we de-
crease U/�, there is a regime where mA flips in sign but mB < 0.
Here, mA, mB < 0. Finally, we have a regime where mA < 0, mB > 0.
The regime of nonzero mf shows that between two ferrimagnetic
phases, there exists a range of U/� where the system is spin imbal-
anced ferromagnetic. (b) shows the spin resolved densities on both
sublattices for η = 0.5 which in addition convey the existence of
charge order throughout the parameter regime because of finite den-
sity difference between the sublattices. (c) gives a possible picture of
magnetic ordering where mA < 0, mB > 0 for U < �.

duction of easy axis anisotropy in the system which helps in
stabilizing Néel type order. As we decrease U/�, ms flips in
sign and again the magnitude of negative magnetization in-
creases with asymmetry in hopping. At small values of U/�,
the potential wells are deep and the heavier mass down-spin
polarized fermionic species prefers to sit at the potential wells,
i.e., A sites rather than B sites where the lighter mass up-spin
polarized fermions live. This makes mA < 0, mB > 0 which in
turn makes ms < 0. This is discussed in more details following
Fig. 5. For η = 1 we see that there is a range of U/� for which
there exists nonzero m f > 0. As we increase mass imbalance
or equivalently decrease η, the spontaneously induced positive
m f dies whereas there emerges a mass imbalance induced
m f < 0 in a wider parameter regime. Since both nonzero ms

and m f co-exist, we can obtain a spin imbalanced ferromag-
netic and/or ferrimagnetic phase in this regime. In (c) we show
the single particle density of states at the Fermi level, ρ(ω ∼
0) for η = 0.4. There exist two regimes of oppositely polar-
ized AF half metals (m f = 0) separated in U/�. The sliver of
AF half metal in low U/� regime is up-spin polarized which
is understandable because the heavier down-spin species are
immobile and located at the potential wells whereas the lighter
mass up-spin species are available for conduction. As we
increase correlation or equivalently decrease �, the AF half
metal becomes down-spin polarized. Appearance of spin flip
half metals separated in U/� is a consequence of mass
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imbalance. In between the half metals is a regime where both
ρ(ω ∼ 0) and m f are nonzero. This can be a spin imbalanced
ferromagnetic and/or ferrimagnetic metallic phase which we
will discuss in the following paragraph.

Figure 5(a) shows the sublattice magnetizations mA and mB

which show an interesting behavior as we tune U/�. Initially,
for low values of U/�, mA = −mB with mA < 0, mB > 0. In
Fig. 5(b), we see in this parameter regime, the down-spin den-
sity is more than the up-spin density on the A sublattice which
means the probability of occurrence of a down-spin species is
more than that of an up-spin species on the A sublattice. This
is opposite for the B sublattice and can in fact be visualized
by a simple classical picture as shown in (c). Intuitively, the
heavier mass down-spin fermions prefer the potential wells as
compared to the lighter mass up-spin fermionic species. As
we now increase U/�, we reach a phase where m f 
= 0 but
mA < 0, mB > 0. This is a ferrimagnetic phase which we call
Ferri I phase. Further increasing U/�, mA < 0, mB < 0, and
thereby m f 
= 0 and we obtain a spin imbalanced ferromag-
netic phase which is purely ferromagnetic with mA = mB at a
point close to U/� ∼ 1. This leads to a second ferrimagnetic
phase, which we call Ferri II phase where mA > 0, mB < 0
and m f 
= 0. Ferri I and II and spin imbalanced ferrophases
are all metallic in nature as seen from Fig. 4. The ferrometallic
phase is unique for the mass imbalanced case as also observed
in the low to intermediate coupling regime. Further, here two
types of ferrimetallic phases appear as contrasted by the oc-
currence of a single type of ferrimetallic phase in the mass
balanced case [18]. Ultimately, upon further increasing U/�,
mA > 0, mB < 0 but m f = 0. The spin resolved densities in
(b) assert that nonzero density difference and magnetization
co-exist throughout the parameter space. The insulating phase
with predominant spin ordering at large U/� is called a Mott
insulating phase whereas the insulating phase with predomi-
nant charge ordering at small U/� is called a correlated band
insulator with weak AF SDW order.

