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Excitonic optical spectra and energy structures in a one-dimensional Mott insulator demonstrated
by applying a many-body Wannier functions method to a charge model
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We applied a many-body Wannier functions method to theoretically calculate the excitonic optical conduc-
tivity spectrum and energy structure in a one-dimensional (1D) Mott insulator at absolute zero temperature
with a large system size. Focusing on full charge fluctuations associated with holon and doublon pairs, we
employ a charge model, which is interpreted as an effective model for investigating the photoexcitations of a 1D
extended Hubbard model under a half-filling of the spin-charge separation. As a result, theoretical spectra with
the appropriate broadenings qualitatively reproduce the recent experimental data of ET-F2TCNQ at 294 K with
and without a modulated electric field. Regarding the excitonic energy structure, we found that the excitons,
particularly for even-parity, are weakly bound by many-body effects. This is also consistent with the fitting
parameters reported in a recent experiment. Thus, the theoretical method presented in this paper is useful for
understanding the physical roles of the charge fluctuations in many-body excited states of a 1D Mott insulator.
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I. INTRODUCTION

Recent progress on femtosecond (fs) pulse lasers has
provided a platform for tunable light-induced excitations
for various materials at ultrafast timescales, and such
photoinduced phenomena have attracted significant atten-
tion toward applications in optical devices and memo-
ries [1–3]. Thus far, as a typical example, a photoin-
duced Mott-insulator-to-metal transition has been previ-
ously observed in one-dimensional (1D) Mott insulators of
[Ni(chxn)2Br]Br2 (chxn = cyclohexanediamine) [4], ET-
F2TCNQ (ET = bis(ethylenedithio)tetrathiafulvalene, TCNQ
= tetracyanoquinodimethane) [5,6], [Pd(en)2Br](C5-Y)2H2O
(en = ethylenediamine, C5-Y = dialkylsulfosuccinate) [7],
and Ca2CuO3 [8], as well as in two-dimensional (2D)
Mott insulators of Nd2CuO4, La2CuO4 [9,10], and κ-
(ET)2Cu[N(CN)2]Br [11,12]. Such nonequilibrium photoin-
duced metallic states are theoretically thought to be attributed
to a carrier doping of photogenerated holon-doublon (HD)
pairs [13–16]. The realization of a photoinduced η-pairing su-
perconducting state from a 1D Mott insulator ground state has
recently been theoretically predicted [17]. During the early
stage of the above phase transitions, pure electronic effects,
which are specified by transfer integrals of electrons T in the
order of 0.1 eV, are considered to be dominant. The timescales
of occurrence of the transitions are then estimated to be on
the order of 10 fs. One of the powerful experimental tools to
investigate such early dynamics immediately after light irra-

diation is to observe the pump-probe or transient absorption
spectra by utilizing an fs pulse laser. To physically understand
the spectral features, the nature of all low-energy electronic
excited states, particularly related to the charge fluctuations,
should be precisely revealed in a Mott insulator.

As a first step to theoretically understand the above excited
states, we previously proposed a charge model as a novel
effective model for a 1D extended Hubbard model under
the half-filling of the spin-charge separation with full charge
fluctuations related to HD pairs [18]. Thus far, for at least the
1D level, a spin-charge separation is experimentally consid-
ered [19] and has been theoretically established within the
limit of the strong Coulomb interaction strengths [20–26].
Of course, the ground state is a Mott insulator [27]. The
completeness of a charge model was confirmed by comparing
the optical conductivity spectra, σ (ω), for a given photon
energy ω, between the charge model and Hubbard model
in the realistic parameters within the framework of the ex-
act diagonalization method [28,29] for small finite sizes. To
theoretically calculate σ (ω) at large system sizes contain-
ing many-body effects, we also previously proposed a novel
method, called the many-body Wannier functions (MBWFs)
method [18]. The resultant σ (ω) of the charge model was in
good agreement with the corresponding spectra of the Hub-
bard model at a large size computed using the dynamical
density-matrix renormalization group (DDMRG) method [30]
and time-dependent DMRG (tDMRG) method [31].
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One of the advantages of the MBWFs method is that one
can easily interpret the wave functions of all photoexcited
states, corresponding to the peaks of σ (ω) at sufficiently
large sizes, where the finite-size effects are negligible. In
general, to theoretically analyze such excited states, nonper-
turbative schemes such as the exact diagonalization method
and the DMRG method [32,33] are only permitted because
of strong correlations arising from strong Coulomb interac-
tions between electrons. In addition, such theoretical large
sized calculations, sufficiently comparable to experiments,
have been only conducted using a DMRG scheme owing to
computational problems. At present, several reliable values of
a σ (ω) in a 1D extended Hubbard model under half-filling
at a large size have previously been calculated using the
DDMRG scheme [30,34–39]. However, in that scheme for
a large system-size, owing to the considerable truncation of
the Hilbert space, the calculated wave functions of both the
ground state and photoexcited states are not equivalent to the
real wave functions represented in the Hilbert space of the
original system-size. By contrast, our MBWFs method can
directly obtain the real wave functions with tunable degrees
of many-body effects at an arbitrary system-size.

In this study, as a second step, we construct an effective
model of the even-parity low-energy excited states associ-
ated with a pairing of holons (Hs) and doublons (Ds) in
a 1D Mott insulator by applying an MBWFs method to a
charge model. This is because, to theoretically calculate an
ordinary σ (ω), our previous MBWFs approach only con-
structed an effective model of the one-HD-pair photoexcited
states with odd-parity. However, to completely understand
all low-energy excitations of a 1D Mott insulator, both the
odd- and even-parity excited states connected with a single
HD pair are important. Regarding this, the excitonic en-
ergy structures including information of both the odd- and
even-parity low-energy one-HD-pair excited states can be
estimated through electroreflectance spectroscopy with ter-
ahertz (THz) electric fields. Thus far, several experiments
have reported such excitonic energy structures in Mott insula-
tors deduced from fitting parameters of measured third-order
nonlinear susceptibility, χ (3)(−ω; 0, 0, ω) [40–43]. As one
such experiment, in this study, we chose the recent ex-
periment of ET-F2TCNQ at 294 K [43] and reproduced
its excitonic energy structure to evaluate the complete-
ness of our even-parity effective model. In this experiment,
χ (3)(−ω; 0, 0, ω) was obtained from a nonlinear polariza-
tion P(ω) ∝ χ (3)(−ω; 0, 0, ω)E2(ω ∼ 0)E (ω), where E (ω ∼
0) can be regarded as a static electric field created by a THz
pulse, and E (ω) is an electric field of optical probe pulses.
From the fitting analysis with a four-level model for the spec-
tra, which are proportional to E2(ω ∼ 0)Imχ (3)(−ω; 0, 0, ω),
the excitonic energy structure was determined as the fitting
parameters. Here, ET-F2TCNQ is well known as a quasi-1D
conductor, and a 1D chain consisting of ET molecules is
aligned in the direction of the a axis. The electronic model is
well described by a 1D extended Hubbard model under half-
filling owing to a negligibly weak electron-lattice coupling
[5,44]. The typical value of the electronic transfer integral is
T ∼ 0.1 eV [45].

In addition, the above experimental spectrum of ωE2(ω ∼
0)Imχ (3)(−ω; 0, 0, ω) itself is related to �σ (ω), which rep-

resents the change in σ (ω) between with and without a
modulated electric field. Then, by directly introducing an ex-
ternal modulated electric field to our effective model within
the framework of the MBWFs method, we also theoretically
calculate �σ (ω) and reproduce the corresponding experimen-
tal spectrum in this study.

This paper is mainly organized into the following two
sections. In Sec. II, we briefly introduce a charge model and
practical applications of the MBWFs method to construct the
effective models of both one-HD-pair of odd- and even-parity
excited states, including the manner of the size extension.
Using the MBWFs, we also demonstrate a scheme for the-
oretically calculating σ (ω) with and without a modulated
electric field for a large system size. All theoretical spectra and
excitonic energy structures compared with the corresponding
experimental data of ET-F2TCNQ at 294 K [43] are shown
and discussed in Sec. III. Throughout this paper, we treat the
absolute zero temperature and set h̄ = e = c = a = 1, where
a is a lattice constant.

