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The spectra and role in the spin dynamical properties of bound states of elementary magnetic excitations
named Bethe strings that occur in some integrable spin and electronic one-dimensional models have recently
been identified and realized in several materials by experiments. Corresponding theoretical studies have usually
relied on the one-dimensional spin-1/2 Heisenberg antiferromagnet in a magnetic field. At the isotropic point,
it describes the large onsite repulsion U limit of the spin degrees of freedom of the one-dimensional fermionic
Hubbard model with one electron per site in a magnetic field 4. In this paper we consider the thermodynamic limit
and study the effects of lowering the latter quantum problem ratio u = U /4t, where ¢ is the first-neighbor transfer
integral, on the line-shape singularities in (k, w)-plane regions at and just above the lower thresholds of the
transverse and longitudinal spin dynamical structure factors. The most significant spectral weight contribution
from Bethe strings leads to a gapped continuum in the spectrum of the spin dynamical structure factor St~ (k, ).
Our study focuses on the line shape singularities at and just above the gapped lower threshold of that continuum,
which have been identified in experiments. Our results are consistent with the contribution of Bethe strings to
S$%(k, w) being small at low spin densities and becoming negligible upon increasing that density. Our results

provide physically important information about how electron itinerancy affects the spin dynamics.
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I. INTRODUCTION

Recently, there has been a renewed interest in the ex-
perimental identification and realization of bound states of
elementary magnetic excitations named Bethe strings in
materials whose magnetic properties are described by the
one-dimensional (1D) spin-1/2 Heisenberg antiferromagnet
in magnetic fields [1-5]. This applies to that model isotropic
point in the case of experimental studies of CuCl,2N(CsDs)
and Cu(C4H4N>)(NOs3), [4-6].

The isotropic spin-1/2 Heisenberg XXX chain describes
the spin degrees of freedom of the 1D fermionic Hubbard
model’s Mott-Hubbard insulator phase in the limit of large
onsite repulsion U. That phase is reached at a density of one
electron per site. Interesting related physical questions are
whether lowering the ratio u = U /4t leads to a description
of the spin dynamical properties suitable to spin-chain com-
pounds and how electron itinerancy affects the spin dynamics.
Here ¢ is the model first-neighbor transfer integral.

In the case of the 1D fermionic Hubbard model, there
are in its exact solution [7-9] two types of Bethe strings
described by complex nonreal Bethe-ansatz rapidities. They
refer to the model spin and charge degrees of freedom,
respectively [10-12]. Here we call them charge and spin
n-strings. The nature of their configurations becomes clearer
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in terms of the rotated electrons that are generated from the
electrons by a unitary transformation. It is such that o =1, |
rotated-electron  single-site occupancy, rotated-electron
double-site occupancy, and rotated-electron no site occupancy
are good quantum numbers for the whole # > 0 range. (For
electrons they are good quantum numbers only for large u.)
The corresponding electron - rotated-electron unitary operator
is uniquely defined in Ref. [13] by its set of 4L x 4L = 4%
matrix elements between all 4" energy eigenstates that span
the model’s Hilbert space. Here L is the number of sites and
lattice length in units of lattice spacing one.

The spin n-strings are for n > 1 bound states of a number
n of spin-singlet pairs of rotated electrons with opposite spin
projection that singly occupy sites. The charge n-strings are
for n > 1 bound states of n charge n-spin singlet pairs of
rotated-electron doubly and unoccupied sites [11,12]. How-
ever, energy eigenstates described by only real Bethe-ansatz
rapidities do not contain n > 1 charge and spin n-strings and
are populated by unbound spin-singlet pairs and unbound
charge n-spin singlet pairs [11,12]. Ground states are not
populated by the latter type of pairs.

Previous studies focused on contributions to the spin dy-
namical structure factors of the 1D fermionic Hubbard model
with one electron per site from excited energy eigenstates
described by real Bethe-anstaz rapidities at zero magnetic
field [14-16] and in a finite magnetic field [17]. There were
also studies of structure factors of the 1D Hubbard model in a
magnetic field in the limit of low excitation energy w [18].
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Our study addresses the 1D Hubbard model with one
electron per site in the spin subspace spanned by energy
eigenstates without charge n-spin singlet pairs. Some of
these energy eigenstates are described by complex nonreal
spin Bethe-ansatz rapidities and thus are populated by spin
n-strings.

The general goal of this paper is the study of the contribu-
tion from spin n-string states to the spin dynamical structure
factors of the 1D Hubbard model with one electron per site in
a magnetic field 4. Our study relies on the dynamical theory
introduced for the 1D Hubbard model in Ref. [19]. It has been
adapted to the 1D Hubbard model with one electron per site
in a spin subspace spanned by energy eigenstates described
by real Bethe-ansatz rapidities in Ref. [17]. The studies of
this paper use the latter dynamical theory in an extended
spin subspace spanned by two classes of energy eigenstates,
populated and not populated by spin n-strings, respectively.

In the case of integrable models, the general dynamical
theory of Refs. [17,19,20] reaches the same finite-energy
dynamical correlation functions expressions as the mobile
quantum impurity model scheme of Refs. [21,22]. Such ex-
pressions apply at and in the (k, w)-plane vicinity of the
corresponding spectra’s lower thresholds’. That for the former
dynamical theory and the mobile quantum impurity model
scheme such dynamical correlation functions expressions are
for arbitrary finite values of the excitation energy indeed the
same and account for the same microscopic processes is an
issue discussed and confirmed in Appendix A of Ref. [11] and
in Ref. [23] for a representative integrable model and several
dynamical correlation functions.

The dynamical theory of Refs. [17,19,20] is a generaliza-
tion to the whole u = U /4t > 0 range of the approach used
in the u — oo limit in Refs. [24,25]. Momentum dependent
exponents in the expressions of spectral functions have also
been obtained in Refs. [26,27].

Beyond the studies of Ref. [17], here the application of the
dynamical theory is extended to the contribution to the spin
dynamical structure factors from excited energy eigenstates
populated by spin n-strings.

The theory refers to the thermodynamic limit, in which the
expression of the square of the matrix elements of the dynam-
ical structure factors between the ground state and the excited
states behind most spectral weight has the general form given
in Eq. (D7). It does not provide the precise values of the u and
m dependent constant 0 < B; < 1 and u# dependent constants
0 < f; < 1 wherel = 0, 2, 4 in that expression. In spite of this
limitation, our results provide important physical information
on the dynamical structure factors under study.

In the case of the related isotropic spin 1/2 Heisenberg
chain in a magnetic field, it is known [4] that the only con-
tribution from excited energy eigenstates populated by spin
n-strings that leads to a (k, w)-plane gapped continuum with
a significant amount of spectral wight refers to S*~(k, w).

Based on a relation between the level of negativity of the
momentum dependent exponents that control the spin dynami-
cal structure factors (k, w)-plane singularities and the amount
of spectral weight existing near them, we confirm that that
result applies to the whole u > 0 range of the 1D Hubbard
model with one electron per site in a magnetic field. However,
the contribution of spin n-strings states to S¥(k, w) is found

to be small at low spin densities and to become negligible
upon increasing it beyond a spin density 7 that decreases upon
decreasing u, reading /i = 0 for u — oo and /i ~ 0.317 for
u > 1. Finally, the contribution of these states to S~ (k, w) is
found to be negligible at finite magnetic fields.

The main aim of this paper is the study of the line shape
singularities of ST~ (k, w), $**(k, ), and S%(k, w) at and just
above the (k, w)-plane gapped lower threshold of the spec-
tra associated with spin n-string states. The corresponding
singularity peaks have been identified in neutron scattering
experiments [4-6].

As a side result, we address the more general problem
of the line-shape of the transverse and longitudinal spin dy-
namical structure factors at finite magnetic field # in the
(k, w)-plane vicinity of singularities at and above the lower
thresholds of the spectra of the excited energy eigenstates of
the 1D Hubbard model with one electron per site that produce
a significant amount of spectral weight. This includes both
excited states with and without spin n-strings. The contribu-
tion from the latter states leads to the largest amount of spin
dynamical structure factors’ spectral weight [17].

Our secondary goal is to provide an overall physical picture
that includes the relative (k, w)-plane location of all spectra
with a significant amount of spectral weight and accounting
for the contributions of different types of states to both the
gapped and gapless lower threshold singularities that emerge
in the spin dynamical structure factors.

The paper is organized as follows. The model and the spin
dynamical structure factors are the issues addressed in Sec. 1.
In Sec. III the (k, w)-plane spectra of the excited states that
lead to most dynamical structure factors’ spectral weight are
studied, with emphasis on those of the spin n-string states. The
line shape at and above the gapped lower thresholds of the
n-string states’ dynamical structure factors spectra is the main
subject of Sec. IV. As a side result, in that section the problem
is revisited at and above the lower thresholds of the (k, w)-
plane continua associated with excited states described by real
Bethe-anstaz rapidities. In Sec. V the limiting behaviors of
the spin dynamical structure factors are addressed. Finally, the
discussion and concluding remarks are presented in Sec. VI.

A set of useful results needed for our studies are presented
in five Appendices. This includes the selection rules and sum
rule provided in Appendix A. In Appendix B the gapless
transverse and longitudinal continuum spectra are revisited.
The energy gaps between the gapped lower thresholds of
the spin n-string states’ spectra and the lower (k, w)-plane
continua is the issue addressed in Appendix C. In Appendix D
the number and current number deviations and the spectral
functionals that control the momentum dependent exponents
in the spin dynamical structure factors’ expressions are given.
Some useful quantities also needed for our studies are defined
and provided in Appendix E.

II. THE MODEL AND THE SPIN DYNAMICAL
STRUCTURE FACTORS

In this paper we use in general units of lattice constant
and Planck constant one. Our study refers to spin subspaces
spanned by energy eigenstates for which the number of lattice
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sites N, equals that of electrons N = Ny + N, of which N
and N, have up- and down-spin projection, respectively.

The Hubbard model with one electron per site at vanishing
chemical potential in a magnetic field /4 under periodic bound-
ary conditions on a 1D lattice of length L — oo is given by

H=tT+UVp+2ugh§-. 6))

Here pp is the Bohr magneton and for simplicity in gup we
have taken g = 2. The operators read

N
=Y Y (i, cine+cl i) and
o=t j=1

N
VD Z f)]
J=1

T

1Py where pig =cl cjo—1/2, (2)

where T is the kinetic-energy operator in units of #, Vp is the
electron (or spin 1/2 atom) on-site repulsion operator in units
of U, the operator cf o (and c¢; ) creates (and annihilates) a
spin-projection o =1, |, electron at lattice site j =1, ..., N,
and the electron number operators read N = Y _ " N and
N, = szv Ao = lev,l cj ¢jo- Moreover, §° = ZN &
is the diagonal generator of the global spin SU (2) symmetry
algebra. We denote the energy eigenstate’s spin projection by
§“=—(Ny —N})/2 €[S, S], where S € [0, N/2] denotes
their spin.

Our results refer to magnetic fields 0 < & < k. and corre-
sponding spin densities 0 < m < 1. Here m = (Ny — N )/N,
and A, is the critical magnetic field above which there is fully
polarized ferromagnetism. The corresponding spin-density
curve that relates 4 and m is given by

0
k
hm) = — k) €[0.h,]. where
2pup m=1-2kg, /7
2ughe = 2up h(m)|m=1 = /(41)> + U2 - U, 3)

€%(g) is the s band energy dispersion, Eq. (E21), whose
zero-energy level is shifted relative to that in Eq. (ES), such
that g,(kp;) =0, and the magnetic energy scale 2up h. is
associated with the quantum phase transition from the Mott-
Hubbard insulator phase to fully polarized ferromagnetism.
It defines the corresponding critical magnetic field, h. =
(V@) +U? = U)/2up.

The spin dynamical structure factors studied in this paper
in the (k, w)-plane vicinity of well defined singularities are
quantities of both theoretical interest and of interest for com-
parison with experimentally measurable quantities. They can
be written as

Sk, w) = Ze”’”/ dte”"”(GSIS”(t)S“(O)IGS)

= > |wI${IGS) 18 (e — 0 (k)). 4)

Here a = x, y, z, the spectra read o’ (k) = (E{* — Egs), E}°
refers to the energies of the excited energy eigenstates that
contribute to the aa = xx, yy, zz dynamical structure factors,
Es is the initial ground state energy, and S’,‘; arefora =1x,y,z

the Fourier transforms of the usual local a = x, y, z spin oper-
ators S‘;’ respectively.

Due to the rotational symmetry in spin space, off-diagonal
components of the spin dynamical structure factor vanish,
8% (k, w) = 0 for a # a’, and the two transverse components
are identical, S*(k, w) = S (k, ). At zero and finite mag-
netic field, one has that S%(k, w) = S™(k, w) and S¥(k, w) #
S™(k, w), respectively.

In the transverse case, we often address the problem
in terms of the dynamical structure factors St~ (k, w) and
STt (k, w) in $*(k, w) = %[S*‘(k, )+ S™t(k, w)]. We rely
on the symmetry that exists for the problems under study
between the spin density intervals m €] — 1, 0] and m €]0, 1],
such that

Sk, )|m = ST (k, )|,y and
STk, @)l = S™T (k, )|
for m €]0, 1. (®)]

Hence, we only consider explicitly the spin density interval
m €]0, 1[. Since §%(k, w) = $*“(—k, w) and the same applies
to ST (k, ) and S~ (k, w), for simplicity the results of this
paper refer to kK > 0 momenta in the first Brillouin zone,
k €0, ]

Some useful selection rules tell us which classes of energy
eigenstates have nonzero matrix elements with the ground
state [28]. Such selection rules as well as some useful sum
rules are given in Appendix A.