We have investigated pairing in d-wave and extended
s-wave channels in this limit by using a two step Bogoliubov
de-Gennes calculation where we have solved for staggered
magnetization ms and pairing amplitude �d,s simultaneously.
In this method, it was assumed that interband contribution to
pairing is weak. For the mass balanced case [18], the model
in this limit admits an unconventional superconducting phase
sandwiched between exotic metallic phases. In Fig. 6, we
have shown the solution in both pairing channels for the
finite mass imbalance case. We found a nonzero solution for
both ms and �d,s for η = 0.8. Here, t ′

↑ = 0.45t↑. The d-wave
phase is wider than the extended s-wave case. However, the
ground state energy comparison of the pairing states with the
nonpairing state tells us that in most of the parameter space the
superconductivity is metastable with the ground state energy
of the nonpairing state a little lower than the pairing states.
However, for low hopping asymmetries it can be expected that
a regime of superconductivity coexisting with weak magnetic
order is possible. Also due to the presence of large nonzero
m f , the Zeeman field is expected to be high which can give
rise to exotic states like FFLO state where the SC order
parameter is inhomogeneous in space. Other possibilities
include breached pair or Sarma phase in the presence of mass
imbalance.

(a) (b)

FIG. 6. (a) shows the staggered magnetization ms and pairing
amplitude �d,s in the d-wave and extended s-wave pairing channels
for t ′

↑ = 0.45t↑, η = 0.8. (b) shows the ground state energy com-
parison of the d-wave and extended s-wave symmetries with the
state where pairing is not allowed. It shows that the d-wave and
extended s-wave pairings which occur over a range of U/� are
mostly metastable with the ground state energy of the no pairing state
a little lower than the pairing state.

Figure 7 shows a rich phase diagram in η − U/� plane
in the U ∼ � � tσ , t ′

σ limit. If we start from the low U/�

regime, we are in the correlated band insulator with weak
AF SDW order. As we increase U/�, we first enter into a
narrow sliver of AF half metal which is up-spin polarized as
the heavier down-spin polarity fermions are immobile at the
deep potential wells and the lighter up-spin polarity fermionic
species are available for conduction. On further increasing
U/� we reach a ferrimagnetic metallic phase (Ferri I) where
mA < 0, mB > 0. This phase is more dominant in the higher
mass imbalance regime, i.e., for lower values of η. Next, we
enter a spin imbalanced ferromagnetic metallic phase where
mA, mB < 0 which leads to a second ferrimagnetic metallic
phase (Ferri II) for which mA > 0, mB < 0. The Ferri II phase
is more dominant for higher values of η. Ultimately, on fur-
ther increasing U/�, we enter into the Mott insulating phase
through a phase of down-spin polarized AF half metal. Thus,
the system does not only show charge dynamics but also novel

FIG. 7. Figure shows the phase diagram in the η − U/� plane
for U = 10t↑, t ′

↑ = 0.3t↑. Between two insulating phases namely, the
AF Mott insulator and the correlated band insulator with weak AF
SDW order, we have a broad range of exotic metallic phases bounded
by AF half-metallic phases of opposite spin polarity. It consists of
a Ferri I phase where mA < 0, mB > 0, a novel spin imbalanced
ferromagnetic phase with mA, mB < 0, and finally a Ferri II phase
where mA > 0, mB < 0.
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spin dynamics. Appendix C shows density of states, momen-
tum distribution functions, as well as band dispersions along
high symmetry directions in the Brillouin zone for different
metallic phases.