II. FORMULATION

A. Brief introduction of the Hamiltonian of a charge model

First, we introduce a Hamiltonian, H , and charge-current
operator, J , based on a half-filled 1D extended Hubbard model
under the periodic boundary condition (PBC) with even N
sites and an equal population of spins (N↑ = N↓ = N/2) as
follows:

H ≡ H0 + HV + Hφ, (1)

H0 =−T
N∑

j=1

∑
σ=↑,↓

[c†
j+1,σ c j,σ + c†

j,σ c j+1,σ ]+U
N∑

j=1

n j,↑n j,↓,

(2)

HV =
∑

α

Vα

N∑
j=1

∑
σ,σ ′=↑,↓

n j+α,σ n j,σ ′ , (3)

Hφ = −φ0

N∑
j=1

∑
σ=↑,↓

sin

[
2π

N
( j − 1)

]
n j,σ , (4)

J = −iT
N∑

j=1

∑
σ=↑,↓

[c†
j+1,σ c j,σ − c†

j,σ c j+1,σ ]. (5)

Here, c(†)
j,σ denotes the annihilation (creation) operator of an

electron with spin σ =↑,↓ at the jth site, nj,σ ≡ c†
j,σ c j,σ ,

and c(†)
N+1,σ = c(†)

1,σ . In addition, H0 is a conventional Hub-
bard model with a transfer integral T and on-site Coulomb
interaction strength U . According to previous studies on
ET-F2TCNQ [15,43,46], we set U/T = 10. Moreover, HV de-
scribes a long-range Coulomb interaction, and Vα corresponds
to the αth nearest-neighbor Coulomb interaction strength. In
this paper, we consider two special cases, i.e.,

V1 ≡ V,Vα�2 = 0 (6)

and

Vα ≡ V/α (α = 1, 2, 3),Vα�4 = 0. (7)
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The former is simply a conventional extended Hubbard model,
and several candidates of V for ET-F2TCNQ have been re-
ported [46–49]. In addition, the latter is treated in a recent
study attempting to explain the experimental spectra of ET-
F2TCNQ at 294 K with an exact diagonalization analysis
at V/T = 4.286 and N = 14 [43]. However, each V above
should intrinsically be determined by finding the best V
as theoretically reproducing the optical conductivity spectra
measured at a sufficiently low-temperature with negligible
electron-phonon scattering.

Here, Hφ represents a periodic scalar potential carrying the
momentum 2π/N , in which the minus sign is attributed to an
elementary charge of electrons (−e = −1 in this study). This
term generates a modulated electric field and, during the ex-
periment on ET-F2TCNQ at 294 K [43], a modulated electric
field was introduced by a terahertz pulse in approximately one
period on the order of 1 picosecond. In general, defining the
peak magnitude of such an experimentally modulated electric
field as Eamp/(kV/cm), we associate it with φ0 by calculating
the root of the square mean of a modulated electric field over
a single period. Referencing a unit cell length in the direction
of the a-axis of ET-F2TCNQ, 5.791 Å [44], we can calculate
the following:

φ0

T
= N

9.21666 × 10−6Eamp/(kV/cm)

T/eV
≡ Nε, (8)

for a given T/eV. Hence, we also determine the T value in the
unit of eV by the experimental lowest excitation energy with
odd-parity, which corresponds to the energy at the striking
peak of the optical conductivity spectrum for ε = 0.

To determine V and T above, we calculate the optical
conductivity spectra of ε = 0, which are defined as follows:

σ (ω) = − 1

Nω
Im

[
〈g|J 1

ω + iγ + Eg − H
J|g〉

]
, (9)

where |g〉 describes the ground state of H in Eq. (1) with
energy Eg within the framework of the linear response theory.
Here, ω > 0 represents a single photon energy injected into
the system (weak photoexcitations). In this study, we also
define the maximum value of σ (ω) as σmax. In the presence of
a finite ε, we perturbatively treat Hφ in Eq. (4) for simplicity.
At absolute zero temperature, although γ should strictly be
an infinitesimal small positive number, we maintain this as
a certain spectral broadening to reproduce the experimental
spectrum at finite temperature.

Next, we convert Eqs. (1)–(5) into a charge model, which
is an effective model that includes full charge fluctuations of
a 1D extended Hubbard model under half-filling of the spin-
charge separation as follows:

H (C) ≡ H (C)
0 + H (C)

V + H (C)
φ , (10)

H (C)
X ≡

Mmax∑
M,M ′=0

PMHX PM ′ (X = 0,V, φ), (11)

J (C) ≡
Mmax∑

M,M ′=0

PMJPM ′ . (12)

FIG. 1. Schematics of bare bases |rM〉 in Eq. (13) of the charge
model with N = 6, Mmax = N/2 = 3. A basis |rM〉 contains M pairs
of a holon (H) and doublon (D) with the ground state of the Heisen-
berg model with N − 2M sites. Up (down) arrows denote up (down)
spins. In addition, rHD represents the relative distance between H and
D, which is defined in the M = 1 subspace. Therefore, we can choose
an integer of r1 = rHD ≡ p1 − q1 as one of the r1 representations.

Here, PM is a projection operator onto the subspace consisting
of the basis with M (1 � Mmax � N/2) holon (H) -doublon
(D) pairs,

|rM〉 ≡ |{p1, p2, · · · , pM}, {q1, q2, · · · , qM}〉, (13)

where p j (q j) represents the site number of the jth D
(H). The site numbers are defined as follows: p1 < p2 <

· · · < pM, q1 < q2 < · · · < qM , and ∀pi �= qk . Schematics are
shown in Fig. 1. The remaining N − 2M sites are singly occu-
pied by electronic spins and are assumed to be the ground state
of the 1D Heisenberg model. Details including the derivation
of the model were described in our previous paper [18]. Be-
cause the Hilbert space is mainly labeled by M, we introduce
the maximum value, Mmax, for convenience in our theoretical
calculations. Note that Mmax = N/2, of course, corresponds to
full charge fluctuations.

As mentioned in our previous paper, this model has two
essential corrections, which are described as the parameters
cS(M ) and θM [25,50,51]. The former is the correction of
the transfer integral corresponding to the creation and anni-
hilation of HD pairs and well fitted by the function 0.820 +
0.740(N − 2M )−2. With N � 1 and ignoring M dependency,
we simply take cS(M ) = 0.82 in both this study and in our
previous paper. This assumption was validated, at least for
calculating the optical conductivity spectra within the frame-
work of the exact diagonalization method. Namely, the spectra
with cS(M ) = 0.82 reproduce well the corresponding original
Hubbard model results (see Fig. 2). The latter, θM , is related
to the total momentum of the ground state. To set it to zero
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FIG. 2. Optical conductivity spectra of N = 18, U = 10T, V =
0, ε = 0, and γ = 0.1T for a charge model with Mmax = N/2 (solid
line) and half-filled 1D extended Hubbard model (dotted line). The
spectra are computed using a continued fraction method [52].

for all calculations with an even N , we treat θM = 0 (π ) for an
odd (even) M.

Consequently, a charge model is only written in matrix
form with a basis such as PM = |rM〉〈rM | in Eqs. (10)–(12).
All matrix elements associated with the charge densities (nj,σ )
are the same between a charge model and 1D half-filled
Hubbard model. Namely, U

∑N
j=1 n j,↑n j,↓|rM〉 = UM|rM〉 is

satisfied, for instance. By contrast, all of the transfer terms
are completely different from the 1D Hubbard model. Using
cS(M ) and θM above, there are two types of terms required to
represent the operator matrix of a charge model. The first are
hopping terms of a single holon or doublon with a fixed M.
For 1 � j � N − 1,∑

σ

c†
j+1,σ c j,σ |rM〉

=
{|{p1, · · · , pi−1, pi + 1, pi+1, · · · , pM}{q1, · · · , qM}〉,
−|{p1, · · · , pM}{q1, · · · , qi−1, qi − 1, qi+1, · · · , qM}〉,

(14)

where the former (latter) is the case of pi = j and is a singly
occupied j + 1th site (singly occupied jth site where qi = j +
1). At the edge ( j = N), because the N + 1th site is equivalent
to the first site,∑

σ

c†
j+1,σ c j,σ |rM〉

=
{−e−iθM |{1, p1, · · · , pM−1}{q1, · · · , qM}〉

eiθM |{p1, · · · , pM}{q2, · · · , qM , N}〉, (15)

should be considered. The matrix elements of
∑

σ c†
j,σ c j+1,σ

are derived from the Hermite conjugate of Eqs. (14) and (15).
The second is a single HD pair creation with singly occupied
jth and j + 1th sites. Regarding the case of a transfer from an
M subspace to an M + 1 subspace, for 1 � j � N − 1,

∑
σ

c†
j+1,σ c j,σ |rM〉 = (−1)l

√
2cS(M + 1)|{p1, · · · , pi, j + 1, pi+1, · · · , pM}{q1, · · · , qk, j, qk+1, · · · , qM}〉, (16)

∑
σ

c†
j,σ c j+1,σ |rM〉 = (−1)l

√
2cS(M + 1)|{p1, · · · , pi, j, pi+1, · · · , pM}{q1, · · · , qk, j + 1, qk+1, · · · , qM}〉, (17)

where l is the number of all singly occupied sites from the first
to the jth site of |rM〉. By contrast, for j = N ,∑

σ

c†
j+1,σ c j,σ |rM〉

= eiθM
√

2cS(M + 1)|{1, p1, · · · , pM}{q1, · · · , qM , N}〉,
(18)∑

σ

c†
j,σ c j+1,σ |rM〉

= eiθM
√

2cS(M + 1)|{p1, · · · , pM , N}{1, q1, · · · , qM}〉,
(19)

are satisfied. Taking the Hermite conjugate of Eqs. (16)–(19),
the annihilation of a single HD pair (transfer term from M + 1
to M subspace) can be obtained.