The selection rules in Eq. (A1) reveal that at 4 = 0 and thus
m = 0 when S¥(k, w) = S (k, w), the longitudinal dynami-
cal structure factor is fully controlled by transitions from the
ground state for which S = § = 0 to excited states with spin
numbers S° =0 and S = 1. However, following such rules
the transverse dynamical structure factors are controlled by
transitions from that ground state to excited states with spin
numbers $* = +1and § = 1.

This is different from the case for magnetic fields 0 <
h < h, considered in this paper. According to the selection
rules, Eq. (A2), the longitudinal dynamical structure factor
S%(k, w) # §(k, w) is controlled by transitions from the
ground state with spin numbers S° = —S to excited states
with the same spin numbers $* = —S. According to the same
selection rules, the dynamical structure factors S~ (k, ) and
S~*(k, w) are controlled by transitions from the ground state
with spin numbers S° = —S to excited states with spin num-
bers S = —-S £ 1.

III. DYNAMICAL STRUCTURE FACTORS SPECTRA

Our study of the spin dynamical structure factors relies
on the representation of the energy eigenstates suitable to
the dynamical theory used in this paper [17]. It involves
“quasiparticles” that in this paper we call sn particles. Here
n =1, ..., 0o is the number of spin-singlet pairs that describes
their internal degrees of freedom.

For n > 1 a sn particle contains n bound spin-singlet pairs,
the integer n being also the length of the corresponding
spin n-string. For simplicity, we denote the s1 particles by s
particles. Their internal degrees of freedom correspond to a
single singlet pair. Energy eigenstates that are not populated
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and are populated by sn particles with n > 1 pairs are de-
scribed by real and complex nonreal Bethe-anstaz rapidities,
respectively.

As mentioned in Sec. I and confirmed in Appendix D,
there is a direct relation between the values of the momentum
dependent exponents that within the dynamical theory used
here control the line shape in the (k, w)-plane vicinity of
the spin dynamical structure factors spectral features and the
amount of spectral weight located near them: Negative expo-
nents imply the occurrence of singularities associated with
a significant amount of spectral weight in their (k, w)-plane
vicinity.

The use of this criterion reveals that in the present thermo-
dynamic limit and for magnetic fields 0 < h < h,, the only
significant contribution to S*~(k, w) from energy eigenstates
populated by sn particles refers to those populated by Ny, — 2 s
particles and one s2 particle. Here N| = Nf +1e[2,N/2]is
the excited energy eigenstate’s number of down-spin electrons
in the case of initial ground states with Nf e[l,N/2—1].

There is as well a much weaker contribution at small spin
densities from states populated by N, — 3 s particles and
one s3 particle. Here N| = Nf + 1 € [3, N/2] for the excited
energy eigenstate in the case of initial ground states with
Nf €[2,N/2 —1].

In the case of S%(k, w), this refers only to energy eigen-
states populated by N, — 2 s particles and one s2 particle.
Here N, = Nf € [2, N/2] both for the excited energy eigen-
state and initial ground states. The contribution from such
states to S~ (k, w) is found to be negligible, since all relevant
exponents are both positive and large.

The contribution to S*~(k, w) from energy eigenstates
populated by N, — 3 s particles and one s3 particle that occurs
for small values of the spin density is very weak and is negligi-
ble near the (k, w)-plane singularities to which the analytical
expressions obtained in our study refer to. In addition, the
latter very weak contributions occur in (k, w)-plane regions
above the gapped lower threshold of the spectrum continuum
associated with energy eigenstates populated by Ny —2 s
particles and one s2 particle. [The expression of that spectrum
is given below in Eq. (6).]

Hence, the energy eigenstates described by complex non-
real Bethe ansatz rapidities considered in our study are
populated by N, —2 s particles and one s2 particle. Such
states contain thus a single spin n-string of length n = 2. In
addition, we account for the contribution from energy eigen-
states populated by N, s particles that are described by real
Bethe ansatz rapidities.

The goal of this section is to introduce the spectra
associated with (k, w)-plane regions that contain most spec-
tral weight of the spin dynamical structure factors. The
(k, w)-plane distribution of such spectra is represented for
St (k, w), $*(k, ), and $%(k, w) in Figs. 1-6, respectively.
[In these figures, the spectra of the branch lines studied
below are such that the s2 and s2" branch lines are repre-
sented by blue lines and the 5 and §' branch lines by red
and green lines, respectively; The U = 0 electronic Fermi
points kr| = 5 (1 —m) and kpy = 5 (1 + m) define at u > 0
the ground-state s band Fermi points +kr| and the s band
limiting momentum values £kr4.] The spectra displayed in
Figs. 1, 3, and 5 refer to spin densities (a)-(c) m = 0.1

FIG. 1. The two (k, w)-plane lower and upper continuum regions
where for spin densities (a)—(c) m = 0.1 and (d)—(f) m = 0.3 and
u=0.4,1.0,15.0 there is in the thermodynamic limit more spectral
weight in ST~ (k, ). The sketch of the (k, w)-plane distributions
represented here and in Figs. 2-6 does not provide information
on the relative amount of spectral weight contained within each
spectrum’s gray continuum. [The three reference vertical lines mark
the momenta (a)—(c) k = kpy — kp, = /10, k = kp, = 97 /20, and
k =2kp, =97 /10 and (d)—~(f) k = kpy —kpy, =37/10, k =k, =
77 /20, and k = 2kp, = 77 /10, where kpy = 7 (1 —m) and kpy =
5 (1 +m), Eq. (E7).] The lower and upper continuum spectra are
associated with excited energy eigenstates without and with spin
n-strings, respectively. In the thermodynamic limit, the (k, w)-plane
region between the upper threshold of the lower continuum and the
gapped lower threshold of the upper n-string continuum has nearly
no spectral weight. In the case of the gapped lower threshold of
the spin n-string continuum, the analytical expressions given in this
paper refer to near and just above that threshold whose subintervals
correspond to branch lines parts represented in the figure by solid
and dashed lines. The latter refer to k intervals where the momentum
dependent exponents plotted in Figs. 7-10 are negative and positive,
respectively. In the former intervals, St~ (k, @) displays singularity
peaks, seen also in experimental studies of CuCl,-2N(CsDs) and
Cu(C4HsNz)(NO3), [4-6].

and (d)-(f) m =0.3 and u =0.4,1.0,15.0. In Figs. 2, 4,
and 6 they correspond to spin densities (a)—(c) m = 0.5 and
(d)—(f) m =0.8 and the same set u =0.4,1.0,15.0 of u
values.

In the cases of ST (k, ) and $**(k, w), the figures show
both a lower continuum (k, w)-plane region whose spectral
weight is associated with excited states without spin z-strings
and an upper continuum whose spectral weight stems from
excited states populated by spin n-strings. In the case of
S%(k, w), the contribution to the spectral weight from ex-
cited states containing spin n-strings is much weaker than
for ST (k, w) and $*(k, w) and does not lead to an upper
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FIG. 2. The same continuum spectra as in Fig. 1 for spin densi-
ties (a)—(c)m = 0.5 and (d)-(f)m = 0.8 and u = 0.4, 1.0, 15.0. [The
three reference vertical lines mark the momenta (a)-(c) k = kp| =
7r/4andk = kFT —kpl = ZkFi = 7'[/2and(d)7(f)k = kFi = 7T/10,
k= 2kF¢ = .7'[/5, and k = kFT —kF¢ = 4—7'[/5, where kF¢ = %(1 —
m) and kpy = 7(1 +m), Eq. (E7).]

continuum. The gapped lower threshold of such states’ spec-
trum is represented in Figs. 5 and 6 by a (k, w)-plane line.

Since at finite magnetic fields the contribution to the spec-
tral weight from excited states containing spin n-strings is
negligible in the case of S~ (k, ) and their lower continuum
spectrum was previously studied [17], its (k, w)-plane spec-
trum distribution is not shown here. Note though that in Figs. 3
and 4 for $**(k, w), the additional part of the lower continuum
relative to that of ST~ (k, w) represented in Figs. 1 and 2
stems from contributions of S™F(k, ). As a result, for small
spin densities and some k intervals the upper spin n-string
continuum of $(k, w) overlaps with its lower continuum.

In the case of both ST~ (k, w) and S%(k, w), there is in
the present thermodynamic limit for spin densities 0 < m < 1
and thus finite magnetic fields 0 < h < h, very little spectral
weight between the upper threshold of the lower contin-
uum associated with spin n-string-less excited states and the
gapped lower threshold of the spin n-string states’ spectra in
Figs. 1, 2, 5, and 6, respectively. The same applies to $**(k, w)
in the k intervals of Figs. 3 and 4 for which there is a gap
between the upper continuum associated with spin n-string
states and the lower continuum.

Indeed, in the thermodynamic limit nearly all the small
amount of spectral weight associated with the spin n-
string-less excited energy eigenstates named in the literature
four-spinon states, is contained inside the lower continuum
in such figures. This also applies to large finite systems. In
the large u limit, in which the spin degrees of freedom of
the present model with one electron per site are described
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FIG. 3. The two (k, w)-plane lower and upper continuum regions
where for spin densities (a)—(c) m = 0.1 and (d)—(f) m = 0.3 and
u=04,1.0,15.0 there is in the thermodynamic limit more spec-
tral weight in $*(k, w). The notations are the same as in Fig. 1.
[The three reference vertical lines mark the momenta (a)-(c) k =
kpy —kpy = /10, k = kpy =97 /20, and k = 2kp, =97 /10 and
(- k =kpy —kpy =37/10,k = kg, =Tm /20, and k = 2kp| =
7 /10, where kr, = (1 — m) and kry = 5 (1 + m), Eq. (E7).] The
additional part of the lower continuum relative to that of S*~ (k, @) in
Figs. 1 and 2 stems from the contributions of S~ (k, w). As a result,
for some £ intervals the upper spin n-string continuum overlaps with
the lower continuum.

by the isotropic spin-1/2 Heisenberg chain, this is so for the
latter model both at the isotropic point A = 1 (see Fig. 4 of
Ref. [29]) and for anisotropy A < 1 (see Fig. 1 of Ref. [30]).

Concerning this key issue for our study that the amount
of spectral weight in the (k, w)-plane gap regions shown in
Figs. 1-6 is negligible, let us consider the more involved
case of ST~ (k, w). Similar conclusions apply to the simpler
problems of the other spin dynamical structure factors. The
behavior of spin operators matrix elements between energy
eigenstates in the selection rules valid for # > 0 and magnetic
fields 0 < h < h., Eq. (A2) of Appendix A, has important
physical consequences. It implies that the spectral weight
stemming from excited energy eigenstates described by only
real Bethe-ansatz rapidities existing in finite systems in a
(k, w)-plane region corresponding to the momentum interval
k € [2kr, 7] and excitation energy values w above the upper
threshold of the lower continuum in Figs. 1 and 2, whose
spectrum’s expression is given in Eq. (B2) of Appendix B,
becomes negligible in the present thermodynamic limit for a
macroscopic system.

Our thermodynamic limit’s study is complementary to and
consistent with results obtained by completely different meth-
ods for finite-size systems and small yet finite t2/U [4,28].
The spectral weight located in that (k, w)-plane region is
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FIG. 4. The same continuum spectra as in Fig. 3 for spin den-
sities (a)—(c) m = 0.5 and (d)—(f) m = 0.8 and u = 0.4, 1.0, 15.0.
For such spin densities, there is no overlap between the upper spin
n-string continuum and the lower continuum. [The three reference
vertical lines mark the momenta (a)—(c) k = kp, =7 /4 and k =
kpy —kpy = 2kpy = /2 and (d)—() k = kp, =7 /10, k = 2kp |, =
w/5,andk = kpy — kpy = 4m /5, where kp| = %(l —m)and kpy =
7 (1 +m), Eq. (E7).]

found to decrease upon increasing the system size [4]. This
is confirmed by comparing the spectra represented in the first
row frames of Figs. 3(a) and 3(b) of Ref. [4] for two finite-size
systems with N = 320 and N = 2240 spins, respectively, in
the case under consideration of the spin dynamical structure
factor ST~ (k, w).

More generally, the selection rules in Eqs. (A1) and (A2)
valid for u > 0 are behind in the thermodynamic limit nearly
all spectral weight generated by transitions to excited energy
eigenstates described only by real Bethe-ansatz rapidities be-
ing contained in the (k, w)-plane lower continuum shown in
Figs. 1 and 2, whose spectrum is given in Eq. (B2).