V. CONCLUSION

We have presented the results for the mass imbalanced
frustrated IHM in the low to intermediate range of U,� using
unrestricted Hartree-Fock theory and also in the U ∼ � �
tσ , t ′

σ limit using generalized Gutzwiller renormalized mean
field theory. We have also qualitatively discussed the limit
U � �, tσ , t ′

σ . The former two limits admit novel magnetic
metallic phases and have potential applications in the field
of spintronics. In addition, in the strong coupling limit, a
metastable singlet superconducting phase was observed in
the presence of mass imbalance. However, among all these
phases, the spin imbalanced ferromagnetic metallic phase is
an outcome of subtle interplay between mass imbalance and
frustration. Moreover, there is significant broadening of the
ferrimagnetic phase in the mass imbalanced case as compared
to the mass balanced case. Also in the strong coupling limit,
AF half metals of opposite spin polarities occur separated
in the phase diagram by U/�, which means we can switch
from up-spin polarized conduction to down-spin polarized
conduction and vice versa just by tuning U/� appropriately.
As already pointed out that the variation of η can be done by
lattice depth tuning in an optical lattice and thus mass imbal-
anced fermions on an optical lattice can be used to scan our
entire phase diagram in both limits. Further, layered materials
like graphene on h-BN substrate which can show staggered
ionicity due to the difference in the energies of boron and
nitrogen and which may possess bands with different band-
widths with the possibility of nearly flat bands are expected to
show physics of this model.
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APPENDIX A

Here, we discuss the details of the unrestricted Hartree-
Fock theory used in the low to intermediate regimes of U,�.
We decompose the Hubbard U term in terms of spin resolved
densities niασ where α ∈ A, B sublattices.

Uniα↑niα↓ ≈ U 〈niα↑〉niα↓ + Uniα↑〈niα↓〉 − U 〈niα↑〉〈niα↓〉
(A1)

The effective mean field Hamiltonian Heff is given by

Heff =
∑
kσ

(
U (1 + δ − σmA)

2
− �

2
− t ′

σ γ ′
k − μ

)
c†

kAσ
ckAσ

+
(

U (1 − δ − σmB)

2
+ �

2
− t ′

σ γ ′
k − μ

)
c†

kBσ
ckBσ

+ tσ γk (c†
kAσ

ckBσ + H.c.), (A2)

where γk = 2(cos(kx ) + cos(ky)) and γ ′
k = 4 cos(kx ) cos(ky).

We diagonalize the Hamiltonian by using the following
canonical transformation,

ckAσ = αkσ dk1σ + βkσ dk2σ

ckBσ = αkσ dk2σ − βkσ dk1σ , (A3)

where α2
kσ = 1

2 [1 − �̃σ√
�̃2

σ +t2
σ γ 2

k

] and β2
kσ = 1

2 [1 + �̃σ√
�̃2

σ +t2
σ γ 2

k

].

Here, the effective ionic potential �̃σ felt by the system is
given by �̃σ = U (δ−σms )−�

2 .
The eigenenergies λ1,2

σ are given by

λ1,2
σ =

[
U (1 − σm f )

2
− μ − t ′

σ γ ′
k

]
∓

√
�̃2

σ + t2
σ γ 2

k . (A4)

The self-consistent equations of the spin resolved densities
nασ are given by

nAσ = 1

N2

∑
k∈FBZ

[
α2

kσ 〈d†
k1σ

dk1σ 〉 + β2
kσ 〈d†

k2σ
dk2σ 〉],

nBσ = 1

N2

∑
k∈FBZ

[
α2

kσ 〈d†
k2σ

dk2σ 〉 + β2
kσ 〈d†

k1σ
dk1σ 〉]. (A5)

Here the sum is over the full Brillouin zone (FBZ). The oc-
cupation probability of the bands is given by the Fermi Dirac
distribution. For zero temperature, this implies that the bands
will be occupied if their energies λ1,2

σ are below the Fermi
level. From the spin resolved densities, we can construct linear
combinations like sublattice magnetization, mα = nα↑ − nα↓,
and density difference between sublattices, δ = (nA − nB)/2,
which are of physical interest.