Finally, defining an operator for translating one site to the
right as TR and a parity inversion operator P , we introduce
a bare basis for an even-parity (λp=+ = +1) and odd-parity
(λp=− = −1) state,

∣∣rp
M (K )

〉 ≡ 1√
N

N−1∑
l=0

cos(Kl )T l
R(1 + λpP )|rM〉, (20)

where N is a normalization factor of |rp
M (K )〉. In this

study, we assume a zero center-of-gravity momentum frame
(K = 0). The effect of finite K = 2π/N � 1 is only treated
for introducing the H (C)

φ term in this paper. Representing
Eqs. (10)–(12) by PM = |rp

M (K )〉〈rp
M (K )| and extending our

previous method[18], we construct the MBWFs and effective
models to achieve the size extension from N to Nex � N
associated with optical conductivities at a large system size,
as follows. In the following subsections, we describe three key
processes of our method with the corresponding results.

B. First process: Construction of MBWFs and size extension of
J (C) expectation values for H (C)

0 with ε = 0

For a finite U , the ground state of the Hubbard model of
Eq. (2), |g〉, is a Mott-insulator and has even-parity. Thus,
all excited states, corresponding to J|g〉, are odd-parity. For
weak photoexcitations from |g〉 with a sufficiently large U ,
the creation of a single holon-doublon (HD) pair is dominant.
In this sense, the eight striking peaks of σ (ω) for N = 18
in Eq.(9) are regarded as odd-parity eigenstates concerning
such a one-HD pair. This structure is completely and quanti-
tatively reproduced by a charge model, as shown in Fig. 2.
This also strongly suggests that we can regard all excited
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states for a charge model as those for charge sectors of a 1D
extended Hubbard model, at least for low-energy excitations
with V = 0. In general, the number of such photoexcited
(forbidden) states, I− (I+), is N/2 − 1 (N/2) with odd-parity
(even-parity). Thus, the approximation of

σ (ω)

= − 1

Nω
Im

[
〈g|J 1

ω + iγ + Eg − H
J|g〉

]
∼ − 1

Nω
Im

[
〈g(C)|J (C) 1

ω + iγ + E (C)
g − H (C)

J (C)|g(C)〉
]

∼ γ

Nω

I−=N/2−1∑
μ=1

|〈�−
μ (0)|J (C)|g(C)〉|2(

ω + E (C)
g − E−

μ

)2 + γ 2
(21)

should be justified, where |g(C)〉 is the ground state with en-
ergy E (C)

g , and |�−
μ (0)〉 is an odd-parity excited state with

energy E−
μ for a charge model. Defining the even-parity ex-

cited state with energy E+
μ as |�+

μ (0)〉, we first calculate
those ground and excited states with full charge fluctuations
(Mmax = N/2),

H (C)
0 |g(C)〉 ≡ E (C)

g |g(C)〉, (22)

H (C)
0 |�±

μ (0)〉 ≡ E±
μ |�±

μ (0)〉, (23)

by applying the Lanczos method [53] within the frame-
work of the exact diagonalization method for N = 18
(E±

1 � · · · � E±
I± ). In practice, all excited states are de-

termined by satisfying M ≡ 〈�±
μ (0)| ∑ j n j,↑n j,↓|�±

μ (0)〉 −
〈g(C)| ∑ j n j,↑n j,↓|g(C)〉 ∼ 1, where M denotes the average
number of HD pairs in the excited state relative to the ground
state. The excited states are roughly interpreted as Bloch
states of finite momentum 2μπ/N ((2μ − 1)π/N ), with 1 �
μ � I− (I+) for odd-parity (even-parity). For computational
problems, because N = 18 is the maximum size of our exact
calculations in this study, the size extension in the direction
of increasing μ is never achieved within the framework of
the exact diagonalization method. By contrast, focusing on
the coincidence of I± and the number of (discrete) relative
distances between H and D, rHD, the size extension in the
direction of increasing rHD should be permitted by following
the productions of the MBWFs. Hereafter, according to the
procedures schematically illustrated in Fig. 3, we construct
the MBWFs for N = 18.

Using an arbitrary unitary transformation to satisfy the
condition schematically shown in Fig. 3(a), i.e., V tr±, the
MBWFs of |�±

μ (0)〉 in Eq. (23) are defined as follows:

|�̃±
r (0)〉 ≡

∑
μ

V tr±
rμ |�±

μ (0)〉, (24)

where the subscript r is within the range of 1 � r � N/2 (I+)
for |�̃+

r (0)〉 and 1 � r � N/2 − 1 (I−) for |�̃−
r (0)〉, respec-

tively. In Fig. 3(a), Eq. (24) is represented as a matrix of

W = CV tr±†, (25)

where

Wr±
M ,r ≡ 〈r±

M (0)|�̃±
r (0)〉,Cr±

M ,μ ≡ 〈r±
M (0)|�±

μ (0)〉, (26)

FIG. 3. Schematic representations of the MBWFs method with
matrices for a charge model. (a) Unitary transformation, V trp, from
(Bloch) excited states (labeled by μ) to MBWFs (labeled by r),
where p = + (−) denotes the even-parity (odd-parity). (b) Selection
rule of V trp, where V trp is required to localize MBWFs on the sub-
space of M = 1 by satisfying r = rHD. (c) Selection of V trp in this
study.

and for the M = 1 subspace,

(W ±
1 )r±

1 ,r ≡ 〈r±
1 (0)|�̃±

r (0)〉 ≡ dr±
1
δr±

1 ,r (27)

should be required. As described in the previous section, be-
cause r±

1 = rHD, this condition means r = rHD. Introducing
the matrix in the M = 1 subspace,

(C±
1 )r±

1 ,r ≡ 〈r±
1 (0)|�±

μ (0)〉, (28)

and normalizing Eqs. (27) and (28) as

(W̄ ±
1 )r±

1 ,r ≡ (W ±
1 )r±

1 ,r√∑
r±′

1
|(W ±

1 )r±′
1 ,r |2

= δr±
1 ,r, (29)

(C̄±
1 )r±

1 ,μ ≡ (C±
1 )r±

1 ,μ√∑
r±′

1
|(C±

1 )r±′
1 ,μ|2

, (30)

the above-mentioned condition is interpreted as

W̄ ±
1 = C̄±

1 V tr±† (31)

045124-5



T. YAMAGUCHI et al. PHYSICAL REVIEW B 103, 045124 (2021)

FIG. 4. The probability weight in the M = 1 subspace at N = 18. Odd-parity Bloch states (a) and corresponding MBWFs (b). Even-parity
Bloch states (c) and corresponding MBWFs (d). The filled-in circles are the results with full charge fluctuations (Mmax = N/2) and empty
squares are the results of the HD model [54], as briefly illustrated in Appendix A. The solid lines are eye guidelines.

as schematically shown in Fig. 3(b). Then, V tr±† = (C̄±
1 )−1 is

definitely the best choice. However, because C̄±
1 is unfortu-

nately a nonorthogonal (nonunitary) matrix, this choice is not
permitted. Consequently, we must find a better choice of V tr±†

while satisfying Eq. (31) as much as possible [see Fig. 3(c)].
Next, we found V tr±† = (C±

HD)−1, where C±
HD are Eqs. (A3)

and (A4) in Appendix A, and one of the choices by referring
to the similarity of the probability weight in Eq. (30). Finally,
substituting V tr±

rμ = C±
HD into Eq. (24), the MBWFs in this

study can be obtained as

|�̃±
r (0)〉 =

∑
μ

(C±
HD)rμ|�±

μ (0)〉. (32)

Here, Eqs. (A3) and (A4) are related to the wave functions
of the eigenstates of the HD model, where the model is vali-
dated in the limit of U/T → +∞ [54], and we can derive the
model from a charge model with M = M ′ = 1 in Eqs. (10) and
(11) (see Appendix A). We show the above similarity with
respect to (C̄ p

1 )2
rHD,μ of Eq. (30) and (Cp

HD)2
rHDμ in Fig. 4 for

(a) p = − and (c) p = +. Furthermore, in the same manner,
we illustrate the complete one-to-one connection between r
and rHD of the MBWFs by satisfying W̄ p

1 = C̄ p
1 (Cp

HD)−1 ∼
diag[1, 1, · · · , 1] when calculating (W̄ p

1 )2
rHD,r of Eq. (29), as

shown in Figs. 4 for (b) p = − and (d) p = +. This complete
localization of MBWFs regarding rHD validates the extrapo-
lation procedure with the following size extension. Here, the
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FIG. 5. Expectation values of the charge-current operator at N =
18 (filled-in circles). This size extension is applied through an extrap-
olation in the direction of increasing r = rHD. The filled-in circles
and empty circle, which is one of the extrapolations, construct the
expectation values for Nex = 20. The inset shows schematics of
MBWFs for N = 18 and odd-parity. Each filled-in diagram local-
izes at approximately r = rHD (1 � r � N/2 − 1 = 8). Extending
the system size to Nex = 20, one can naturally obtain the MBWFs
of r = 1, · · · , I−

ex ≡ Nex/2 − 1 = 9 by adding an extended MBWF
as schematically drawn as a dotted diagram.