Let us consider the (k, w)-plane spectral weight distribu-
tions shown in Fig. 18 of Ref. [28] for ST (k, w), which
apply to the half-filled 1D Hubbard model for small yet finite
t?/U. As reported in that reference, due to the interplay of
the selections rules given in Eqgs. (A1) and (A2) for 4 = 0 and
0 < h < h,, respectively, the spectral weight existing between
the continuous lower boundary €4; and the upper boundary
€4y at h =0 becomes negligible for finite magnetic fields
0 < h < he. In addition, the spectral weight existing between
the continuous lower boundary €s; and the upper boundary
€sy for small finite-size systems, becomes negligible in the
thermodynamic limit for a macroscopic system. This is indeed
due to the selection rules, Eq. (A2), as discussed in that refer-
ence, which for the 1D Hubbard model with one fermion per
site are valid for u > 0. As also reported in Ref. [28], only the
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FIG. 5. The (k, )-plane continuum region where for spin densi-
ties (a)—(c) m = 0.1 and (d)-(f) m = 0.3 and u = 0.4, 1.0, 15.0 there
is in the thermodynamic limit more spectral weight in S¥(k, w).
[The three reference vertical lines mark the momenta (a)—(c) k =
kFT —kF¢ :7'[/10, k= kpl = 97'[/20, and k = zkpw :971/10 and
(- k =kpy —kpy, =37/10,k = kp, =T /20,and k = 2k | =
Tr /10 where kp, = 5 (1 —m) and kpy = Z (1 + m), Eq. (E7).] Con-
tributions from excited states containing spin n-strings are much
smaller than for S*~(k, w) and $**(k, w) and do not lead to an upper
continuum. The gapped lower threshold of such states is though
displayed. Only when for spin densities 0 < m < 7z where /it = 0
for u — 0 and /m ~ 0.317 for u > 1 that threshold coincides with
the 5’ branch line, singularities occur near and just above it. That
line is represented as a solid (green) line. In the remaining parts
of the gapped lower threshold, which for spin densities 77 < m < 1
means all of it, the momentum dependent exponents are positive and
there are no singularities. This reveals there is a negligible amount of
spectral weight near such lines.

spectral weight below the continuous lower boundary €s;.(g),
located in the (k, w)-plane between the lower boundary €¢;
and the upper boundary €y has a significant amount of spec-
tral weight.

This refers to the (k, w)-plane region where, according
to the analysis of Ref. [28], for magnetic fields 0 < & < h,
a macroscopic system has nearly the whole spectral weight
stemming from transitions to excited energy eigenstates de-
scribed by only real Bethe-ansatz rapidities. Consistently with
the spectral weight in the present gap region being negligible,
the (k, w)-plane between the continuous lower boundary ¢y,
and the upper boundary €y in Fig. 18 of that reference corre-
sponds precisely to the lower continuum shown in Figs. 1 and
2, whose spectrum is provided in Eq. (B2).

Besides the s and s2 particles, there is in the present spin
subspace a ¢ particle branch of Bethe ansatz quantum num-
bers associated with the charge degrees of freedom [17,19].
However, it refers to a corresponding full ¢ momentum band
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FIG. 6. The same continuum spectra as in Fig. 5 for spin den-
sities (a)—(c) m = 0.5 and (d)—(f) m = 0.8 and u = 0.4, 1.0, 15.0.
For these spin densities, there are no singularities near the gapped
lower threshold of the spin n-string excited states. For these spin
densities the contribution of such states to S (k, w) are actually neg-
ligible over the whole (k, w) plane. [The three reference vertical lines
mark the momenta (a)-(c) k =kp, =n/4 and k = kpy —kp, =
2kp, =m/2and (d)-(H) k = kp, = /10, k = 2kpy, = /5,and k =
kry —kpy =47 /5, where kpy = 3(1 —m) and kry = (1 +m),
Eq. (E7).]

that does not contribute to the spin dynamical properties.
Its only contribution to the spin problem studied in this pa-
per stems from microscopic momentum shifts —7 or 7 of
all the corresponding ¢ band N discrete momentum values
q; = 2T”IJC Here If =0, 1,42, ... for N, + Ny even and
I]C ==+1/2,4+3/2,+£5/2, ... for Ny + N, odd are the Bethe-
ansatz ¢ band quantum numbers in Eq. (E6). Those lead to
macroscopic momentum variations —m or m, respectively,
upon changes in the value of the numbers of s and s2 particles,
according to the boundary conditions given in Eq. (E6).

The line shape near the gapped lower threshold of the
St~ (k, w)’s continuum spectrum represented in Figs. 1 and
2 is controlled by the above class of excited states that are
generated by the occupancy configurations of both Ny = N| —
2s particles over N, discrete momentum values g; = ZT” I;
and one s2 particle over Ny — N; + 1 discrete momentum
values g; = 2 I, Here (i) 1] =0, %1, %2, ... for N} odd
and [} = £1/2,4+3/2, £5/2, ... for Ny even and (ii) 1;2 =
0, £1, £2, ... for Ny, = 1 are the Bethe-ansatz s and s2 band
quantum numbers, respectively, in Eq. (E6). However, the line
shape in the vicinity of the lower threshold of the ST~ (k, w)’s
lower continuum spectrum in the same figures is controlled
by excited energy eigenstates described by real Bethe ansatz
rapidities. Those are described by occupancy configurations

of Ny =N, s particles over N; discrete momentum values

__ 2m gs
9 =T 1j-

The Bethe-ansatz equations and quantum numbers whose
occupancy configurations generate the energy eigenstates that
span the spin subspaces used in our studies are given in
Egs. (E1) and (E2) in functional form, in terms of s and s2
bands momentum distributions. Those describe the momen-
tum occupancy configurations that generate such states.

As further discussed in Appendix D, ground states are
for spin densities 0 < m < 1 only populated by the N, = N
nondynamical ¢ particles and Ny = N s particles that symmet-
rically or quasi-symmetrically occupy the s band, which also
contains Nf‘ = N; — N, holes.

The gapped upper spectrum in Figs. 1 and 2 associated
with the (k, w)-plane continuum of ST~ (k, w) that stems from
transitions from the ground state to excited energy eigenstates
populated by Ny = N, — 2 s particles and one s2 particle is
given by

0T (k) = —&,(q1) + £2(q2),

where k =tkp, —qi+¢q» and ==l
for q € [—kry,kry] and

g2 €10, (kpy —kp)] for =1

g2 € [—(kpy —kr}),0] for = —1. (6)

This spectrum has two branches corresponding to ¢t = %1 such
that,

k=krp,—q1+q2€[0,7]
k=—kp, —q1 +q2 € [—7m,0]. @)

In Eq. (6) and other expressions of spin dynamical structure
factors’ spectra given below and in Appendices B and C,
&s(q) and &5, (g) are the s and s2 band energy dispersions,
respectively, defined by Eqgs. (E8), (E9), and (E11)—(E20).
Limiting behaviors of such dispersions and corresponding s
and s2 group velocities that provide useful information on
the corresponding spin dynamical structure factors’ spectra
momentum, spin density, and interaction dependencies are
provided in Egs. (E22)—(E38).

We denote by A%(k) where ab = +—, xx, zz the spectra
of the spin n-string excited states’ gapped lower thresholds of
5% (k, w). They play an important role in our study, since for
some k intervals there are singularities at and just above them.

For St~ (k,w), §*(k,w), and S¥(k,w) such gapped
thresholds have a different form for two spin density intervals
m €]0, m] and m € [, 1[, respectively. Here 7 is a u depen-
dent spin density at which the following equality holds:
_gs(2kF¢ - kFT)|m:ﬁl~ (8)
From the use of the £,,(0)’s expression given in Eq. (E24),
the s2 energy bandwidth Wy, appearing here can be expressed
as Wy = 4uph — £5(0). The spin density 7 is a continuous
increasing function of u that in the u — 0 and u > 1 limits
reads

WS‘Z | m=m —

limm=0 and limm ~ 0.317. ©)]

u—0 u>1
Momenta involving a related momentum k separate parts
of the gapped lower threshold spectra of ST~ (k, w), S™(k, ®),
and S%(k, w) that refer to different types of k dependencies.
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At k = k the following relations that define it hold:
W = es(kry — k) — estkry — k)
for k> (kpy —kpy) and m € [0, m],
Wy = dpph — en(k) — e5(kpy — k)
for k < (kpy —krpy) and m e [, 1[. (10)

The momentum £ is given by k = (kpy — kpy) atm = m.
The spectra of the transverse gapped lower thresholds are
such that

A™(k) = AT (k) for kel0,x]. (11)

(The equality A~ (k) = A1~ (k) also holds, yet as reported
above the amount of S~ (k, )’s spectral weight produced by
excited n-string states is negligible in the thermodynamic limit
and finite magnetic fields.) The spectrum of the longitudinal
gapped lower threshold is also related to A1~ (k) as follows:

AZ(k) = AT (T —k) for kel[0,n]. (12)

For smaller spin densities m € [0, 7], the spectrum
A1~ (k) is given by

AT (k) = eq(k) for ke [0, (kpy — kr))]
= dugh —es(kpy — k) for k€ [(kry — kr)), k]
=dugh — Wy — &5(kpy — k) for k € [k, 2kp,]
= ek —2kp)) for ke [2kp,m]. (13)

For larger spin densities m € [7i, 1[, that spectrum is
slightly different and reads

AT (k) = e (k) for k e[0,k[
= 4/"«8 h— VVSZ - £s(kFl - k)
for k elk, 2kp,]

= eo(k —2kpy) for ke [2kp,, 7). (14)

The expressions of the previously studied two-parametric
transverse gapless spectra [17] o~ (k) and w*~(k), whose
superposition gives w**(k), and that of the longitudinal gap-
less spectrum w®(k) that [except for w™* (k)] refer to the
lower continua in Figs. 1-6, are given in Eqgs. (B1)—(B3). The
corresponding excited energy eigenstates are described by real
Bethe-ansatz rapidities. The expressions of the one-parametric
spectra of their upper thresholds w,, " (k), w),~(k), w*(k),
and (k) and lower thresholds w;, " (k), w; ™ (k), w}* (k), and
wjt (k) are also provided in Appendix B.

We consider the following energy gaps:

Al ) = AT (k) — wi (k) >0,

AT () = AV (K) = Wi k),

AZ (k) = AF(K) — (k) > 0, (15)

where

Af (k) = AYT(k) —wp (k) for ke [0,k],

AD (k) = AT (k) — o, T (k) for ke [k, ], (16)

gap ut ?

and

Mg = ALyt —k) for kel0.xl.  (17)

The momentum k7 > kpy — kg in Eq. (16) is that at which
the equality w,,* (k) = ;" (k%) holds. In the thermody-
namic limit and for the k intervals for which such energy gaps
are positive, there is a negligible amount of spectral weight
in their corresponding (k, w)-plane regions. This justifies why
here we named them gaps.

The upper threshold spectra w,, " (k), )~ (k), w=(k),
w*(k) in Egs. (15)—(17) are given in Eqs. (B4)—(B7). The
spectra ), (k), w**(k), and w% (k) refer to the upper thresh-
olds of the lower continua in Figs. 1-6, respectively.

As confirmed from analysis of Figs. 1-6, one has that
Aga; (k) > 0and Aggp(k) > 0, whereas A’g‘jp(k) is negative for
some k intervals. Specifically,

Agp(k) <0 for

k € [ky, w] for
k € [ko, k] for

m E]O, I’I_’lo],
m €lmyg, m]. (18)

The values of the spin densities 71y and m > m increase and
decrease upon increasing u, their limiting values being

2 1
lim 7y = — arcsin (—) ~ (0.216,
u—0 T 3

2 1
lim m = — arctan (—) ~ 0.295,
T 2

u—0
limmg ~ 0.239 and limm =~ 0.276. (19)
u>1 u>1

The momenta ko and k,; also appearing in Eq. (18) are such
k= < ko < ki, and ko < ki < 7. The equality, ko = k;, holds
at m = /. At that spin density the momentum ky = k, is very
little u dependent. It is given by kg = k; = 2kp in the lim, ¢
limit and for u > 1 it reaches a value very near and just above
2kpy.

For m €]0,m] and the k intervals in Eq. (18), the
S (k, w)’s expressions in the vicinity of that factor gapped
lower threshold obtained in this paper are not valid be-
cause A{g‘gp(k) < 0. However, the ST~ (k, ») and S%(k, w)’s
expressions in the vicinity of their gapped lower thresholds
considered in the following are valid for all k intervals, since
the energy gaps A;; (k) and AZ (k) are finite and positive for
O<m<1landu > 0.

In Appendix C, limiting values of the energy gaps con-
sidered here and their values at some specific momenta are

provided.

IV. THE LINE SHAPE AT AND NEAR THE SPIN
DYNAMICAL STRUCTURE FACTORS’ SINGULARITIES

The spin dynamical structure factors’ singularities studied
in this paper occur at and just above spectral lines that within
the dynamical theory of Refs. [17,19] are called branch lines.
Such lines coincide with well defined k intervals of the (k, w)-
plane lower thresholds of both the spectra of excited states
populated and not populated by spin n-strings, respectively,
plotted in Figs. 1-6.

In the case of the contribution from spin n-string states,
the dynamical theory line shape expressions are valid pro-
vided there is no or nearly no spectral weight just below
the corresponding gapped lower thresholds. In the present
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thermodynamic limit, the amount of spectral weight just be-
low such thresholds either vanishes or is extremely small. In
the latter case, the very weak coupling to it leads to a higher
order contribution to the line shape expressions given in the
following that can be neglected in that limit.

In the case of the lower (k, w)-plane spectrum continua in
Figs. 1-6 of excited states not populated by spin n-strings
and thus described by real Bethe-ansatz rapidities, there is
no spectral weight below the corresponding lower thresholds.
This ensures that the expressions of the spin dynamical struc-
ture factors at and just above such thresholds are exact.