APPENDIX B

In the limit U ∼ � � tσ , t ′
σ , we construct the effective low

energy Hamiltonian by doing a site dependent projection of
holes from the A sublattice having ionic potential −�/2 and
doublons from the B sublattice having ionic potential �/2.
There is a term in the effective Hamiltonian, as shown in
main text, which is purely induced by mass imbalance and is
∝ (t2

↑ − t2
↓ ). Here, we show the derivation of this term starting

from the Hubbard operators X ψ←φ
iα which creates state ψ from

state φ on the ith site belonging to the α ∈ A, B sublattice.
States φ,ψ ∈ |0〉, |↑〉, |↓〉, |↑↓〉.

The commutator in the effective Hamiltonian
1

U+�
[H+

t A→B, H−
t B→A] represents two site processes which

either flip two oppositely oriented spins on neighboring A and
B sites or preserve them through a virtual high energy state
consisting of a hole on the A site and doublon on the B site.
The spin flip process corresponds to the (Sx

iASx
jB + Sy

iASy
jB)

term whereas the spin preserving process corresponds
to two terms: the Sz

iASz
jB term and the mass imbalance

induced staggered magnetic field term. The relevant spin

preserving term can be written as − t2
σ

U+�
X σ←σ

iA X σ̄←σ̄
jB ,

where X σ←σ
iA = 2−niA

2 + σSz
iA in the space where holes are

not allowed and X σ←σ
jB = n jB

2 + σSz
jB in the space where

doublons are not allowed.
Putting back these expressions, we get

t2
↑+t2

↓
U+�

[Sz
iASz

jB −
(2−niA )n jB

4 ] + t2
↑−t2

↓
U+�

[ 2−niA
2 Sz

jB − n jB

2 Sz
iA]. The latter term is the
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TABLE I. Expressions of Gutzwiller factors at half filling where
α1,2 ∈ A, B.

GF Expressions

gtσ
2δ√

(1+δ+σmA )(1+δ−σmB )

gAσ
2δ

1+δ+σmA

gBσ
2δ

1+δ−σmB

gsα1α2
4√

((1+δ)2−m2
α1

)((1+δ)2−m2
α2

)

g1 δgsAB

gα1α1α2σ
4δ√

((1+δ)2−m2
α1

)(1+δ+σmα1 )(1+δ+σmα2 )

(α1 
= α2)

mass imbalance induced staggered magnetic field term which
becomes zero in the mass balanced case.

After we obtain the low energy effective Hamiltonian, we
renormalize the couplings with suitable weight factors known
as Gutzwiller factors which take care of the site dependent
projection approximately. The Gutzwiller factors used in the
calculation are listed in Table I.

gtσ renormalizes the nearest neighbor hopping and the tσ t ′
σ

effective hopping between the A and B sublattice. gAσ renor-
malizes the effective hopping of doublons on the A sublattice
and gBσ renormalizes the effective hopping of holes on the
B sublattice. Both these processes preserve the polarity of
spin at the intermediate site via which these three site hop-
ping processes are accomplished. gsα1α2 , where α1, α2 ∈ A, B,
renormalizes the spin flip part of the inter- or intrasublat-
tice Heisenberg term. The dimer terms involving product of
density operators and the spin preserving part of the Heisen-
berg term are renormalized by unity. The trimer terms which
involve a flip in spin polarity on the intermediate site ac-
companied by effective intrasublattice hopping of doublons
or holes are renormalized by g1. gAABσ̄ , gBBAσ renormalize the
corresponding tσ t ′

σ̄ processes.