N/2 (N/2 − 1) vector components in the M = 1 subspace of
|�+

μ (0)〉 (|�−
μ (0)〉) in Eq. (23) account for approximately 63–

68 (67–73)% of all vector components as opposed to 100% of
the HD model. A difference of approximately 30% is related
to the many-body effects originating from the creations or
annihilations of HD pairs. We then appropriately include them
in our effective models with MBWFs, as introduced in the
next subsection.

At the end of this subsection, we calculate the expectation
values of J (C) in Eq. (12) by defining

J±
rg ≡ 〈�̃±

r (0)|J (C)|g(C)〉
i
√

N
. (33)

Because |g(C)〉 in Eq. (22) is even-parity, J+
rg = 0 for any r.

By contrast, J−
rg (1 � r � 8) at N = 18 has finite values, as

shown in Fig. 5. However, as is clearly observable in the
figure, we can presume that J−

8g converges to almost zero. In
this sense, the following extrapolation is permitted as one of
the size-extended formulations of the expectation values of
J (C) at Nex > N :

(Jex)+rg = 0 (1 � r � I+
ex = Nex/2), (34)

(Jex)−rg ≡
{

J−
rg (1 � r � 8)

0 (9 � r � I−
ex = Nex/2 − 1)

. (35)

C. Second process: Construction and size extension of effective
models with perturbative H (C)

V for ε = 0

In this subsection, we treat the long-range Coulomb inter-
action term, H (C)

V [see Eqs. (3) and (11)], as a perturbation
and calculate the effective models of H (C)

0 + H (C)
V in Eq. (10),

by utilizing previous MBWFs, |�̃±
r (0)〉 in Eq. (32). As an

example, an effective model can be introduced by calculating

the following matrix elements [55]:

(̃h±)r′,r ≡ 〈�̃±
r′ (0)|H (C) − E (C)

gV |�̃±
r (0)〉

= 〈�̃±
r′ (0)|H (C)

0 + H (C)
V − E (C)

gV |�̃±
r (0)〉, (36)

where E (C)
gV ≡ E (C)

g + 〈g(C)|H (C)
V |g(C)〉 for N = 18 and Mmax =

N/2. In this study, the size extensions of h̃± are achieved by
extending our previous method [18]. Exemplifying the case
of h̃− with V1 ≡ V,Vα�2 = 0, we describe how to access the
size-extended effective models from N = 18 in Eq. (36) to
Nex � N .

The entire structure of (̃h−)r′,r for N = 18 is displayed
as Sr′,r ≡ log10(|(̃h−)r′,r |/̃h−

max) in Fig. 6(a), where h̃−
max ≡

max(|(̃h−)r′,r |), and its diagonal structure is clearly seen be-
cause of the Hermitian nature of (̃h−)r′,r . We can thus only
consider how to achieve a size extension of (̃h−)r,r+m[=
(̃h−)r+m,r] (0 � m � 7 and 1 � r � 8 − m) in the direction
of increasing m and r, which are schematically drawn as X
arrows and the Y arrow in Fig. 6(b), respectively. In this
study, we employ the following approximations with both
the direction of increasing m and r to systematically obtain
a size-extended effective model, h̃−

ex.
First, we introduce the manner of truncating m. Here,

(̃h−)r,r+m is roughly related to the mth nearest-neighbor
transfer integral originating from the mth-order perturbative
expansion of T/U . Regarding this, we ignore all matrix ele-
ments of m � 4 (Sr′,r < 10−3) to construct the corresponding
size-extended effective model, h̃−

ex, in this paper. Note that
one can, of course, maintain more matrix elements to obtain
more accurate effective models. However, this increases the
difficulty of extrapolating h̃− in the r-direction owing to a re-
duction in the number of matrix elements, which are essential
for the extrapolation toward a size extension.

Next, for a fixed m, we extract all of the above matrix
elements at N = 18, h̃−

r,r+m (0 � m � 3 or Sr′,r > 10−3), as
shown by the filled-in circles in Figs. 6(c1)–6(c4) and consider
a reasonable manner of its size extension with increasing r.
First, we focus on the significant features at both the left and
right edges, namely, h̃−

1,1+m and h̃−
8−m,8. The former simply

corresponds to an attractive Coulomb interaction concern-
ing an excitonic state at r(rHD) = 1. This should be directly
included in the size-extended model. The latter can be inter-
preted as the finite-size effect at the edge, r(rHD) = 8 − m.
Because we now consider the size extension in the direction
of increasing r(rHD) as r(rHD) = 9 − m, · · · , I−

ex − m (I−
ex ≡

Nex/2 − 1), such an edge effect can be neglected for a suffi-
ciently large Nex. Regarding the rest of h̃−

r,r+m, all calculated
values for a fixed m are subequal. Then, for each m, we
simply substitute the arithmetic mean value of h̃−

r,r+m (2 � r �
7 − m) into the corresponding matrix elements of an effective
size-extended model. Note that this approximation is also
applied in our previous paper [18]. Consequently, our effective
model with a size extension, h̃−

ex, is written in the following
matrix elements. Namely, for 0 � m � 3,

(̃h−
ex)1,1+m = (̃h−

ex)1+m,1 ≡ (̃h−)1,1+m, (37)
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FIG. 6. Effective models of MBWFs with V1 = V = 2.8T,Vα�2 = 0. (a) Sr′,r ≡ log10(|(̃h−)r′,r |/̃h−
max), where h̃−

max ≡ max(|(̃h−)r′,r |) for
N = 18. The entire structure of Sr′,r is almost the same as all of the other effective models of MBWFs calculated in this study. (b) Size-extended
odd-parity effective model, h̃−

ex, at Nex = 20. All Sr′,r < 10−3 terms are ignored in this model. Arrows represent the direction of the size
extension. (c1–c4) Results for odd-parity. (d1–d4) Results for even-parity. The values at N = 18 (filled-in circles) and their size-extended
values from N = 18 to Nex = 20 (empty squares).

for 0 � m � 3 and 2 � r � I−
ex − m,

(̃h−
ex)r,r+m = (̃h−

ex)r+m,r ≡ 1

6 − m

7−m∑
l=2

(̃h−)l,l+m, (38)

and for m � 4,

(̃h−
ex)r,r+m = (̃h−

ex)r+m,r ≡ 0. (39)

In one instance, h̃−
ex at Nex = 20 is shown in Fig. 6(b) and as

empty squares in Figs. 6(c1)–6(c4).
The above situation is almost the same as the even-parity

case with V1 ≡ V,Vα�2 = 0 except for increasing one more
right edge effect at r(rHD) = 8 − m (see the filled-in circles
in Figs. 6(d1)–6(d4), and in this case the true right edge is
r(rHD) = 9 − m). This is attributed to the discontinuous struc-
ture of (C+

HD)rμ, as clearly shown in Eq. (A3). However, such
an edge effect should also be removed for an adequately large
Nex, as discussed above. Thus, as one of the size-extended ef-
fective models, h̃+

ex, shown for Nex = 20 in Figs. 6(d1)–6(d4),
is also written in the following matrix elements for 0 � m � 3
and 2 � r � I+

ex − m (I+
ex ≡ Nex/2),

(̃h+
ex)1,1+m = (̃h+

ex)1+m,1 ≡ (̃h+)1,1+m, (40)

(̃h+
ex)r,r+m = (̃h+

ex)r+m,r ≡ 1

6 − m

7−m∑
l=2

(̃h+)l,l+m, (41)

and is also written for m � 4 as

(̃h+
ex)r,r+m = (̃h+

ex)r+m,r ≡ 0. (42)

In the case of Vα ≡ V/α (α = 1, 2, 3),Vα�4 = 0, the matrix
structure of the effective models at N = 18 (Nex), i.e., h̃± (̃h±

ex),
is almost the same as in the above-mentioned case. Therefore,
we summarize the results in Appendix B.