The momentum interval k € [0, w] of the gapped lower
thresholds of spectra of spin n-string states is divided in sev-
eral subintervals that refer to a set of branch lines called s2,
5, ¥, and 52’ branch line. The corresponding excited states
are populated by N, — 2 s particles and one s2 particle. The
lower thresholds of the spectra associated with excited states
populated by N, s particles, either correspond to a single s
branch line or to two sections of such a line.

The 5, 5, and s branch lines refer to k ranges corresponding
to a maximum s band g interval g € [—(kpy, — dqy), (kpy, —
8q,)] in the case of s hole creation and to a maximum s band ¢
interval such that |g| € [(kr, + 8¢y), kr4] in case of s particle
creation. Here 8¢ such that 8¢, /kry < 1for0 < m < 1is for
the different branch lines either very small or vanishes in the
thermodynamic limit.

In the very small k intervals corresponding to the s band in-
tervals q < [—kpi, —(kp¢ — qu)] and q €< [(kp‘L — (qu), kpi]
the line shape of the spin dynamical structure factors is differ-
ent, as given in Ref. [17]. (See Egs. (128)—(133) of Ref. [17].)

Similarly, in the case of the (k, w)-plane vicinity of the
s2 and s2’ branch lines, which are part of the gapped lower
thresholds, the line shape expressions obtained in this paper
are valid in k ranges corresponding to s2 band maximum in-
tervals g € [—(kp»r — k[w —68¢x),0]or g € [0, (ka — kpl -
8¢s2)]. Here 8¢q» such that 8qy /(krpy — kpy) < 1is for 0 <
m < 1 very small and may vanish in the thermodynamic limit.
(And again, the spin dynamical structure factors expressions
are different and known for g € [—(kpy — kp}), —(kpp —
kry —08q52)] and g € [(kpy — krpy — 8q52), (kpy — kp )] yet
are not of interest for this study.)

In the present thermodynamic limit, the above s band mo-
mentum intervals are thus represented in the following as g €
1 —kry, kry[ and |q| €lkr,, k4] and the s2 band momentum
intervals by g €] — (kry — kry), 0l or g € [0, (kpy — k)l

Around the specific momentum values where along a
gapped lower threshold or a lower threshold two neighboring
branch lines or branch line sections cross, there are small
momentum widths where the corresponding lower threshold
refers to a boundary line that connects the two branch lines or
branch line sections under consideration.

In the thermodynamic limit, such momentum intervals are
in general negligible and the corresponding small spectra de-
viations are not visible in the spectra plotted in Figs. 1-6. In
the cases they are small yet more extended, the two branch
lines or branch line sections run very near the lower thresh-
old and there is very little spectral weight between it and
such lines. In this case, the singularities on the two branch
lines or branch line sections remain the dominant spectral
feature.

We again account for such negligible effects by replacing
[and] by Jand[, respectively, at the k limiting values that
separate lower thresholds’ k intervals associated with two
neighboring branch lines or branch line sections.

A. The line shape near the 52,5, §, and s2’ branch lines
(gapped lower thresholds)

Here we study the line shape at and just above the gapped
lower thresholds of the spectra plotted in Figs. 1-6 of the
transverse and longitudinal structure factors. In the case of
S (k, w), this refers to k intervals for which Agp (k) > 0 and
thus different from those given in Eq. (18). In Appendix D, the
number and current number deviations as well as the spectral
functionals that control the expressions of the spin dynamical
structure factors given below are provided.

The line shape near the gapped lower thresholds has the
following general form,

ab
Sk, ) = Ch[w — AL ®)]F Y

for [w — Agb(k)] >0, where
B=s2,575,s2, and ab=-4+—,xx, 2z
(valid when A > 0). (20)

Here C%, is a constant that has a fixed value for the k and @
ranges associated with small values of the energy deviation
[w— A;f” (k)] > 0, the gapped lower threshold spectra Ag”(k)
are given in Egs. (11)—(14) and the index B =s2,5,5, s2'
labels branch lines or branch line sections that are part of the
gapped lower thresholds in some specific k intervals defined
in the following.

The branch-line exponents that appear in Eq. (20) have the
following general form:

(gik)y=—1+ Y ®}gq) for B=s2,57,52.s5 (1)
1==%1

where the spectral functionals ®,(g) suitable to each type of
branch line are given in Egs. (D9)—-(D12). [This also includes
the s branch lines that define the lower thresholds of the
lower continua in Figs. 1-6. Their exponents are also of form,
Eq. (21), and appear in the spin dynamical structure factors’
general expression provided below in Eq. (33).]

As mentioned above, the amount of spectral weight below
the gapped thresholds either vanishes or is very small. In the
latter case, the very weak coupling to it leads to a higher order
contribution to the line shapes given in Egs. (20) and (21) that
can be neglected in the present thermodynamic limit.

The relation of the excitation momentum k to the s band
momentum ¢ or s2 band momentum ¢ that appear in the
®,’s argument in the general exponent expression, Eq. (21),
is branch-line dependent. Hence, it is useful to revisit the
expressions of the spectra of the gapped lower thresholds,
Egs. (11)—(14) and (12), for each of their branch lines or
branch line sections, including information on the relation
between the physical excitation momentum k and the s or
s2 bands momenta g. The corresponding expressions are
given for the k intervals for which the dynamical structure
factor’s expression is of the form, Eq. (20), which implies
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replacements of [and] by Jand[, respectively, in the limits of
such intervals.

In the case of ST~ (k, w), the gapped lower threshold spec-
trum A* (k) is divided in the following branch-line intervals,

AL (k) =¢ep(k) and k=gq,
k E]O, (kFT — k,w)[and
q €10, (kpy — kp )l
for m €]0, ]
and k& €]0,k[and ¢ € [0, k[
for m e [m, 1], (22)

where

AT=(k) = g h
k= km - 9q,

k €)(kpy — kr)), k[and

q €lkpy — k), k[

for m €]0, /], (23)

— &5(kpy — k) and

where

AF (k) = dpuph — Wy — e(kp ), — k)
and k=kr, —q,

k € [k, 2kp, [and

€l —key, (ke — Rl
for m €]0, ]
and  k €]k, 2kr [and

€l —kpy, tkpy — k)l
for m e [m, 11, (24)

where

and
32’ (k) = Syz(k 2kpl) and k= 2kp¢ + q
k €]2kr, m[and

q €10, (kpy — kp )l
for m €]0, 1. (25)

where

The corresponding k dependent exponents of general form,
Eq. (21), that appear in the expression, ST~ (k, ) = C_f_ [w—
AS= ()% %, Eq. (20) for ab=+— and B = 52,75, 52,
are given by

2
ch () = —1+ Z[ ) + O o (thr q)]

(=1

for g=k and
k €10, (kpy — kp )l for
k €10,k[ for

m €]0, ]
m € [m, 1],

1 2
F=-1+> [—7 — @, (tkpy, q):|

1=%x1
for q=kry —k and

k € 1(kpy — kp)), k[ for m €]0, ],

TABLE I. The momentum &k > 0 and s and s2 bands number and
current number deviations defined in Appendix D for 4+— transverse
spin excitations populated by one s2 particle and thus described by
both real and complex nonreal rapidities in the case of the s2 branch
line, 5 branch line, 5 branch line, and s2' branch line that for the
momentum intervals given in the text are part of the corresponding
gapped lower threshold.

Branchline kintermsofqg &NF 8JF SNN  8Jn, Ny

52 k=g -1 0 0 0 1
5 k=kpr —q 0 12 -1 12 1
5 k=kr, —q 0o 12 -1 0 1
52/ k=2 +q -1 1 0 0 1

2
&) = D, (tkry, f])i|

1+Z[ 22y

==%1

for g=kr, —k and
k € 1k, 2kp,[ for
k € 1k, 2kpy[ for

—1+Z[

1==1
for q:k—ZkFl

m €]0, m]

m €]0, ],

2
§52' (k) — * EH + CDS sZ(LkFL C]):|

and k €12kp,, w[. (26)

The phase shifts in units of 2m, P,,(tkry,q) and
D o (tkr, q) where t = %1, appearing in this equation and in
other exponents’ expressions provided in the following are de-
fined by Eqgs. (E39)—(E43). Limiting behaviors of such phase
shifts are provided in Eqs. (E44)—(E48). The phase-shifts re-
lated parameters &), = 1/£2 and &, also appearing in the
above exponents’ expressions are defined by Egs. (E49)-
(E53) and (E54)—(ESS), respectively.

Physically, £27 &, (£kr |, q) is the phase shift acquired
by a s particle of momentum +kr, upon creation of one
s band hole (—2m ®; ;) and one s particle (+27 P, ;) at a
momentum g in the s band interval g €] — kr |, kr [ and such
that |g| €lkr, kr4], respectively. However, 2 @, o (£kr, q)
is the phase shift acquired by a s particle of momentum =tk
upon creation of one s2 particle at a momentum ¢ in the s2
band subinterval g € [0, (kpy — kpy [or g €](kpy — kpy, O].

The three functionals ®,(g) in the general expression,
Eq. (21), specific to the exponents given in Eq. (26) for the
ST~ (k, w)’s 52, s2' branch lines, 5 branch line, and § branch
line are provided in Eqs. (D9), (D10), and (D11), respectively.
The corresponding suitable specific values of the number and
current number deviations used in such functionals are for the
present branch lines given in Table L.

The St~ (k, w)’s s2, §, 5, and s2’ branch line exponents
whose expressions are given in Eq. (26) are plotted as a func-
tion of k in Figs. 7, 8, 9, and 10, respectively. In the k intervals
of the gapped lower threshold of the spin n-string continuum
in Figs. 1 and 2 for which they are negative, which are rep-
resented by solid lines in these figures, there are singularities
at and just above the corresponding 8 = 52, ¥, 5, s2’ branch
lines in the expression ST~ (k, w) = C£_(w — A;‘(k))gi(k),
Eq. (20) for ab = +—.
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m = 0.30

8 v
"
v
o
= —=0.5 - =150

m=099 eeeess w=10

—u=04

L 1 1 !
006 032 048 061 0198 0306 0501 0.702
k/m k/m

FIG. 7. The momentum dependence of the exponent that in the
k intervals for which it is negative controls the ST~ (k, @) line shape
near and just above the s2 branch line for spin densities m (a) 0.05,
(b) 0.1, () 0.3, (d) 0.5, (e) 0.8, and (f) 0.99 and u = 0.4, 1.0, 15.0.
The 52 branch line is part of the gapped lower threshold of the spin
n-strings continuum displayed in Figs. 1 and 2. The same exponent,
in the k intervals for which it is negative, also controls the S*(k, w)’s
line shape near and just above the s2 branch line in the spin n-strings
continuum displayed in Figs. 3 and 4.

The related $* (k, w)’s expression, Eq. (20) for ab = xx, in
the vicinity and just above the gapped lower threshold of the
spin n-string continuum in Figs. 3 and 4 is similar to that of
S+~ (k, w) for the k intervals for which there is no overlap with
the lower continuum spectrum associated with excited states
described by real Bethe-ansatz rapidities. This thus excludes
the low-m k intervals considered in Eq. (18).

Concerning again the relation between the physical exci-
tation momentum k and the s and s2 bands momenta ¢, it
is useful to provide the S¥(k, w)’s expressions of the gapped
lower threshold spectrum A%*(k), Egs. (15) and (17), for each
of its branch-line parts as,

A5 (k) = ep(k — (kpy —kpy)) and

k= (kpy —kry) +q

k €10, (kpy — kr,)land

q €] — (kpy — kr}), 0[

for m €0, 1[, 7)

where

A (k) = 4uph — Wy — es(kpy — k) and
k =kry —q,
where k €l(kpy —kp ), (m — k) and
q €l — (kpy — k). k[

(a)
m = 0.05
4
S —0.5r -
/ﬂmﬁ
1.0 N T B B R
’ 0.135 0.220 0.305 0.390 0.475
—— 7
(b)
m = 0.10
-
¥ o5k .
M‘ﬁ-—-ﬁ
[N 0| S S Ll |
’ 0.17 0.24 0.31 0.38 0.45
N T T T Lo
(c) —— = 150
m=030 "ttt u=10
— =04
4
>5' 05 -
0 S U S B
’ 0.31 0.32 0.33 0.34 0.35
k/m

FIG. 8. The same as in Fig. 7 for the § branch line. That line
coincides with the gapped lower threshold of the spin n-strings con-
tinuum for small k intervals and only for spin densities 0 < m < 7
where 7 continuously increases from 72 = 0 foru — Otom ~ 0.317
for u > 1. The corresponding exponent plotted here is negative for
such k intervals.

for m €]0, m]
and  k €l(kpy — k), (x — k)[and
q €l — (kpy — k), kp [
for m e [m, 1], (28)
AZ(k) = 4uph —eskpy —k) and k= krp, —q,
where  k €](m — k), 2kp)[ and
q €l —kry, —(kpy — ol
for m €]0, ], (29)
and
AZ (k) = ep(k —m)
where k €]2kp,, w[and

q €] — (krpy —kr)), 0[
for m €]0, r]

and k=m+gq,
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m = 0.10

TABLEII. The momentum k > 0 and s and s2 bands number and
current number deviations defined in Appendix D for longitudinal
spin excitations populated by one s2 particle and thus described both
real and complex nonreal rapidities in the case of the s2 branch line, §
branch line, 5’ branch line, and s2’ branch line that for the momentum
intervals given in the text are part of the corresponding gapped lower
threshold.