APPENDIX C

1. Additional results for weak to intermediate values of
U,�

(a) Difference between spin resolved density of states in the
ferrometallic phase

Figure 8 shows the difference in the single particle density
of states between the up- and down-spin channels, ρ↑(ω) −
ρ↓(ω) with ω below the chemical potential in the ferromag-
netic phase. Due to higher positive weight for both A and
B sublattices, if we integrate this quantity over the occupied
spectrum, mA, mB will both be positive. Also it is clear that
mA > mB in this phase.

(b) Density difference between sublattices
Figure 9 highlights the fact that the nonzero density dif-

ference between the sublattices at zero ionicity, for relatively
larger values of U , is a purely mass imbalance induced effect.
The density difference in general increases with ionicity for
any η but is larger for increased hopping asymmetry in the in-
sulating phases. Charge order exists throughout the parameter
regime.

FIG. 8. Figure shows the difference in the single particle den-
sity of states in up- and down-spin channels, ρ↑(ω) − ρ↓(ω) as a
function of ω in the occupied part of the spectrum at half filling for
U = 0.6t↓,� = 0.2t↓. In this ferromagnetic phase, if we integrate
over the occupied spectrum, it is clear that mA, mB > 0 and mA > mB.

(c) Density of states and momentum distribution functions
Introducing mass imbalance effectively reduces the band-

width of the heavier up-spin species as compared to the
down-spin species, as is visible in the left panel consisting
of Figs. 10(a)–10(d). This means effectively the up-spin po-
larized band gets flatter resulting in high valued peaks in the
density of states. In (a), ρ↑(ω ∼ 0) is relatively large due to
the relatively flatter band (η = 2). Existence of such quasiflat
bands can result in ferromagnetism. In this ferromagnetic
phase, the Fermi level lies in the region where both conduc-
tion and valence bands overlap and contribute to the density
of states at ω ∼ 0 in both the up- and down-spin channel.
Consequently, we see in (a) of the right panel that the momen-
tum distribution function, defined as nkσ = ∫ 0

−∞ Akσ (ω)dω =
(nkAσ + nkBσ )/2, where Akσ (ω) is the spin resolved single par-

FIG. 9. Figure shows the density difference between sublattices
for different η values for U = 3.2t↓. The small density difference
at zero ionicity is a pure mass imbalance effect which is enhanced
with increasing asymmetry in hopping. Also, density difference in
general increases with ionicity and charge order prevails in the entire
parameter space.
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FIG. 10. Left: Figure shows density of states ρ(ω) versus ω for the (a) ferromagnetic metallic phase, (b) ferrimagnetic metallic phase,
(c) AF half metallic phase, and (d) band insulator with weak AF SDW order phase. For both ferromagnetic and ferrimagnetic phases, there is
finite density of states at ω ∼ 0 making these phases metallic. The AF half metallic phase has down-spin polarized conductivity with a gap in
the up-spin channel at the Fermi level. The band insulating phase which has weak AF SDW order has a gap in both spin channels at the Fermi
level. Right: Figure shows momentum distribution function nkσ in the full Brillouin zone for the ferromagnetic and ferrimagnetic metallic
phases. The upper row is for the up-spin polarity and the lower row is for the down-spin polarity. In the ferromagnetic phase, there are electron
(nkσ > 1/2) and hole (nkσ < 1/2) pockets in both spin channels with larger electron pockets in the up-spin channel and larger hole pockets
in the down-spin channel. In the ferrimagnetic phase, the up-spin channel has only electron pockets whereas the down-spin channel has both
electron and hole pockets.

ticle spectral function, has both electron (nkσ > 1/2) and hole
(nkσ < 1/2) pockets in both spin channels. The electron pock-
ets are larger in the up-spin channel and hole pockets are larger
in the down-spin channel. An electron pocket arises when the
conduction band minima lies below the Fermi level such that
it is partially occupied whereas a hole pocket arises when the
valence band maxima is above the Fermi level and becomes
partially unoccupied. Since m f = 1/N2 ∑

k∈FBZ(nk↑ − nk↓),
the unequal sizes of the electron and hole pockets in the two
spin channels make