At the present level, we can discuss the excitonic energy
structures and evaluate their accuracy obtained using our ef-
fective models. For such occasions, we check the finite-size
effects of the above effective models compared with those of
other models by exemplifying the case of V1 = V , Vα�2 = 0,
as shown in Fig. 7. Using the above effective models, the ex-
citonic energy structure is theoretically determined by solving
the eigenenergies of h̃± in Eq. (36) and h̃±

ex in Eqs. (37)–
(42), which are shown as empty circles and empty squares,
respectively, in Figs. 7(b) and 7(c). First, the former structure
is in good agreement with the structure of the filled-in circles
in Figs. 7(b) and 7(c), which are calculated using the pre-
cise eigenenergies from exactly diagonalizing H (C)

0 + H (C)
V in

Eq. (10) at Mmax = N/2, within the framework of the Lanczos
method at a finite size. By contrast, the latter structure is,
of course, affected by the finite-size effects for a small Nex

to some extent owing to the above-explained approximations
in constructing the effective size-extended models. However,
in the limit of Nex → +∞, the latter seems to quantitatively
converge to a plausible value of extrapolating exact results
(filled-in circles) for N → +∞. In this regard, we can con-
firm the sufficient inclusion of the many-body effects in the
above constructed effective models, h̃±

ex, with Nex � N = 18.
Finally, we evaluate the order of the error of the eigenenergies
in our effective models caused by the above-mentioned pertur-
bative treatment of H (C)

V . We define �(b) �(c) as the difference
between two fitting functions, which are shown as broken
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FIG. 7. (a) Schematic of the excitonic energy structure of a Mott
insulator in the region of low-lying excitation energies. (b, c) Finite-
size effects of the relative energies corresponding to the notations
in (a) for V1 = V = 2.8T , Vα�2 = 0. The values of the filled-in and
empty circles are calculated using the eigenenergies of the exact
diagonalization method for Mmax = N/2 and h̃± in Eq. (36) with
N = 12, 14, 16, and 18, respectively. Both the filled-in and empty
circles are fitted with a power series of 1/N , as shown with the
broken lines. The eigenenergies of the size-extended effective model
in Eqs. (37)–(42) with Nex = 18, 20, 24, 28, 34, 42, 54, 76, 128, and
400 give the values of the empty squares. Those of the HD model
[54] for N = 12, 14, 16, 18, 20, 24, 28, 34, 42, 54, 76, 128, and 400
correspond to the filled-in squares. For N, Nex > 20, we choose N
and Nex values to keep the intervals in the horizontal axis as equal
as possible. In panel (c), the HD model results never quantitatively
converge to a plausible value of extrapolating the exact results (filled-
in circles) within the limit of N → +∞.

lines in Figs. 7(b) and 7(c), and deducing from �(b),(c) ∼
0.02T for N → +∞, the order of the error is estimated to
be 10−2T . This is on the order of 1 meV for ET-F2TCNQ and
is practically negligible.

D. Third process: Introduction of H (C)
φ to an effective model and

its size extension

In this subsection, we directly treat the H (C)
φ term [see

Eqs. (4) and (11)] with an approximation of the finite
momentum, K ≡ 2π/N � 1. Namely, we approximately de-
fine the MBWFs with finite momentum K as |�̃±

r (K )〉 ≡∑
M

∑
r±

M
Wr±

M ,r |r±
M (K )〉 using Wr±

M ,r in Eq. (26). In a strict

sense, the many-body effects of H (C)
φ should be considered for

producing our effective models. However, in this study, the
H (C)

φ term is only required for mixing the effective models h̃+
ex

and h̃−
ex, as calculated in the previous subsection. Regarding

this, we ignore the many-body effects and only consider the
M = 1 subspace of H (C)

φ to introduce the effective models of

H (C)
φ in this study. To discuss whether the many-body effects

of H (C)
φ at a large system size are crucial is positioned as one

of our future studies. Then, owing to |�̃±
r (K )〉 = |r±

M (K )〉, by
definition,

(̃hφ )r′,r = φ0√
2

sin

(
Kr

2

)[
cos

(
Kr

2

)
+ cos

(
Kr

2
+ K

)]
δr′,r,

(43)

is derived after small cumbersome calculations for 1 � r′ �
N/2 and 1 � r � N/2 − 1 (see Appendix C). This can be
easily augmented in the direction of increasing r′, r, and the
following is found: (̃hφ

ex)r′,r ≡ (̃hφ )r′,r (1 � r′ � Nex/2, 1 �
r � Nex/2 − 1).

To summarize the above results, the effective model of
the full form of H (C) in Eq. (10) for N = 18 is defined as
Eq. (C14) in Appendix C. The model can be divided into two
block diagonal matrices, h̃(s = ±) with λs=± = ±1, which is
written as follows:

h̃(s) ≡
[

h̃+ λsh̃φ

λsh̃φ† h̃−

]
. (44)

Then, its size extension to Nex is also represented as follows:

h̃ex(s) ≡
[

h̃+
ex λsh̃

φ
ex

λsh̃
φ†
ex h̃−

ex

]
. (45)

Introducing the eigenstates and eigenvalues of h̃ex(s) as

h̃ex(s)|ψμ(s)〉 ≡ ωμ(s)|ψμ(s)〉, (46)

the optical conductivity spectrum at Nex is written as follows:

σ (ω) = γ

ω

∑
s=±

Nex−1∑
μ=1

|〈ψμ(s)|Jex〉|2
(ω − ωμ(s))2 + γ 2

, (47)

where

|Jex〉 ≡ [(Jex)+1g, · · · , (Jex)+
I+
exg

, (Jex)−1g, · · · , (Jex)−
I−
exg

]†/
√

2.

(48)

Here, all vector elements of |Jex〉 are expressed in Eqs. (34)
and (35). In addition, the number of peaks of the optical
spectra and the corresponding eigenstates with ε = 0 (finite
ε) in Eq. (47) is Nex/2 − 1 (Nex − 1), which was originally
N/2 − 1 (N − 1) before the above-mentioned size extension.
The change in optical spectra with and without a modulated
electric field is defined as follows:

�σ (ω) ≡ σ (ω)|ε �=0 − σ (ω)|ε=0. (49)

In a strict sense, the lifetimes of the eigenstates in Eq. (46)
with finite ε differ from those without ε. To incorporate this
into our theoretical calculations, we distinguish between the
broadenings of calculating �σ (ω) and those of calculating
only σ (ω)|ε=0 itself. Hereafter, our calculations employ Nex =
400, which is a sufficiently large size with negligible finite-
size effects of the calculated spectra. For convenience, we also
use σmax ≡ max(σ (ω)|ε=0).

III. OPTICAL SPECTRA AND EXCITONIC
ENERGY STRUCTURE

First, we determine the long-range Coulomb interaction
strengths, V s, by reproducing the optical conductivity spec-
trum with ε = 0 of ET-F2TCNQ, newly measured at 4 K. We
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FIG. 8. Optical conductivity spectra with ε = 0. The solid line
is the experimental spectrum of ET-F2TCNQ at 4 K, which has
σmax = 2586 S/cm at ω = 0.687 eV. This spectrum is obtained using
the Kramers-Kronig transformation of the reflectivity spectrum with
the electric fields of light parallel to the 1D molecular stack. The
experimental method of the low-temperature reflectivity measure-
ment was reported in Ref. [60]. The dashed (dotted) line represents
the MBWFs spectrum with a size extension from N = 18 to Nex =
400 and V1 = V = 2.8T,Vα�2 = 0 (V1 = V = 2.4T,V2 = V/2,V3 =
V/3,Vα�4 = 0).

consider that this spectrum contains pure electronic photoex-
citations with almost negligible electron-phonon couplings.
As shown in Fig. 8, we found the best V s for

(i) V1 = V = 2.8T,Vα�2 = 0,
(ii) V1 = V = 2.4T,V2 = V/2,V3 = V/3,Vα�4 = 0

[see Eqs. (6) and (7)] [61].

Next, tuning artificial broadenings, γ , we reproduce the
observed σ (ω) of ET-F2TCNQ at 294 K [43], as shown in
Figs. 9(a1) and 9(b1). We also obtain T /eV values from the
reported lowest excitation energy, 0.694 eV, as T = 0.107 eV
for (i) and T = 0.111 eV for (ii), respectively. Using this, we
can check whether the theoretical half width of the Lorentzian
spectrum in Eq. (47), i.e., 2γ ∼ 0.1 eV, is consistent with the
reported fitting parameter of ET-F2TCNQ at 294 K. Newly
introducing γ , we subsequently calculate �σ (ω), which de-
notes the change in optical conductivity spectra with and
without ε, where ε is related to the magnitude of a modulated
electric field [see Eq. (8)]. Accordingly, ε = 1.85 × 10−2 for
(i) and ε = 1.35 × 10−2 for (ii) are obtained as the best values.
As clearly shown in Figs. 9(a2) and 9(b2), although quan-
titative discrepancies with experimental results still remain
to a certain extent, the experimental single plus-minus-plus
structure is completely reproduced.