Branchline  kintermsofq  SNI §8JF

s

6N AN £ 61:2 8NY2

52 k:ka—kFl-f—q -2 —1 0 0 1
5 k=kry —q 2 12 -1 0o 1
5 k=kps —q 1 —1/2 -1 —1/2 1
s2' k=m+gq -2 0 0 0 1

L TR S T S S N Y SR S Y S S S
0.002 0.004 0.006 0.008 0.010
k/m k/m

FIG. 9. The same as in Fig. 7 for the § branch line, which refers
to subintervals of the gapped lower threshold of the spin n-string
continuum of both ST~ (k, ) and $*(k, w). In the case of $*(k, w),
the momentum dependent exponent plotted here is valid only for the
k intervals of the 5 branch line in Figs. 3 and 4 for which there is a
gap between it and the upper threshold of the lower continuum.

and kel(x — k), 7[ and
gel—k,0[ for me[m, 1[. (30)

m=0.30 (c)

L L L L —
0.76 0.82 0.88 0.94 1.00
T T T T

m=0.80 (e) m=0.99 (f)

) S S NSNS N ) S S SN B PR B S BV R
. 0.2 .52 3 .8 . . 0.208 0.406 0.604 0.802 1.000

k/m k/m

FIG. 10. The same as in Fig. 7 for the s2’ branch line. As in
Fig. 9, in the case of $*(k, w), the momentum dependent exponent
plotted here is valid only for the k intervals of the s2’ branch line
in Figs. 3 and 4 for which there is a gap between it and the upper
threshold of the lower continuum.

The corresponding k dependent exponents of general form,
Eq. (21), that appear in the expression, S¥(k, a)) CA(a) —

Azz(k))zﬂ ® Eq. (20) forab = +—and B = 52,5, 5, 52/, read

2

tok) = —1+ Z |: — &'+ Dy o (thry, 61)1|
(==+1 5

for gq=k—kpy+kpy and k €]0, (kpy —kr ),

0 1

_1+Z|:__+ s52_§_

=%l

&5 (k) =

2
(Dx,s ([kFL ) 6])i|

for g=kry —k and

k € 1(kpy — kr)), (x —k)[  for

k € 1(kpy — k), (x — k) for
gﬂm=_4+§:[27+1i—

1==*1

m €]0, m]

m €]0, m],

2
q)s,s(th¢ ) 61)]

for g=kr, —k and
k € 1(w — k), 2kpy[ for

2
-1+ Z |:__ + ch s2(lkF,Lv Q)i|

=%1

m €]0, m],
Y2’(k)

for g=k—m and
k € 12kpy, [ for
k € 1t — k), [ for

m €]0, ]
m € [, 1[. 3D

Also in the present case of S¥(k, w), the three functionals
®,(g) in the general expression, Eq. (21), specific to the s2, s2’
branch lines, § branch line, and 5" branch line are provided in
Egs. (D9), (D10), and (D11), respectively. The corresponding
suitable values of the number and current number deviations
used in such functionals are though different for the present
branch lines. They are given in Table II.

The behaviors of the spin dynamical structure factor
S%(k, w) are actually qualitatively different from those of
St~ (k, w). Except for ¢3(k), the exponents in Eq. (31) are
positive for all their k intervals. That ' branch line exponent is
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T | T T
(a) m = 0.05
X -..'..'.'.'.'.'.'.'.".7'.7.'.'-‘..'..'..'.7.‘..-.:'..-.7.1.-..-:.-.71.1
—0.5F .
1.0 T S I I B
0610 0695 078 0865  0.950
——
(b) m=0.10
. T
& —0.5F -
1.0 T P I E I B
0.62 0.69 0.76 0.83 0.90
T T T T T T
(c) m = 0.30
2z [
& —0.5F -
-y = 15.0
[ aeanas u=10
[ u=04
1.0 PR R R TR R SR
: 0.66 0.67 0.68 0.69 0.70
k/m

FIG. 11. The same as in Fig. 8 for the 5" branch line of S¥(k, ).
For that dynamical structure factor, this exponent is the only that
is negative and refers to singularities near the corresponding small
momentum intervals of the gapped lower threshold of the spin n-
string continuum in Figs. 5 and 6. Such singularities only emerge in
S%(k, w) for spin densities 0 < m < m where /i1 = 0 for u — 0 and
m~ 0.317 foru > 1.

plotted as a function of k in Fig. 11. It is negative for its whole
k subinterval, which is part of the k interval of the gapped
lower threshold in Fig. 5. The § branch line’s m-dependent
subinterval is either small or that line is not part of the
S$%(k, w)’s gapped lower threshold at all. Its momentum width
decreases upon increasing m up to the spin density 7. As
mentioned above, this spin density decreases upon decreasing
u, having the limiting values = = 0 for u — 0 and 7z ~ 0.317
foru > 1. For i < m < 1, the ' branch line is not part of the
S%(k, w)’s gapped lower threshold spectrum. This is why for
m = 0.5 > /m and m = 0.8 > /7 that line does not appear in
the gapped lower threshold plotted in Fig. 6.

Hence, gapped lower threshold’s singularities only emerge
in S¥(k, w) for spin densities 0 < m < 7 at and just above
the § branch line, the corresponding line shape reading,
5%k, @) = CAlo — AZ (k)] ®. That branch line k subin-
terval width though strongly decreases upon increasing m up
to m.

These behaviors are consistent with the S¥(k, w)’s spectral
weight stemming from spin n-string states decreasing upon
increasing the spin density, being negligible for m < m < 1.
Consistent with the u dependence of the spin density 7, this
spectral weight suppression becomes stronger upon decreas-
ing u. Hence, increasing the spin density m within the interval
m €]0, m] and lowering the u value tends to suppress the
contribution of spin n-string states to S%(k, w).

B. The line shape near the lower thresholds

To provide an overall physical picture that accounts for all
gapped lower threshold’s singularities and lower threshold’s
singularities in the spin dynamical structure factors, here we
shortly revisit their line shape behavior at and just above the
lower thresholds of the lower continua in Figs. 1-6. The cor-
responding contributions are from excited states described by
real Bethe-ansatz rapidities. Such lower continua contain most
spectral weight of the corresponding spin dynamical structure
factors.

In the case of the transverse dynamical structure fac-
tor, S*(k, w) = %[S““_(k, w) + S~ (k, )], we consider the
transitions to excited states that determine the line shape in
the vicinity of the lower thresholds of both S™~(k, w) and
S~*(k, w), respectively. The spectrum of $*(k, w) at and just
above its lower threshold, refers to a superposition of the
lower threshold spectra w'~ (k) and o~ (k), Egs. (B10) and
(B11)-(B12), respectively. The (k, w)-plane lower continuum
that results from such a spectra superposition is represented in
Figs. 3 and 4.

Similarly to Eq. (20), for spin densities 0 <m < 1, u > 0,
and k €]0, [ the line shape of the spin dynamical structure
factors S°(k, w) where ab = +—, —+, xx, zz near and just
above their lower thresholds has the following general form:

Sk, w) = Cuplw — ()]
for [a) - wf’,b(k)] >0,
where ab = +—, —+, xx, zz. (32)
In the case of $™*(k, w), this expression can be expressed as

k € [0, (kpy — kr )l
k e](kFT — kpl), JT[. (33)

Sk, w) = ST (k, w) for
=S"T(k,w) for

The lower thresholds under consideration refer to a single
s branch line that except for S~ (k, w) has two sections.
In Eq. (32), C, are constants that have a fixed value for
the k and w ranges corresponding to small values of the
energy deviation [w — wf?(k)] > 0. The ab= +—, —+,2z
lower threshold spectra wt~(k), @™+ (k), and w*(k) in that
deviation are given in Eqs. (B10), (B11)-(B12), and (B13)-
(B14), respectively.

The k dependent exponents appearing in the spin dynam-
ical factors’ expression, Eq. (32), are also of general form,
Eq. (21). In the present case, they are given by

1 2
§:+(k) =—-1+ Z |:_§ - qbs,s(thLa 61):|

==l

for g= kFT —k and &k E](kFT - kF¢)s [,
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TABLE III. The momentum k > 0 intervals and s band number
and current number deviations defined in Appendix D for the s
branch lines that coincide with the lower thresholds of the —+, +—,
and zz dynamical structure factors lower continua. In the case of
St (k, w) and S%(k, w), such lower continua appear in Figs. 1, 2,
5, and 6, respectively. The lower continua of S™(k, w) displayed
in Figs. 3 and 4 are a superposition of those of $™(k, w) and
St (k, w).

s k = k(q) intervals SNF 8Jf SNNE
—+ k=ka—q€](kp¢—kp¢),7r[ 0 —1/2 —1
+— k:kFT—FqE[O, (kFT_kFl)[ 0 —1/2 1
+— k:kFT—qE](kFT—kFl),T[[ 2 —1/2 -1
2z k=kpy —q €l0,2kp[ 1 1/2 -1
2z k:kpl—Fqu]kai,?T] -1 1/2 1

- 1 2
G = =1 Y [ =T Ok q)]

=%l *

for q:k_kFT and ke]O,(kFT—kN)[,
r 1
+— _ t ss
= -1+ 3 [

2
ISSLkF sq |
2 ,( { )
1=+]1 =754

for q= kFT —k and &k G](kF¢ - kFi)y 7T[,

r 1
4

Ly = —1 - 255

;S ( ) + Z _2Esls + 2

1==1
for q= kFi — k and k 6]0, 2kFl,[’

2
- q>s,s(LkFLs Q)]

1

B 2
i 2
cEk)y = —1+ Z —2%_—1—{—%“1‘@5,5(%1%7 CI):|

=%x1"*

for g=k—kr, and k €]2kp,m[. (34)

The functional ®,(g) in the general exponent expression,
Eq. (21), is for the present s branch lines given in Eq. (D12).
The suitable specific values of the number and current number
deviations used in such a functional to obtain the exponents in
Eq. (34) are provided in Table III.

As confirmed by the form of the expressions given in
Eqgs. (B10) and (B12), one has that w;’~ (k) = w;; " (k) for
k €](kpy —kp)), w[. In that k interval, the line shape of
S¥(k, w) = %[S*’(k, w) + S~ (k, )] is controlled by the
smallest of the exponents ¢, 1 (k) and ¢t~ (k) in Eq. (34),
which turns out to be g“;*(k). Hence, the exponent ;* (k) is
given by

— 1 —2
SOEESERY =2+ Bos(key, @) | for
=%x1"* -
q = k— kF¢ and k E]O, (kFT — kpl)[
~ 1 =2
=-1 =22 — D (thpy, f
+L:2i:l I 5 8, (L Fl q)_ or

q= k[:¢ —k and k E](kFT — kF$)1 7'[[. (35)

FIG. 12. The momentum dependence of the exponent that con-
trols the $** (k, w)’s line shape near and just above the lower threshold
of the lower continuum in Figs. 3 and 4 for spin densities m (a) 0.05,
(b) 0.1, () 0.3, (d) 0.5, (e) 0.8, and (f) 0.99 and u = 0.4, 1.0, 15.0.
For k €]0, (kpy — kpy)[ and k €](kpy — kg ), 7[ that exponent cor-
responds to that of ST~ (k, w) and S~ (k, w), respectively.

This exponent is plotted as a function of k in Fig. 12. The
s branch line exponent (k) whose expression is given in
Egs. (34) is also plotted as a function of momentum in Fig. 13.

Both such exponents are negative in the whole momentum
interval k €]0, [ for spin densities 0 <m < 1 and u > 0.
It follows that there are singularities at and just above the
corresponding lower thresholds. (Due to a sign error, the
minus sign in the quantity —Eslx /2 appearing in Eq. (35) was
missed in Ref. [17] where the exponent £;* (k) is named &’ Its
momentum dependence plotted in Fig. 12 corrects that plotted
in Fig. 5 of Ref. [17].)

V. LIMITING BEHAVIORS OF THE SPIN DYNAMICAL
STRUCTURE FACTORS

Consistent with the relation, Eq. (5), the spin dynamical
structure factor S~ (k, w) is at m = O that obtained in the
m — 0 limit from m > 0 values, whereas ST~ (k, w)is at m =
0 that obtained in the m — 0 limit from m < O values. One
then confirms that S~F(k, w) = ST (k, ) at m = 0. How-
ever, in the m — 0 limit from m > 0 values, the ST~ (k, )
gapped continuum, Eq. (6), becomes a gapless line that coin-
cides with both its 5 and 5 branch lines and the lower threshold
of STt (k, w) = ST (k, w) atm = 0.

In the case of the initial ground state referring to 7 = 0 and
thus m = 0, one has in addition that S*(k, ) = S™(k, w).
The selection rules in Eq. (A1) impose that the longitudinal
dynamical structure factor is fully controlled by transitions
from the S = S* = 0 ground state to spin triplet excited states
with spin numbers S = 1 and S§° = 0. This is different from
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0.2 0.4 0.6 0.8 1.0

FIG. 13. The momentum dependence of the exponent that con-
trols the S¥(k, w) line shape near and just above the lower threshold
of the lower continuum in Figs. 5 and 6 for spin densities m (a) 0.05,
(b) 0.1, () 0.3, (d) 0.5, (e) 0.8, and (f) 0.99 and u = 0.4, 1.0, 15.0.

the case when the initial ground state refers to & % 0 and
m # 0. Then according to the selection rules, Eq. (A2), the
longitudinal dynamical structure factor S*(k, w) # S**(k, w)
is controlled by transitions from the ground state with spin
numbers S° = § or §* = —S§ to excited states with the same
spin numbers S* = § or §* = —S, respectively.