∑
k∈FBZ nk↑ >

∑
k∈FBZ nk↓ and thus m f >

0. In the ferrimagnetic phase, there is finite ρσ (ω ∼ 0) for
both spin channels [left panel (b)] and correspondingly in (b)
of the right panel, the up-spin momentum distribution function
has only electron pockets (Fermi level lies within conduction
band) whereas the down-spin channel has both electron and
hole pockets (both valence and conduction band cross the
Fermi level). Left panel (c) shows that in the AF half metallic
state the up-spin channel is gapped whereas ρ↓(ω = 0) 
= 0.
Panel (d) shows that in the band insulating phase with weak
AF SDW order, both spin channels are gapped at the Fermi
level. However, in all these cases ρ↑(ω) 
= ρ↓(ω).

(d) Phase diagram for 3d cubic lattice
Figure 11 shows the phase diagram for the cubic lattice in

the U − � plane for the same parameter values as that of the
square lattice. The qualitative features of the phase diagram
are dimension independent and hence universal in nature,
although phase boundaries have shifted little as compared to
the square lattice case.

(2) Additional results for the limit U ∼ � � tσ , t ′
σ

(a) Density of states
Figure 12 shows the single particle density of

states, ρσ (ω) = 1/2
∑

α ρασ , α ∈ A, B, where ρασ =

−∑
k ImGασ (k, ω+)/π . The single particle Green’s function

Gασ (k, ω) is renormalized by suitable Gutzwiller factors. The
bandwidth of both spin polarities changes as we tune U/�

due to the renormalization of the kinetic energy by Gutzwiller
factors which are themselves functions of U/�. In all three
phases viz, the Ferri I, spin imbalanced ferromagnetic, and
Ferri II phases, there exist finite ρ(ω ∼ 0) making them
metallic in nature. Due to the mass imbalance the effective
bandwidth of the down-spin channel shrinks in comparison
to the up-spin channel. As mass imbalance grows, the
down-spin polarity bands become thinner and sharper giving
a quasi-flat-band structure to the bands. This, along with

FIG. 11. Phase diagram in the U − � plane for cubic lattice
for η = 2. Between insulating phases, interesting magnetic metallic
phases occur which are the same as that for the square lattice.
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FIG. 12. Figure shows spin resolved single particle density of states ρσ (ω) as a function of ω for Ferri I, spin imbalanced ferromagnetic,
and Ferri II metallic phases for η = 0.5, 0.2. All phases have finite density of states at ω ∼ 0 in both spin channels which makes them metallic
in nature. As mass imbalance is increased, the effective bandwidth in the down-spin channel reduces and a large peak in the density of states
in the down-spin channel is observed near ω ∼ 0.

frustration, is crucial for the stabilization of ferromagnetism.
The spin imbalanced ferromagnetic phase is unique to the
mass imbalanced case and does not exist in the mass balanced
version unlike the ferrimagnetic metallic phase which exists
even for η = 1.

(b) Band dispersions
Figure 13 shows the band dispersions for the Ferri I and

ferromagnetic phases and also the density of states which

FIG. 13. (a) and (b) show the band dispersions along the high
symmetry directions in the Brillouin zone for the Ferri I and Ferro
phases, respectively. (c) and (d) show the density of states for the
same two phases, zoomed around ω ∼ 0. The Fermi level in the ferri-
magnetic phase lies within the up-spin polarity valence band and the
down-spin polarity conduction band consistent with the band picture
where E1↑ crosses the Fermi level to become partially unoccupied
(hole pockets) around (π, 0) and E2↓ crosses the Fermi level to get
partially occupied resulting in electron pockets around (π/2, π/2).
For the ferromagnetic phase, Fermi level lies in the region where both
valence and conduction band merge for the up-spin channel whereas
in the downspin channel, the conduction band only crosses the Fermi
level, with the valence band just a little below the Fermi level.