To clarify the influences of the many-body effects, we next
calculate the same spectra above by utilizing an HD model
[54], which is a minimal effective model of photoexcitations
in a 1D Mott insulator (see Appendix A). This effective model
only contains the M = 1 (single HD pair) subspace. As shown
in Figs. 10(a) and 10(b), the complete spectral structures of the
HD model almost quantitatively resemble those of previously
mentioned MBWFs. This similarity is considered incidentally
because of the spectral discrepancies between the effective
MBWFs model and the HD model at Vα�1 = 0 in our previous
paper (see Fig. 8 in Ref. [18]). However, the excitonic energy
structures of the HD model are obviously different from the
MBWFs results, as illustrated in Figs. 9(a3), 9(b3), and 10(c).

FIG. 9. Optical conductivity spectra with and without a modulated electric field. The solid thick lines are experimental data of ET-F2TCNQ
at 294 K, where σmax = 1119 S/cm is observed at ω = 0.694 eV (the vertical dashed line). The solid thin lines are MBWFs spectra with size
extensions from N = 18 to Nex = 400. (a1–a3) V1 = V = 2.8T,Vα�2 = 0, and ε = 1.85 × 10−2 (Eamp = 215 kV/cm, owing to T = 0.107 eV).
γ /T = 0.45 in (a1) and γ /T = 0.55 in (a2). (b1–b3) V1 = V = 2.4T,V2 = V/2,V3 = V/3,Vα�4 = 0, and ε = 1.35 × 10−2 (Eamp = 163
kV/cm, owing to T = 0.111 eV). γ /T = 0.45 in (b1) and γ /T = 0.55 in (b2). Panels (a3) and (b3) are the eigenenergies measured from the
ground state energy for ε = 0. Filled-in circles (squares) represent eigenenergies with odd-parity (even-parity). Insets are magnified low-lying
energy diagrams.
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FIG. 10. Optical conductivity spectra with and without a mod-
ulated electric field. In panels (a) and (b), the solid thick lines
are experimental data of ET-F2TCNQ at 294 K, where σmax =
1119 S/cm is observed at ω = 0.694 eV (the vertical dashed line).
The solid thin lines are spectra of the HD model with N = 400,
V1 = V = 2.8T,Vα�2 = 0, ε = 1.77 × 10−2 (Eamp = 231 kV/cm,
owing to T = 0.120 eV), γ /T = 0.40 in panel (a), and γ /T =
0.50 in panel (b). The dotted lines are spectra of the HD model
with N = 400, V1 = V = 2.4T,V2 = V/2,V3 = V/3,Vα�4 = 0, ε =
1.12 × 10−2 (Eamp = 156 kV/cm, owing to T = 0.128 eV), γ /T =
0.39 in panel (a), and γ /T = 0.44 in panel (b). (c) Eigenen-
ergies measured from the ground-state energy for ε = 0. Empty
circles (squares) represent eigenenergies with odd-parity (even-
parity) for V1 = V = 2.8T,Vα�2 = 0. Filled-in circles (squares)
represent eigenenergies with odd-parity (even-parity) for V1 = V =
2.4T,V2 = V/2,V3 = V/3,Vα�4 = 0.

Here, the excitonic energy structures are obtained by calcu-
lating the eigenenergies of h̃±

ex at Nex = 400 in Eq. (45). We
then define the eigenenergies as Ẽ±

ex(ν), where 1 � ν � I±
ex

and Ẽ±
ex(1) � · · · � Ẽ±

ex(I±
ex). In the case of the HD model, all

νth eigenenergies with odd-parity and even-parity are almost
completely degenerated. Namely, Ẽ+

ex(ν) ∼ Ẽ−
ex(ν) at a fixed ν

is satisfied for the cases of both (i) and (ii). By contrast, for an
effective model of MBWFs, such degeneracy is resolved.

To compare with a previous study [43], we focus on the
relationship between the lowest two eigenenergies Ẽ±

ex(ν =
1, 2) for the effective MBWFs model. For the case of (i)
[see Fig. 9(a3)], the odd-parity exciton is clearly bound,
whereas the even-parity exciton is unbound. In addition, the
starting energy of the even-parity continuum is blue-shifted
from that of the odd-parity continuum by �E . However, be-
cause �E ∼ 2 meV ∼0.02T is within the evaluated error of
our effective models in Fig. 7, we can regard the starting
energies between odd-parity and even-parity continuum as
subequal. Consequently, the excitonic energy structure in the
low-energy region is estimated as follows: Ẽ−

ex(1) < Ẽ−
ex(2) ∼

Ẽ+
ex(1) ∼ Ẽ+

ex(2), which is consistent with the schematic di-
agram shown in Fig. 7(a). In the case of (ii), the inset of
Fig. 9(b3) clearly indicates the excitonic energy structure

of Ẽ−
ex(1) < Ẽ+

ex(1) < Ẽ−
ex(2) ∼ Ẽ+

ex(2). This means that both
odd-parity and even-parity excitons are bound, and the starting
energy of the continuum is almost the same for odd-parity and
even-parity. Extracting a common point from the above two
relations, the even-parity exciton is less tightly bound than
the odd-parity exciton because of many-body effects arising
from full charge fluctuations. This feature is consistent with
the recent experimental fitting parameters of ET-F2TCNQ at
294 K using a four-level model [43]. Regarding the relative
energy with the MBWFs of Ẽ+

ex(1) − Ẽ−
ex(1), the obtained

values of 19 meV for (i) and 34 meV for (ii) are slightly
different from the experimental value of 26 meV.

Accordingly, the many-body effects clearly yield a signif-
icant difference in excitonic energy structures between the
effective model obtained from the MBWFs and HD models.
Namely, an even-parity excitonic state is less tightly bound
than an odd-parity state. We discuss the origin of the dif-
ference by simplifying the problem by choosing case (i).
Regarding such bound excitons, the most crucial term is the
r(rHD) = 1 matrix element of the effective model, namely,

(̃h±
ex)1,1 ≡ U − V + �Ẽ± ≡ U − Ṽ ±, (50)

where �Ẽ± describes the correction energy attributed to
many-body effects. From the previous results shown in
Figs. 6(c1) and 6(d1), �Ẽ+ = 1.68T > �Ẽ− = 1.26T can
be estimated. This suggests that the renormalized long-range
Coulomb interaction strength satisfies −Ṽ − < −Ṽ +, which
roughly means that the attractive interaction strength of
odd-parity is stronger than that of even-parity at r(rHD) =
1. Within the exact calculations of (̃h+)1,1 − (̃h−)1,1 in
Eq. (36) for N = 12, 14, 16, and 18, we fitted them to a
1/N-linear function and found (̃h+)1,1 − (̃h−)1,1 → 0.291T
for N → +∞. Although the 1/N-dependency of the fitting
function should be more carefully discussed to a certain ex-
tent, the value of 0.291T roughly denotes �Ẽ+ − �Ẽ− =
0.291T > 0 for N → +∞. This also supports the weakly
bound of even-parity exciton. We note that for the HD
model, �Ẽ± = 0 is always satisfied, and therefore both
odd- and even-parity exciton bound states are completely
degenerated.

At the end of this section, we briefly comment on the
possible origins of the above quantitative mismatch between
theory and experiment. One is the perturbative treatment of
the H (C)

V term. This affects both optical spectra and excitonic
energy structures at a quantitative level. Concerning the spec-
tra, we did not consider the lifetimes (broadenings) of a bound
exciton state and unbound (continuum) states are different in
a strict sense. In addition, because of the approximation of the
H (C)

φ term in Eq. (43), it is natural that the above theoretical
�σ (ω) deviates from the experimental spectrum to a certain
extent. Toward the strict construction of MBWFs associated
with H (C)

φ , both the ground state and excited states at the
finite center-of-gravity momentum frame should be treated
the same. However, before dealing with such complicated
treatments associated with the spectra, we would first like
to investigate how the theoretical quantitative aspects can be
improved beyond the perturbative treatment of H (C)

V in the
near future. To achieve this, we recently found the useful
expression of a charge model [62].

045124-11



T. YAMAGUCHI et al. PHYSICAL REVIEW B 103, 045124 (2021)

IV. SUMMARY

To summarize, we theoretically investigated the excitonic
optical conductivity spectra of a Mott insulator with and with-
out a modulated electric field at an absolute temperature of
zero. Applying the MBWFs method to a charge model, which
is interpreted as a good effective model of photoexcitations of
a 1D Mott insulator under the spin-charge separation, we suc-
ceeded in constructing both odd- and even-parity one-HD pair
effective models of photoexcitations, including many-body ef-
fects for a large system size. To validate this, we have studied
the photoexcitations of ET-F2TCNQ, which is a typical 1D
Mott insulator. As a result, theoretical spectra with appropriate
broadenings qualitatively reproduce the recent experimental
data of ET-F2TCNQ at 294 K. In addition, the binding ener-
gies of the excitons obtained with even-parity are smaller than
those with odd-parity owing to many-body effects. This trend
is qualitatively consistent with the analytical results of the
experimental spectrum using a simple four-level model, which
includes two odd-parity and one even-parity excited states,
and the ground state. To conduct theoretical analyses on an
experimental spectrum more precisely, an optical conductivity
spectrum with a modulated electric field at 4 K is desirable
because the sharpening of the plus-minus-plus structure, as
observed in Figs. 9(a2) and 9(b2), enables us to obtain a more
quantitative energy-level structure as well as a more exact
parameter set.