In the case of the 2 =0 and m = 0 initial ground state,
(1) §%(k, w) and (i) S*~(k, ) and S™*(k, w) are fully con-
trolled by transitions to spin triplet S = 1 excited states with
(i) $* =0 and (ii) S* = £1, respectively. Their s band two-
hole spectrum is obtained in the m — 0 limit from that of
S*t=(k, w) for m < 0 and from that of S~ (k, ) for m > 0
and thus reads

0™ (k) = 0% (k) = —&5(q1) — &5(q2),
where k =wm —q; — ¢ and = +£1
for ¢ €[—n/2,7/2]
and ¢ € [-m/2,/2]. (36)

Consistent, spin SU(2) symmetry implies that the triplet S =
1 and $° = 0 excited states that control $%(k, w) have exactly
the same spectrum, Eq. (36), as the triplet S = 1 and $* = =£1
excited states that control ST~ (k, ) and S~ (k, ).

In spite of the singular behavior concerning the class of
excited states that control the longitudinal dynamical structure
factor for m = 0 and m > 0 initial ground states, respectively,
one confirms in the following that the same line shape near the
spin dynamical structure factors’ lower thresholds is obtained
at m = 0 and in the m — 0 limit, respectively.

A. Behaviors of the spin dynamical structure
factors in the m — 0 limit

In the m — O limit from m > 0 values, the transverse
spin structure factor S™*(k, w) lower threshold spectrum,
Eq. (B10), expands to the whole k € [0, ] interval. The cor-
responding line shape near the s branch line is then valid for
k €]0, 7 [. Since a similar spectrum is obtained for the lower
threshold of S~ (k, @) in the m — 0 limit from m < 0 values,
one finds

wy; (k) = —eg(kp — k), where

k:%—qe]O,n[ for

gel—mn/2, /)2l (37)

As reported above, in the m — 0 limit from m > 0 values
the ST~ (k, w)’s gapped continuum associated with the spec-
trum, Eq. (6), becomes a gapless line that coincides with both
the spectra in Egs. (23) and (24) of its 5 and 5" branch lines, re-
spectively, and the lower threshold of S~ (k, w) = ST~ (k, ®)
at m = 0. [In the m — 0 limit from m < 0 values, the 5 and §’
branch lines rather stem from S~*(k, ).] Hence, the spectra
A7 (k) = Af (k) read in that limit,

AT (k) = AT (0)

—&y(m/2 —k) where k = % —q

for ke€l0,n[ for ge]—m/2,7/2[. (38)

It then turns out that the corresponding exponents ¢~ (k)
and gj‘(k), Eq. (26), have in the m — 0 limit exactly the
same value. In addition, that value is the same as that of £;*(k),
Eq. (35), reached in that limit. Indeed, by use of the limiting
behaviors lim,,,_.o @, ((*kry, q) = :i:l/(2ﬁ) for g # *kr,
lim,, o 5 o (Fkr, 0) = +£1/+/2, and lim,, o &), = 1/3/2 re-
ported in Eqgs. (E46), (E47), and (E52), one finds that

(k) =—-1+ )

=%l "=

g P
_f - CDX,S(UT/Z, 61)i| = _51

C—Jr_(k)=—1+z —é’is—d> /2, q) 2=—1
5 s,8 5 21

=%l "= 2
B 2
Gk =1+ Sy Oouin/2. )| = 1.
A ol 2 2 ’ 2

(39)

The spin SU (2) symmetry obliges as well that at m = 0 the
results should be similar for the transverse and longitudinal
spin structure factors, respectively. In the m — 0 limit, the
longitudinal spin structure factor lower threshold spectrum,
Eq. (B13), expands to the whole k €]0, [ interval and indeed
is similar to that in Eq. (37), as it reads

W (k) = 0F (k) = —,( /2 — k),
k=kr —qel0,n[ for qe€]—mn/2,7/2[. (40)

where

In spite of such a similarity, the longitudinal dynamical
structure factor is at m = 0 fully controlled by transitions from
the ground state to excited states with spin numbers S = 1 and
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S% = 0. The line shape obtained from such spin triplet excited
states is though exactly the same as that obtained in the m — 0
limit from the $* = S or §* = —§ and § > 0 excited states.

However, in the m — 0 limit the S%(k, w)’s gapped § and 5’
branch line spectra in Egs. (28) and (29), respectively, become
gapless and coincide with both each other and with the lower
threshold of the longitudinal spin structure factor, Eq. (40), for
whole k €]0, [ interval,

ME0 = —en/2 - and k=T 4
where k& €]0, [ for

One then finds that in such a limit, £5°(k) < ¢&*(k). Here
¢3*(k) and ¢f(k) are the corresponding branch line expo-
nents given in Eq. (31). Such an inequality implies that the
line shape is controlled by the exponents ¢5*(k) and ¢7(k)
such that £°(k) = ¢¥(k) in the m — 0 limit, as given below.
Here (k) is the exponent associated with the spectrum in
Eq. (29).

The use of the limiting behaviors reported in Eqs. (E46)
and (E52), confirms that the exponent ¢5°(k), Eq. (31), equals
both the exponent {(k), Eq. (34), and those given in Eq. (39).
The former two exponents are found to be given by

&5k = 4+Z[ s

==%1

1
(5 (k) = —1+Z[2§ és —

1==+1

2
x,s(ln/zv q)i| = -3

S
5S(L7T/2 Q)j| = _5

(42)

Again and in spite of such similarities, the two classes of
excited states described by real and complex nonreal rapidi-
ties, respectively, that at m = O contribute to the longitudinal
dynamical structure factor have rather spin numbers S = 1
and $° = 0. The line shape associated with such spin triplet
excited states is though exactly the same as that obtained in
the m — 0 limit from the above excited states.

One then concludes that for # > 0 and in the m — 0 limit
the line shape at and just above the lower threshold of the spin
structure factor is of the form,

$U“(k, w) = C[w — w(k)]™/?
0 cos (a)As(% —k))
mm:m/ do L),  (43)
0

w cosh w

where

for 10, = [ and aa = xx, yy, zz where C is a constant that has
a fixed value for the k and w ranges corresponding to small
values of the energy deviation [w — w(k)], J;(w) is a Bessel
function, and the s band rapidity function A(q) is defined
in terms of its inverse function g = ¢g,(A) in Eq. (E23). The
exponent —1/2 is indeed that known to control the line shape
at and just above the lower threshold of w(k) [16].

B. Behaviors of the spin dynamical structure factors
in the m — 1 limit
The sum rules, Eq. (A3), imply that lim,,_.; S~ (k, w) =0
and lim,,_,; S*(k, w) = 0. It follows that as m — 1 and thus

h — h,, the spin dynamical structure factor is dominated by
S$™(k, w). Here h, is the critical field associated with the
spin energy scale 2ug h., Eq. (3), at which fully polarized
ferromagnetism is achieved.

At h = h, the power-law expressions of the present dy-
namical theory involving k dependent exponents are not valid,
being replaced by a §-function-like distribution,

S (k. w) = %5(60 — (k) where

) (k) =4t (V1 +u2 —u)

2t

dk sin k arctan (smk — A — k)>,

u

—7T

(44)

for [0, ]. Here the s band rapidity function A;(g) is defined
in terms of its inverse function g = ¢,(A) in Eq. (E32).

VI. DISCUSSION AND CONCLUDING REMARKS
A. Discussion of the results

Our results provide important information about how in
1D Mott-Hubbard insulators electron itinerancy associated in
the present model with the transfer integral ¢ affects the spin
dynamics: The main effect of increasing ¢ at constant U and
thus decreasing the ratio u = U /4t is on the energy bandwidth
of the corresponding relevant spectra.

Physically, this is justified by the interplay of kinetic en-
ergy and spin fluctuations. However, the matrix elements
that control the spectral weights and the related momentum-
dependent exponents in the dynamical structure factors’
expressions studied in this paper are little affected by decreas-
ing the ratio u = U /4t.

The internal degrees of freedom of the s and s2 parti-
cles refer to one unbound singlet pair of spins 1/2 and two
bound singlet pairs of such spins. The spins 1/2 in such
pairs refer to rotated electrons that singly occupy sites. In
the u — O limit, the corresponding s and s2 energy disper-
sion’s bandwidths reach their maximum values, lim,_,o W, =
2t[1 +sin (3 m)] and lim,_.o Wy, = 4t sin (5 m), respec-
tively, whereas lim,_, o W, = lim,_, o, W;, = 0, as given in
Eq. (E25). Indeed, for small, intermediate, and large yet finite
u values the s particles for all spin densities m and the s2
particles for m > 0, along with the two and four spins 1/2
within them, respectively, contribute to the kinetic energy
associated with electron itinerancy. However, in the u — oo
limit all spin configurations become degenerate and the spins
1/2 within the s and s2 particles become localized.

Consistently, the kinetic energy, Eyi, =t 9 (H)/dt, of all
Mott-Hubbard insulator’s states decreases from a maximum
value reached in the # — O limit to zero for u — oo. In-
termediate u# values refer to a crossover between these two
limiting behaviors. While this applies to all spin densities, for
further information on the interplay of kinetic energy and spin
fluctuations at m = 0, see for instance Sec. IV of Ref. [31] for
electronic density n = 1.

The dynamical theory used in the studies of this paper
refers to a specific case of the general dynamical theory
considered in Ref. [17]. The former theory refers to the
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Hamiltonian, Eq. (1), acting onto a subspace that includes
spin n-string states. It has specific values for the spectral
parameters that control the momentum dependent exponents
in the spin dynamical structure factors’ expressions that have
been obtained in this paper for (k, )-plane regions at and near
well-defined types of spectral features.

As mentioned in Sec. I, the issue of how the branch-line
cusp singularities stem from the behavior of matrix elements
between the m > 0 ground states and specific classes of ex-
cited states is shortly discussed in Appendix D. The dynamical
theory refers to the thermodynamic limit, in which the matrix
elements squares |(v|$’,’j|GS)|2 in Eq. (4) have in terms of
the relative weights a(m4;, m_;) and lowest peak weights
A0 defined in that Appendix the general form given in its
Eq. (D7). The theory provides in that Appendix Eq. (D6) the
dependence of such weights on the t = £1 functionals CI>L2 that
control the cusp singularities exponents.

Unfortunately, it does not provide the precise values of
the u and m dependent constant 0 < B,y < 1 and u dependent
constants 0 < f; < 1 wherel = 0, 2, 4 in the A®? expression
under consideration. Those contribute to the coefficients C5,
and C,p, respectively, in the spin dynamical structure factors’
analytical expressions, Eqs. (20) and (32), which are deter-
mined by the lowest peaks spectral weights. In spite of this
limitation, our results provide important physical information
on such factors.

The possible alternative use of form factors of the o =1, |
electron creation and annihilation operators involved in the
dynamical structure factors studied in this paper remains an
unsolved problem for the present 1D Hubbard model.

When ;gb(k) =—1+>,_.,®? <0, Eq. (21), there are
cusp singularities at and just above the corresponding S
branch lines. The form of the matrix elements expression,
Eq. (D7), reveals both that the occurrence of cusp singular-
ities is controlled by the matrix elements (v|§,‘j|GS) and that
|(v|S‘,‘j|GS )|? also diverges in the case of the excited states that
generate such singularities. This confirms that there is a direct
relation between the negativity of the exponents ;gb(k) and the
amount of spectral weight at and just above the corresponding
B branch lines.

For simplicity, in this paper we have not provided further
details of the dynamical theory that are common to those
already given in Ref. [17]. The form of both the relative
weights and the lowest peak weights considered in the studies
of Ref. [25] for the charge degrees of freedom of the 1D
Hubbard model for electronic densities n, € [0, 1] at spin
density m = 0 is similar to that of the present relative weights
a(myy, m_;) and lowest peak weights A% for the spin de-
grees of freedom of the same model for spin densities m €
[0, 1] at electronic density n, = 1. Such studies consider the
u — oo limit in which for the dynamical correlation function
under consideration the values of the lowest peak weights can
be calculated. The results of that reference confirm that the
cusp singularities correspond to (k, w)-plane regions with a
larger amount of spectral weight.

That the momentum-dependent exponents in Egs. (20) and
(32) and thus the corresponding matrix elements that control
the spectral weights, Eq. (D7), are little affected by decreasing
the ratio u = U/4t reveals that in the present case of the
spin dynamical structure factors of the 1D Hubbard model’s

Mott-Hubbard insulating phase the relative spectral-weight
contributions of different types of excited energy eigenstates
is little # dependent. This means that concerning that issue,
results for the most known limit of small yet finite t2/U
and thus large u in which the present quantum problem is
equivalent to the spin-1/2 XXX chain [4,28] also apply to
small and intermediate u values. This applies to the analysis
presented in Sec. III, concerning the spectral weight in the gap
regions being negligible in the present thermodynamic limit

Our results have focused on the contribution from spin n-
string states. This refers to the line shape at and just above the
(k, w)-plane gapped lower threshold’s spectra A“ﬂ” (k) where
ab = +—,xx,zz and B refers to different branch lines. In
well-defined m-dependent k subintervals, Eqs. (22)—(25) and
(27)—(30), such branch lines coincide with the gapped lower
thresholds under consideration. In these physically impor-
tant (k, w)-plane regions, the spin dynamical structure factors
S (k, w) have the general analytical expression provided in
Eq. (20). In the case of ST~ (k, w) and S**(k, w), such gapped
lower thresholds refer to the n-string states’ upper continua
shown in the (k, w)-plane in Figs. 1-4, respectively.