are zoomed near ω ∼ 0. There are in total four bands: two
corresponding to two different sublattices which we are call-
ing valence and conduction bands which again come in spin
up- and spin-down variants. In the ferrimagnetic phase the
up-spin polarity valence band E1↑ crosses the Fermi level, thus
getting partially unoccupied. It results in hole pockets around
(0,±π ), (±π, 0). This can further be seen from (c) where
the Fermi level is found to be lying inside the valence band
for up-spin polarity. Also, the conduction band of down-spin
polarity E2↓ crosses the Fermi level to become partially oc-
cupied creating electron pockets around (±π/2,±π/2). This
is also seen in density of states plots where the Fermi level
lies inside the down-spin polarity conduction band. In the
case of the spin imbalanced ferromagnetic phase, the Fermi
level lies in the regime where both valence and conduction
band of the up-spin channel overlap and contribute to the
density of states. Correspondingly both E1↑ and E2↑ cross the
Fermi level creating hole and electron pockets, respectively. In
the down-spin channel, the valence and the conduction band
overlap and contribute to the density of states at the same ω

value but it occurs for a range of ω values just below the Fermi
level. The Fermi level in this case is inside the conduction
band and has corresponding electron pockets. The down-spin
polarity valence band E1↓ is very near the Fermi level but does
not cross it.

(c) Momentum distribution functions
Figure 14 shows the momentum distribution function,

nkσ = 1/2
∑

α

∫ 0
−∞ Aασ (k, ω)dω, where Aασ (k, ω) is the spin

resolved single particle spectral function for α ∈ A, B sublat-
tice. Here, η = 0.5. In this figure, electron pockets (nkσ >

1/2) occur around (±π/2,±π/2) and hole pockets around
(0,±π ), (±π, 0). In the Ferri I phase, the up-spin channel
has only hole pockets and the down-spin channel has only
electron pockets. This is also ascertained by Fig. 13. This
means the density in the up channel which is nothing but the
sum of nk↑ over the Brillouin zone is less than the density in
the down-spin channel, which makes m f = n↑ − n↓ < 0. This
we have already seen in Sec. IV of the main text for the Ferri
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FIG. 14. Figure shows the momentum distribution function nkσ in the full Brillouin zone for the Ferri I phase, spin imbalanced ferromag-
netic phase, and Ferri II phase for η = 0.5. The upper row represents the up-spin channel and lower row the down-spin channel. The Ferri I
phase has hole pockets (nk↑ < 1/2) in the up-spin channel and electron pockets (nk↓ > 1/2) in the down-spin channel. The ferrophase has large
hole pockets and tiny electron pockets in the up-spin channel and only large electron pockets in the down-spin channel. The Ferri II phase, on
the other hand, has only electron pockets in the up-spin channel and both electron and hole pockets in the down-spin channel. The electron
pockets occur around (±π/2,±π/2) and hole pockets occur around (0,±π ), (±π, 0).

I phase. Similarly for the ferrophase, we see that the up-spin
channel has large hole pockets and tiny electron pockets and
the down-spin channel on the other hand has large electron
pockets. This again makes m f < 0 which was also seen in
Sec. IV of the main text for the ferrophase. In the Ferri II
phase, the up-spin channel has electron pockets but no hole
pockets whereas the down-spin channel has both electron and
hole pockets. The hole pockets in the down-spin channel have

to be a little larger than the electron pockets so that density in
the down-spin channel is <1/2 so as to maintain half-filling
constraint since the up-spin channel has only electron pockets
making density in the up-spin channel > 1/2. This makes
m f > 0 and indeed there is a narrow regime for η = 0.5 where
mA > 0, mB < 0, mA > |mB| as seen in Sec. IV of the main
text. But as can be understood m f is small in magnitude
here.
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