We would like to note that we can further develop our MB-
WFs method to obtain more highly quantitative estimations
comparable to the experiments. Particularly in this study, one
of the origins of the quantitative mismatch between theory and
experiment is considered to be the perturbative treatment of
the H (C)

V term. Although little discrepancy of the excitation en-
ergies between the exact calculations and the MBWFs method
calculations can be seen [see the filled-in and empty circles
in Figs. 7(b) and 7(c)], the discrepancy possibly increases
when increasing V . Judging from this, one of our crucial
tasks is to establish alternative treatments including many-
body effects of the H (C)

V term beyond our present perturbative

approach. This also leads to quantitative comparison with
the experiments of 1D Mott insulators, such as a Ni-halogen
chain compound, which is thought to have a large V [42].
However, our current results are sufficiently useful to under-
stand many-body excitonic excitations in a 1D Mott insulator
and contribute to revealing the physics of photoinduced phe-
nomena in strongly correlated electron systems. To produce
appropriate and effective MBWFs models of photoexcitations
in the thermodynamic limit for more general tight-binding
models with higher dimensions, containing a two-dimensional
Mott insulator, is also an attractive area of future research.
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APPENDIX A: BRIEF INTRODUCTION OF A
HOLON-DOUBLON MODEL WITH ITS EIGENSTATE,

OPTICAL CONDUCTIVITY, AND
EXCITONIC ENERGY STRUCTURE

In this section, using the notations of a charge model,
we introduce an HD model [54], which minimally describes
one-HD pair excited states in a 1D Mott insulator. Namely,
the HD model only contains the M = 1 subspace and neglects
all charge fluctuations arising from M � 2, M = 0 subspaces,
where M denotes the number of HD pairs in a charge model.
Then, the Mott-insulator ground state and all of the photoex-
cited states are only included in the subspace of M = 0 and
M = 1, respectively. This approximation is validated in the
limit of U/T → +∞. When one divides the original charge
model Hamiltonian H (C)

0 + H (C)
V in Eq. (10) at the M = 1

subspace into the odd-parity part h−
1 and even-parity part h+

1 ,
the following expressions are obtained:

h−
1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

E1 − V1 −2T 0

−2T E1 − V2
. . .

. . .
. . .

. . .
. . .

. . . −2T
−2T E1 − VI−−1 −2T

0 −2T E1 − VI−

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (A1)

h+
1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

E1 − V1 −2T 0

−2T E1 − V2
. . .

. . .
. . .

. . .
. . .

. . . −2T
−2T E1 − VI+−1 −2

√
2T

0 −2
√

2T E1 − 2VI+

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (A2)

These are derived by calculating all matrix elements of
(hp

1 )r′,r = 〈r′p
1 (0)|(H (C)

0 + H (C)
V )|rp

1 (0)〉, where |rp
1 (0)〉 is in

Eq. (20) and the subscripts r′, r naturally have a one-to-
one correspondence with a relative distance between H and
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D, rHD. Then, the dimension of the matrix of h−
1 (h+

1 ) is
I− ≡ N/2 − 1 (I+ ≡ N/2), and E1 ≡ U + N

∑
α Vα . For the

ground state, all sites are singly occupied by electrons, and
their energy is therefore E0 ≡ N

∑
α Vα . Analytically calcu-

lating the inverse matrices of the unitary transformations of
diagonalizing h±

1 for all vanishing Vα , we decide the unitary
transformations of constructing MBWFs in this study as fol-
lows:

(C+
HD)rμ =

⎧⎪⎪⎨⎪⎪⎩
√

2

N
sin

[π

N
r(2μ − 1)

]
(r = N/2)

2√
N

sin
[π

N
r(2μ − 1)

]
(1 � r � N/2 − 1)

,

(A3)

(C−
HD)rμ = 2√

N
sin

[
2π

N
rμ

]
(1 � r � N/2 − 1). (A4)

Applying the definitions in Eqs. (23) and (24) to h±
1 ,

|�̃±
r (0)〉 = |r±

1 (0)〉 is a trivial result. From Eq. (33), J−
rg =

2cS(1)δr,1 is also derived. Replacing h̃±
ex with h±

1 − E0 at
Nex = N in Eqs. (45), (46), (47), and (49), the optical spectra
with and without a modulated electric field for the HD model
are calculated with |Jex〉 in Eq. (48) of the

(Jex)+rg = 0 (1 � r � I+
ex = Nex/2), (A5)

(Jex)−rg ≡
{

2cS(1) (r = 1)
0 (2 � r � I−

ex = Nex/2 − 1) . (A6)

The actual spectra of the HD model at N = 400, compared
with the experimental data of ET-F2TCNQ at 294 K, are
shown in Figs. 10(a) and 10(b). In Fig. 10(c), we also show
the excitonic energy structures, which are corresponding to
the eigenenergies of h±

1 − E0.

APPENDIX B: EFFECTIVE MODEL AND ITS SIZE
EXTENSION WITH Vα ≡ V/α (α = 1, 2, 3),Vα�4 = 0

The size extension of h̃± in the case of Vα ≡ V/α (α =
1, 2, 3),Vα�4 = 0 is achieved in almost the same way as al-
ready mentioned in Sec. II C. The specific difference is the α

dependency of (̃h±
ex)α,α+m for α = 1, 2, 3. This is simply be-

cause the exciton effects associated with the Vα ≡ V/α (α =
1, 2, 3) terms and the same structures are also seen in the
corresponding matrix elements of the HD model for m = 0
[see the diagonal elements in Eqs. (A1) and (A2)]. Then,
the effective size-extended models h̃±

ex in this study, shown
for Nex = 20 in Figs. 11(a1)–11(a4) and 11(b1)–11(b4), are
similarly defined for 0 � m � 3 and 4 � r � I±

ex − m as

(̃h±
ex)α,α+m = (̃h±

ex)α+m,α ≡ (̃h±)α,α+m, (B1)

(̃h±
ex)r,r+m = (̃h±

ex)r+m,r ≡ 1

4 − m

7−m∑
l=4

(̃h±)l,l+m, (B2)

and for m � 4 as

(̃h±
ex)r,r+m = (̃h±

ex)r+m,r ≡ 0. (B3)

FIG. 11. Effective models of MBWFs at N = 18 (filled-in cir-
cles) and their size extended values from N = 18 to Nex = 20 (empty
squares) with V1 = V = 2.4T,V2 = V/2,V3 = V/3,Vα�4 = 0. (a1–
a4) Results with odd-parity. (b1–b4) Results with even-parity.

APPENDIX C: SUPPLEMENTAL MATERIALS ON
INTRODUCING H (C)

φ INTO THE M = 1 SUBSPACE

Here, we briefly comment on some derivations in Sec. II D.
We start from the three bare bases with the normalization
factor N including Eq. (20) as follows:

∣∣rp
M (0)

〉 ≡ 1√
N

N−1∑
l=0

T l
R(1 + λpP )|rM〉, (C1)

∣∣rp
M (K )

〉 ≡ 1√
N

N−1∑
l=0

cos(Kl )T l
R(1 + λpP )|rM〉, (C2)

∣∣rp,a
M (K )

〉 ≡ 1√
N

N−1∑
l=0

sin(Kl )T l
R(1 + λpP )|rM〉, (C3)

where |rM〉 is given by Eq. (13) and has the site number of the
ith doublon (holon) of pi (qi). In this study, we assume K ≡
2π/N � 1 (N � 1) even for the case of finite N . By defining
Lp

rM (0), Lp
rM (K ), Lp,a

rM (K ) as integers of at most O(N ), we can
introduce the following:

〈rM |
N−1∑
l=0

T l
R(1 + λpP )|rM〉 ≡ Lp

rM
(0), (C4)

〈rM |
N−1∑
l=0

cos(Kl )T l
R(1 + λpP )|rM〉 ≡ Lp

rM
(K ), (C5)

〈rM |
N−1∑
l=0

sin(Kl )T l
R(1 + λpP )|rM〉 ≡ Lp,a

rM
(K ). (C6)

Using the expressions of

F M
sn (K ) ≡

M∑
i=1

[sin(K pi ) − sin(Kqi )] ∼ O(K ), (C7)

F M
cs (K ) ≡

M∑
i=1

[cos(K pi ) − cos(Kqi )] ∼ O(K2), (C8)

045124-13



T. YAMAGUCHI et al. PHYSICAL REVIEW B 103, 045124 (2021)

all nonzero matrix elements of H (C)
φ are derived as follows:

〈
r−p

M (K )
∣∣H (C)

φ

∣∣rp
M (0)

〉 = −φ0F M
sn (K )√
2

√
L−p

rM (K )

Lp
rM (0)

∼ O(1), (C9)

〈
rp,a

M (K )
∣∣H (C)

φ

∣∣rp
M (0)

〉 = −φ0F M
cs (K )√
2

√
Lp,a

rM (K )

Lp
rM (0)

∼ O(1/N ), (C10)

〈
r−p

M (0)
∣∣H (C)

φ

∣∣rp
M (K )

〉 = −φ0F M
sn (K )√
2

√
L−p

rM (0)

Lp
rM (K )

∼ O(1), (C11)

〈
rp

M (0)
∣∣H (C)

φ

∣∣rp,a
M (K )

〉 = −φ0F M
cs (K )√
2

√
Lp

rM (0)

Lp,a
rM (K )

∼ O(1/N ). (C12)

Then, Eqs. (C10) and (C12) can be ignored with sufficiently
large N values. For this reason, we only employ the bare basis
representation of Eq. (20).