That as justified in Sec. III the spectral weight in the gap
regions is negligible in the present thermodynamic limit, is
consistent with the amount of that weight existing just be-
low the (k, w)-plane gapped lower thresholds of the n-string
states’ spectra shown in Figs. 1-6 being vanishingly small
or negligible. This is actually behind the validity at finite
magnetic fields 0 < h < h, and in the thermodynamic limit
of the analytical expressions of the spin dynamical structure
factors of general form, Eq. (20), obtained in this paper.

The momentum dependent exponents that control the spin
dynamical structure factors’ line-shape in such expressions
are given in Eq. (26) for ST (k, w) and $*(k, w) and in
Eq. (31) for S¥(k, w). In the former case, the exponents as-
sociated with the (k, w)-plane vicinity of the s2—, §—, 5—,
and s2’-branch lines are plotted in Figs. 7-10. Such lines refer
to different k intervals of the gapped lower threshold of the
n-string states’ spectra of ST~ (k, w) and $**(k, ). The solid
lines in Figs. 14 that belong to that gapped lower threshold
correspond to k intervals for which the exponents are negative.
In them, singularities occur in the spin dynamical structure
factors’ expression, Eq. (20), at and above the gapped lower
thresholds.

In the case of ¥ (k, w), the expression given in that equa-
tion does not apply for small spin densities in the ranges
and corresponding k intervals given in Eqgs. (18) and (19).
For these spin-density ranges and momentum intervals, there
is overlap between the lower continuum and upper n-string
states’ continuum, as shown in Figs. 3(a)-3(c).

However, consistently with the perturbative arguments pro-
vided in Appendix D in terms of the number of elementary
processes associated with annihilation of one s particle, the
contribution to S%(k, w) from excited states populated by n-
strings is much weaker than for S*~ (k, @) and $**(k, w) and is
negligible in the case of S~1(k, ). In the case of S%(k, w) it
does not lead to a (k, w)-plane continuum. The gapped lower
threshold of such states is shown in Figs. 5 and 6. There the k
subinterval associated with the 8 = § branch line is the only
one at and above which there are singularities. We have found
that out of the four branch-line’s exponents whose expressions
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are provided in Eq. (31), only that of the 8 = § branch line
is indeed negative. That line is represented in the gapped
lower threshold of S*(k, w) shown in Figs. 5(a)-5(c) by a
solid (green) line. The corresponding exponent is plotted in
Fig. 11.

That line’s k subinterval is though small. Its momentum
width decreases upon decreasing u and/or increasing the spin
density within the range 0 < m < /. Here 7 increases from
m=0 for u — 0 to m ~ 0.317 for large u. For spin den-
sities m < m < 1, that line is not part of the gapped lower
threshold, so that the contribution to $S¥(k, ) from excited
states populated by n-strings becomes negligible. Consistent,
in Figs. 5(d)-5(f) and 6 that line is lacking.

To to provide an overall physical picture that includes the
relative (k, w)-plane location of all spectra with a significant
amount of spectral weight, we also accounted for the con-
tributions from all types of excited energy eigenstates that
lead to gapped and gapless lower threshold singularities in the
spin dynamical structure factors. This includes excited energy
eigenstates described only by real Bethe-ansatz rapidities and
thus without n-strings, which are known to lead to most spec-
tral weight of the sum rules, Eq. (A3). Their contribution to
St (k, ), $*(k, ), and S¥(k, w) leads to the (k, w)-plane
lower continua shown in Figs. 1-6, respectively.

B. Concluding remarks

Spin n-strings have been identified in experimental studies
of CuC12~2N(C5D5) and CU(C4H4N2)(NO3)2 [4——6] In this
paper the contribution of spin n-strings to the spin dynamical
structure factors of the 1D fermionic Hubbard model with one
electron per site in a magnetic field has been studied. That
model describes a 1D Mott-Hubbard insulator.

1D Mott-Hubbard insulators are a paradigm for the impor-
tance of strong correlations and are known to exhibit a wide
variety of unusual physical phenomena. For instance, while in
the 1D Hubbard metallic phase increasing the onsite repulsion
U reduces the lattice distortion, in its Mott-Hubbard insulating
phase Coulomb correlations enhance the lattice dimerization
[32]. 1D Mott-Hubbard insulators can be studied within con-
densed matter by inelastic neutron scattering in spin chains
such as for instance chain cuprates, as well as a number of
quasi-1D organic compounds [4,5,33].

The theoretical description of the spin degrees of freedom
of some of such condensed-matter systems is commonly mod-
eled by the spin-1/2 XXX antiferromagnet [4,5]. As justified
in the following, our study indicates that the 1D Hubbard
model with one electron per site can alternatively be used to
describe the spin dynamical properties of such systems.

Analysis of the spin dynamical structure factors spectra
plotted in the (k, @) plane in Figs. 1-6, reveals that the only
effect of decreasing the ratio u = U /4t is to increase such
spectra energy bandwidths. (Within the isotropic spin-1/2
XXX chain, this can be achieved by increasing the exchange
integral J.)

It is somehow surprising that the 1D Hubbard model with
one electron per site for u = 15, which is equivalent to a
isotropic spin-1/2 XXX chain with J = 4¢2/U, and the for-
mer model for # = 0.4 and u = 1.0, lead to spin dynamical

structure factors’ spectra that except for their energy band-
width have basically the same form.

However, the type of momentum dependencies of the ex-
ponents plotted in Figs. 7—13 that control the (k, w)-plane line
shape of the spin dynamical structure factors in the vicinity
of the singularities located in the gapped lower thresholds of
the spin n-string states’ spectra and lower thresholds of the
lower continua represented in Figs. 1-6 is not affected by
decreasing u.

That as found in this paper the main effect of increasing
t at constant U and thus decreasing the ratio u = U /4t is on
the energy bandwidth of the corresponding relevant spectra
is an important information about how in 1D Mott-Hubbard
insulators electron itinerancy associated in the present model
with the transfer integral ¢ affects the spin dynamics.

This seems to confirm that concerning the spin dynamical
properties of spin chain compounds in a magnetic field, both
the 1D Hubbard model with one electron per site and the
spin-1/2 X X X antiferromagnet are suitable model candidates.
Consistent, for general Mott-Hubbard insulating materials
there is no reason for the on-site repulsion to be much stronger
than the electron hopping amplitude ¢. This situation is real-
ized in the Bechgaard salts [32].

Since the dynamical theory used in our study for the whole
u > 0 range and the thermodynamic limit only provides the
line shape at and near the cusp singularities located at the
gapped lower thresholds and lower thresholds, it cannot ac-
cess other possible peaks, as for instance those due to the
Brillouin-zone folding effect. However and as discussed in
Sec. VI A, results for the most known limit of small yet finite
t?/U and thus large u in which the present quantum problem
is equivalent to the spin-1/2 XXX chain [4] also apply to
small and intermediate u values provided that the spectral
features energy bandwidths are suitably rescaled. Hence, one
can at least confirm that the cusp singularities located at the
gapped lower thresholds and lower thresholds predicted by
the half-filled 1D Hubbard model are observable in neutron
scattering experiments.

In such experiments, the quantity that is observed is pro-
portional to

Sk, ) = LISTF(k, ) + ST (k, @) + 45T (k, ). (45)

Upon superposition of the spectra of the spin dynamical struc-
ture factors on the right-hand side of this equation, we have
checked that all cusp singularities at and near both the gapped
lower thresholds and lower thresholds found in this paper
for the 1D Hubbard model at any of the u values u = 0.4,
u = 0.1, and u = 15.0 correspond to peaks shown in Fig. 4 of
Ref. [4] for CuCl,-2N(CsDs) and in Fig. 5 of that reference
for Cu(C4H4N,)(NO3), at the finite values of the magnetic
field considered in these figures and suitable transfer integral
t values, to reach agreement with the corresponding energy
bandwidths. This should obviously apply to u = 15.0 at which
large u value the spin degrees of freedom of the present model
are described by the spin-1/2 XXX chain (with exchange
integral J = 4¢>/U = t/u) used in the studies of Ref. [4] to
theoretically access the cusp singularities under consideration.

That such a correspondence also applies to u = 0.4 and
u = 1.0 is justified by the results of this paper according to
which: The dependence on u of the momentum dependence
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of the negative exponents that control the spin dynamical
structure factors’ line shape is rather weak; The main effect
of decreasing u on such factors’ spectra is merely to increase
their energy bandwidth.

The dynamical theory used in our study provides analytical
expressions of the spin dynamical structure factors at and just
above the (k, w)-plane gapped lower thresholds and lower
thresholds of their spectra with more spectral weight. The use
of other methods such as the time-dependent density matrix
renormalization group [34—36] to obtain the line shape of such
dynamical functions over other (k, w)-plane regions would
provide valuable complementary information.

In the case of 1D Mott-Hubbard insulators, the apparent in-
dependence on the u values of the spin dynamics found in this
paper, suggests that the suitable values of the interaction for
such systems are rather settled by the agreement with experi-
mental results on the charge dynamics and one-particle spec-
tral function at energy scales above the Mott-Hubbard gap.
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APPENDIX A: USEFUL SELECTION RULES
AND SUM RULES

Let |S, «), |S%, B), and |S, S%, y) denote energy eigenstates
where S € [0, N/2] is their spin, S their spin projection, and
o, B, and y represent all other quantum numbers needed
to uniquely specify these states, respectively. The selection
rules given in the following are derived from the properties
of the operators S’,f and S’If by straightforward manipulations
involving their operator algebra [28].

At vanishing magnetic field, 7 = 0, the following selection
rules hold in the thermodynamic limit:

(S, al8{|Sa'y =0 for S=8 =0 and a=g +,

(S, a|8¢|S'a'y =0 for |S—S|#0,1 and a=gz, =,
(5%, BISEIST, By =0 for S #S§+1,
(55, BISiIST, By =0 for S # S5 (A1)

However, for finite magnetic fields 0 < i < h, the follow-
ing selection rules are valid in that limit:

(S, S, yISEIS’, $7, vy =0
for ' #S+1 and S*#S=+1,
(S, S, yIS:18", 8%, ¢y =0

for '#S and S§% #S8. (A2)

Finally, the dynamical structure factors satisfy the follow-
ing sum rules:

1 T 00
—/ dk/ do STk, w) = (1 +m),
272 - 0

1 T o0
) dkf doS Tk, 0) = (1 —m),
- 0
1 T o0 1 )
7T —
772 - dk/o dw S%(k, w) = 5(1 —m?). (A3)

APPENDIX B: GAPLESS TRANSVERSE AND
LONGITUDINAL CONTINUUM SPECTRA

Within a k extended zone scheme, the S~ (k, w)’s spec-

trum ™t (k) and the ST~ (k, w)’s spectrum ™~ (k) associated
with the lower continuum in Figs. 1 and 2 read

w k) = —&5(q1) — &(q2),

where k =t —q; — ¢, and ==+l

for g, € [—kp,,kpy] and gy € [—kry, kry ], (B1)

and
ot (k) = &5(q1) — &5(q2),
where kK =(m +q1 — q» t==1
and ¢y € [k, kr|], (B2)

and

for |qi| € [kry, krp]

respectively. Here g,(g) is the s band energy dispersion given
in Eq. (ES).

The spectrum w™ (k) of the transverse dynamical structure
factor $**(k, w) associated with the lower continuum in Figs. 3
and 4 results from combination of the two spectra @™ (k) and
™t (k) in Egs. (B1) and (B2), respectively.

However, the spectrum w®(k) associated with the lower
continuum in Figs. 5 and 6 is given by

o“(k) = &5(q1) — &5(q2),
where k =q; — q»
for

lg1| € [kry. kry] and g € [—kp, kpy]. (B3)

The upper thresholds of the two-parametric spectra,
Egs. (B1) and (B2), have the following one-parametric spectra
for spin densities m €]0, 1[:

a);f(k) = 2/1,3]’1 — Ss(kFL — k) where k = kFL —dq

for ke[0,kry] and ¢q €0, kg ],
= &(q1) — &5(q2), where k=7 +q1 —q2
for kelkry,m] and vy(q1) = vs(q2),

with q1 € [—kpm —kpl]

and ‘IZ € [_kFis 0]7 (B4)
and
4 T —k
w,, " (k) = —2e¢ — ) where k=m —2¢q
for ke [(kFT —kpi),ﬂ']
and g € [—kry, 0], (BS)
respectively.
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The upper threshold spectrum wj;(k) of the combined
spectra, Eqs. (B1) and (B2), is given by
Wi (k) = o~ (k) for k€ [0, k5]
=aw, (k) for ke [kfff, n], (B6)

where the momentum k' is such that !~ (k%) = w, T (k).