Next, using |�̃±
r (0)〉 of Eq. (32) and |�̃±

r (K )〉 ≡∑
M

∑
r±

M
Wr±

M ,r |r±
M (K )〉 with Wr±

M ,r in Eq. (26), we define the
new basis of the MBWFs as

|r, p, s〉 ≡
∣∣�̃p

r (0)
〉 + λs

∣∣�̃p
r (K )

〉
√

2
(λs=± = ±1). (C13)

Assuming K � 1, the full form of the effective model of H (C)

in Eq. (10) for a finite N is written as the basis representation
of |r,+,+〉, |r,−,+〉, |r,+,−〉, |r,−,−〉 in Eq. (C13) as fol-
lows: ⎡⎢⎢⎣

h̃+ h̃φ 0 0
h̃φ† h̃− 0 0
0 0 h̃+ −h̃φ

0 0 −h̃φ† h̃−

⎤⎥⎥⎦, (C14)

FIG. 12. Matrix elements of the effective model of H (C)
φ at N =

18. The filled-in circles are calculated using Eq. (C15) and are fitted
well by Eq. (C17) with a continuous r (dashed line).

where h̃± is as indicated in Eq. (36) and

(̃hφ )r′,r ≡ 〈�̃+
r′ (K )|H (C)|�̃−

r (0)〉 + 〈�̃+
r′ (0)|H (C)|�̃−

r (K )〉
2

= 〈�̃+
r′ (K )|H (C)

φ |�̃−
r (0)〉 + 〈�̃+

r′ (0)|H (C)
φ |�̃−

r (K )〉
2

(C15)

for 1 � r′ � N/2 and 1 � r � N/2 − 1. Because this matrix
structure is extremely complicated and its extrapolation is
difficult, we can approximately replace h̃φ in Eq. (C15) with
the matrix elements on the M = 1 subspace as follows:

(̃hφ )r′,r ∼ 〈r′+
1 (K )|H (C)

φ |r−
1 (0)〉 + 〈r′+

1 (0)|H (C)
φ |r−

1 (K )〉
2

(C16)

= φ0√
2

sin

(
Kr

2

)[
cos

(
Kr

2

)
+ cos

(
Kr

2
+ K

)]
δr′,r .

(C17)

Equation (C17) is, of course, equivalent to Eq. (43). For
N = 18, the diagonal elements of Eq. (C15) are well fitted
by Eq. (C17), as shown in Fig. 12. Regarding the expectation
values of the current operator in Eqs. (33)–(35), the new basis
of Eq. (C13) satisfies 〈r, p, s|J (C)|g(C)〉/(i

√
N ) = J p

rg/
√

2 be-
cause we neglect the finite K-dependency of the ground state,
|g(C)〉, in Eq. (22). This leads to the formulation of Eq. (48).
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[49] Z. Lenarčič, M. Eckstein, and P. Prelovšek, Phys. Rev. B 92,
201104(R) (2015).

[50] J. C. Talstra, S. P. Strong, and P. W. Anderson, Phys. Rev. Lett.
74, 5256 (1995).

[51] W. Stephan and K. Penc, Phys. Rev. B 54, R17269(R) (1996).
[52] E. R. Gagliano and C. A. Balseiro, Phys. Rev. Lett. 59, 2999

(1987).
[53] Y. Saad, Iterative Methods for Sparse Linear Systems (Siam,

Philadelphia, PA, 2003).
[54] Y. Mizuno, K. Tsutsui, T. Tohyama, and S. Maekawa, Phys.

Rev. B 62, R4769 (2000).
[55] As mentioned in our previous paper [18], this theoretical ap-

proach is related to a configuration interaction (CI) method [56]
or the Tamm-Dancoff approximation [57]. The CI method has
been widely used as one of the typical treatments for pertur-
batively calculating highly excited many-electron basis states
[58,59].

[56] C. J. Cramer, Essentials of Computational Chemistry, 2nd ed.
(John Wiley & Sons, Ltd., New York, NY, 2002), pp. 191–232.

[57] A. L. Fetter and J. D. Walecka, Quantum Theory of Many-
particle System (Dover, Mineola, NY, 2003), pp. 538–540.

[58] V. A. Dzuba, J. C. Berengut, C. Harabati, and V. V. Flambaum,
Phys. Rev. A 95, 012503 (2017).

[59] Y. Garniron, A. Scemama, E. Giner, M. Caffarel, and P.-F. Loos,
J. Chem. Phys. 149, 064103 (2018).

[60] M. Ohkura, Y. Ishige, R. Sawada, H. Matsuzaki, Y. Nogami, H.
Nishikawa, M. Yamashita, S. Horiuchi, and H. Okamoto, Phys.
Rev. B 84, 085136 (2011).

[61] For ε = 0 and U/T → +∞, the analytic form of optical spectra
in the Hubbard model, σ1(ω), is given by Eq. (10) in Ref. [35],
for instance. Defining the exact spectra for ε = 0 and finite U,V
of the Hubbard model as σ (ω), σ1(ω) can reproduce σ (ω) only
at a qualitative level. In contrast, except for spin excitations,
our spectra with MBWFs quantitatively can reproduce σ (ω), in
principle, at least for U/T � 5 [18].

[62] K. Iwano, T. Yamaguchi, and H. Okamoto, Phys. Rev. B 102,
245114 (2020).

045124-15

https://doi.org/10.1038/nmat4967
https://doi.org/10.1103/PhysRevLett.100.166403
https://doi.org/10.1103/PhysRevB.78.241104
https://doi.org/10.1103/PhysRevB.86.075148
https://doi.org/10.1103/PhysRevLett.110.126401
https://doi.org/10.1103/PhysRevLett.122.077002
https://doi.org/10.1103/PhysRevB.100.235134
https://doi.org/10.1038/nphys316
https://doi.org/10.1088/0022-3719/15/1/007
https://doi.org/10.1103/PhysRevB.41.2326
https://doi.org/10.1103/PhysRevLett.64.1831
https://doi.org/10.1103/PhysRevB.43.8401
https://doi.org/10.1103/PhysRevB.45.13156
https://doi.org/10.1103/PhysRevB.50.17980
https://doi.org/10.1103/PhysRevB.55.15475
https://doi.org/10.1103/RevModPhys.66.763
https://doi.org/10.1103/PhysRevLett.85.3910
https://doi.org/10.1103/PhysRevLett.93.076401
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1103/PhysRevB.48.10345
https://doi.org/10.1103/RevModPhys.77.259
https://doi.org/10.1103/PhysRevB.64.085119
https://doi.org/10.1103/PhysRevB.64.125119
https://doi.org/10.1103/PhysRevB.66.045114
https://doi.org/10.1103/PhysRevB.67.075106
https://doi.org/10.1103/PhysRevLett.92.256401
https://doi.org/10.1103/PhysRevB.75.205128
https://doi.org/10.1103/PhysRevB.93.125108
https://doi.org/10.1103/PhysRevB.68.075101
https://doi.org/10.1103/PhysRevB.70.085101
https://doi.org/10.1103/PhysRevLett.95.087401
https://doi.org/10.1038/s42005-019-0223-8
https://doi.org/10.1016/S0038-1098(97)00226-3
https://doi.org/10.1103/PhysRevB.62.10059
https://doi.org/10.1038/nphys1831
https://doi.org/10.1103/PhysRevLett.112.117801
https://doi.org/10.1103/PhysRevLett.115.187401
https://doi.org/10.1103/PhysRevB.92.201104
https://doi.org/10.1103/PhysRevLett.74.5256
https://doi.org/10.1103/PhysRevB.54.R17269
https://doi.org/10.1103/PhysRevLett.59.2999
https://doi.org/10.1103/PhysRevB.62.R4769
https://doi.org/10.1103/PhysRevA.95.012503
https://doi.org/10.1063/1.5044503
https://doi.org/10.1103/PhysRevB.84.085136
https://doi.org/10.1103/PhysRevB.102.245114