However, the one-parametric upper threshold spectrum
associated with the two-parametric longitudinal spectrum,
Eq. (B3), reads for m €]0, 1[

w, (k) = e5(q1) — &5(q2) where k=q1 —q

for wvy(q1) =vs(q2) and k € [0, k4] with
q1 € [kpy, kpyl
= 2/13]1 — Es(kF¢ — k) where k = kp¢ —q
and ¢ e [—kpy,0]. (B7)

and ¢, € [0, kr],

for k€ [kpy, ]

At k=0,kpy,m and k=0, kpy —kpy,m, the upper
threshold spectra, Egs. (B4) and (B5), respectively, are given
by

wp(0) = W' =2pugh,
wh (kpy) =W, =2uph+ WP,

wy () =0,

w, (kpy —krpy) =0,
Wt (T) = 2WP. (BS)

ut

Atk = 0, kg4, 7 the upper threshold spectrum wf; (k) reads
wi(0) =0, Skpr) =W, =2uph+ W7,

ut
W () = W =2uph. (B9)

The energy scales W, = WP + W WP, and W are in
the above equations the s band energy width, the s particle
energy bandwidth, and the s hole energy bandwidth defined
by Egs. (E24)—(E26).

The dynamical theory used in our study provides the spin
dynamical structure factors’ line shape near the lower thresh-
olds of the spectra, Eqs. (B1), (B2), and (B3). In the case
of (i) S~ (k, w) and (ii) ST~ (k, w) and S%(k, ) such lower
thresholds refer to (i) a single s branch line and (ii) two
sections of a s branch line, respectively.

These lower thresholds spectra can be expressed in terms
of the excitation momentum k or of the s band momentum g
and are given by

w;, T (k) = —&,(kpy — k) and
k = krpy —q, where
k e ](kp¢ —kpl),ﬂ[ and

q €1—kry, kr L, (B10)
a);_(k) = ES(k — kF¢) and

k = kp4 +q, where

k €10, (kF¢ —krpy)[ and

qe]_kFTy_kFl,[a (Bll)

a);_(k) = —8S(kF¢ — k) and

k = krpy —q, where
k € ](kF¢ —kpi),f[[ and

q €1—kry, kpyl, (B12)

wyi(k) = —&; — kp [y, —k) and
k =kp, —q, where
k € 10, 2kp [and

q €] —kpy kryl, (B13)

wii(k) = eg(k — kp,) and
k =kp, +q, where
k € 12kpy), w[ and

q € lkpy, kryl. (B14)

APPENDIX C: ENERGY GAPS’ EXPRESSIONS
AND LIMITING VALUES

In this Appendix, the expressions in terms of the s and
s2 bands energy dispersions and limiting values of the en-

ergy gaps Al (k). Eq. (15), A%, (k), Eq. (16), and AZ, (k),

Eq. (17), and their values at some specific momenta are pro-
vided.
For m € [0, m] the energy gap A;; (k) reads
A;;(k) = —2uph+ en(k) + &;(kp, — k)
for k €]0, (kpy — k)L,
Afo () =2uph — ei(kpy — k) + e(kpy, — k)
for 1(kry — kry)., kL,
AL (k) =2ugh— Wy for k elk, kg [,
Al (k) = 4uph — Wy — e5(krp ), — k)
+&5(q) —esk+qg — )
for k €lkgy,2kp, [ and
q €] — (ke — kpy +kr)), 0[
g1 =k+q—m €l —kpy, —kd[,
AL () = 0k — 2ke ) + £,(q) — 6,k + g — )
for k €]2kp, [ and
q €l —kry, —(ke — kpp +kp )l
q=k+q—mel—k,, —kpyl
for spin densities m € [0, im]. (C1H

For spin densities m € [, 1] its expression is

AL (k) = =2uph + g0 (k) + &5(kp | — k)
for k €]0, k[,

Afo (k) =2ugh— Wy for k elk, kgl

AL () = dpuph — Wy — e(kp ), — k)
+&,(q) —es(k+g—m)
for k €lkgy,2kry[ and
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q €] — (ke — kpy +kry), O
g =k+q—m €l —krp, —kd[,
Agp (k) = g2 (k — 2k ) + £5(q) — &5k +q — 1)
for k €]2kp, [ and
q €l —kry, —(ke — kpy + kp )l
g1 =k+q—mel—ke —kp|l
for spin densities m € [m, 1[. (C2)
The momentum k, appearing in the above equations satis-

fies the following equation, expressed in terms of the s band
group velocity defined in Eq. (E10):

vg(ke) = vs(ke — kpy +kpy) where ko >kpy,. (C3)

(The limiting behaviors of the s band group velocity are given
in Egs. (E29), (E30), (E35), (E36), and (E38).)
The energy gap A;a; (k) is given by 2ugh — Wy, for the
following k values and spin densities:
Abo (k) = 2ugh — Wi,

k=0 for me€]0,I1],

k=kF¢—kF¢ for mE[O, 1/3],

k € lk, kg [ for m e [0,m],

k € lk, ke [ for m e [m, 1[. (C4)
Here W, is the s2 band energy width. From the use of results

given in Appendix E, one finds that the energy scale 2ug h —
Wiz = 0 in Eq. (C4) has the following limiting values:

lir% Quph—Wyp)=0 for m€]0, 1],
lim0 QRugh—Wyp)=0 for u=>0,
lim1 Quph—Wgp) =U — (V@12 + 2U)?

/(@) +U?>»>0 for u>0

U for ukl1

&

2

=T for u>1. (C5)

2

t
u

Atk = 7 (thatin the spectra expressions means the k — 7
limit) the present gap reads

A;a;(n) =4ugh for mel0,1[and u > 0. (C6)

This expression has the following limiting values:

lim Ak, () = 8 sin <%m) for m €0, 1[,

oap u>0,

lim1 A;a;(ﬂ) =@t)2+U?2-U>0 for u>0

lirr%) AY-(7)=0 for

~4t—-U for u<kl1
2t 47

~ —=— for u>1. (&)
u U

The energy gap Afg“{;p(k), Egs. (15) and (16), can be ex-
pressed as

XX _ +— XX
AZ (k) = Al (k) for k€10, KT,
AZ (k) = Aghk) for k elks, . (C8)

where k5 > 0 is the k value at which w,, T (k%) = wf,~ (k&
and
A;}:(k) = AT(k) — w0, (k). (C9

The gapped lower threshold spectrum A~ (k) in this expres-
sion obeys the equality A~ (k) = A"~ (k), where AT~ (k) is
given in Egs. (13) and (14).

For spin densities m € [0, /], the energy gap Aga;(k),
Eq. (C9), reads

Agi(k) = ea(k) for k€10, (kpy — kp L,

— 7T —k
Aga;(k) = 4/1,3 h— 8s(kF']‘ — k) + 28S<T)

for k €ltkpy — kr)), KL,

AZE(k) = dpgh — W — - ™k
=4up 2 — &s(kry — k) + 2¢ 3

gap

for k elk, 2kr [,

T —k
Ag_a;(k) = 852(]( — 2kF¢) + 283(7)

for k €)2kp, 7|, (C10)
whereas for m € [/, 1[ it is given by
At (k) = ega(k) for k€ [0,k— 5k,
A gy (k) = dpup h = Wp — e(kp | — k)
for k €lk, (kpy — k),

T —k
Ag_a;(k) =4uph — Wy — g(kr, —k)+2£s< 5 )

for k €ltkry —kry), 2kr [,

T —k
Agaﬁ(k) = en(k — 2kp)) + 283‘(7)

for k €2kp,, 7l (C11)

Atk =0, kpy — kg, 7w the energy gap Ag_;l;(k) is given by

ALt (0) =4ugh— Wy for m €0, 1,

gap
A Ckpy —kpy) = dugh for  m € [0, ),

AN () =duph —2W7

gap
for m €]0, 1[. (C12)

In the k intervals k €lko, [ and k €lko, ki, Eq. (18),
for spin densities m €]0, my] and m €]0, m], respectively,
one has that Agp(k) = Ag_a;f(k) < 0. For instance, at
k=m (and in the k — m limit in the spectra expres-
sions) and for spin densities m €]0, 1[, the energy gap

o oL . L
Agp() = Ags () is in the u — 0 limit and for u > 1

045118-21



CARMELO AND CADEZ

PHYSICAL REVIEW B 103, 045118 (2021)

given by
XX : T 1
Agap(n) = 12¢t| sin <Em) —3
=—4t for m—0
B 2 (1
=0 for m=my= —arcsin| = ) = 0.216
b4 3
=8 for m—1, (C13)
and
o Tt 4mt?
Agyp() = =TT for m— 0
=0 for m=my~0.239
4 1612
=—=—— for m—1, (C14)
u
respectively.

Finally, the energy gap Ag (k), Egs. (15) and (17), is for

spin densities m €]0, m] and m € [/, 1] given by
Agp(k) = en(k — (kpy — kr)))
for k& €]0, (kpy — kr )l
=4uph — Wy — gi(kpy — k)
for k €ltkry —kry), (m — k)|
=4uph — es(kpy — k)
for k €l(w — k), 2kr [
=¢epk —m) for ke€l2kg,, 7|
when m € [0, m], (C15)
and
Ag;p(k) = epn(k — (kpy —kpy)) for
=duph — Wy — g5(kpy — k)
for k €l(kpy — kry), (T — k)l
=eolk—m) for kel —k),n[

when m e [m, 1],

k € (0, (krp —kry))

(C16)

respectively.

APPENDIX D: MATRIX ELEMENTS FUNCTIONALS
AND CUSP SINGULARITIES

The ground state at a given spin density m is popu-
lated by Ny = N, s particles that fill a s band Fermi sea
q € [—kry, kr,], where kp, is given in Eq. (E7) and by
a full ¢ band g € [—m, ] populated by N, =N ¢ parti-
cles that do not participate in the spin dynamical properties.
Within the present thermodynamic limit, we have here ig-
nored corrections of 1/L order to these bands momentum
limiting values. There are no s2 particles in the ground
state.

However, the following number and current number de-
viations under transitions from the ground state to excited
energy eigenstates are associated with momentum deviations
1/L corrections that must be accounted for even in the ther-

modynamic limit,
SNF for 1=1,-1 (right, left) s particles,

1
SNI = > NI, and 5] = 3 > " L8NE,
1==+1 1==+1

t
8Jp = E‘sNSZ(q)lq:t (kpy—kpy)»
1
sJF = > Z LSNS, where
1==+1
SNF = —8NF (D1)

C,l c,—t*

Under the transitions from the ground state to the excited
energy eigenstates that span the spin subspaces of the quantum
problem studied in this paper, the number of s particles may
change. This leads to number deviations 6N,. The specific
number deviations BNf , in Eq. (D1) refer only to changes of
the s particles numbers at the left (¢ = —1) or right (¢ = 1)s
band Fermi points. The same information is contained in the
two Fermi points number deviations SN/, and in the corre-
sponding Fermi points number deviations SN =" _ | SNf,
and current number deviations 8J" = 23 ., (6N’

The overall s particles number deviation §N; can be ex-
pressed as

8Ny = SN + NN (D2)
Here SN refers to changes in the number of s particles at s
band momenta other than at the Fermi points.

For the spin subspaces under consideration, the s2 band
number deviations only read SNy = 0 or SNy = 1. In the
latter case, the s2 particle can be created at any s2 band mo-
mentum g € [—(kF¢ — kpi), (kFT — kpi)]. Only when the s2
particle is created at the s2 band limiting values ¢ = —(kpy —
kry) or g = (kpy — kr) that process leads to a current num-
ber deviation §J;; = —1/2 and §J;; = 1/2, respectively.

The dynamical structure factors are within the dynami-
cal theory used in the studies of this paper expressed as a
sum of s-band spectral function terms B,(k, @) (denoted by
Bg(k, w) inRef. [17]), each associated with a reference energy
eigenstate whose s-band Fermi sea changes from occupancy
one to zero at the ¢« = +1 right and « = —1 left Fermi points
qrs. = qY, + 7ONF /L. Here g, refers to the ground state
and the ¢ = &1 number deviations SN, are those in Eq. (D1).

In the subspaces of our study, that reference state cor-
responds to fixed « = %1 deviations SN/, and can have no
holes within the s-band Fermi sea, one hole at a fixed s-
band momentum ¢, or two holes at fixed s-band momenta
g an ¢/, all inside that Fermi sea and away from the Fermi
points. In addition, that state can have no s particles or a
single s particle at a fixed s-band momentum ¢ outside the
s-band Fermi sea and away from its Fermi points. It can also
have no s2 particles or one s2 particle at a fixed momentum
q" € [—(kpy — kry), (kpy — kry)l.

Besides the reference state, each term B;(k, @) involves
sums that run over m, = 1, 2, 3, ... elementary particle-hole
processes of ¢ = =1 momenta (257 /L around the correspond-
ing Fermi points gr,, that generate a tower of excited states
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upon that reference state. It reads [17]

L
Byk,w)=— ) AV a(miy, my)

myym_y
2m 2
x 8 a)—G—TU‘YZ(mL—i-@L/Kl)
1==1
2 2
x8[k——= > 1m+®}/H). (D3
L 1==1

Here vy = vs(kpy) where v,(q) is the s-band group ve-
locity, Eq. (E10), and the lowest peak weight A% and
the weights A9 a(m,,, m_,) refer to the matrix elements
square |(\)|S,‘{’|GS)|2 in Eq. (4) between the ground state and
the m, = 0 reference excited state and the corresponding m, >
0 tower excited states. For the present subspaces, the t = %1
functionals @, and the spectrum € in Eq. (D3) have the general
form
L8NF
28]
— @, 5(tkry, ¢)3Ns(q")
+ (1 = 8171 ke —kr ) Ps.s2(tkry, VSN2 ("),

where

€ = &,(q)8N;(q) + &5(¢")8N;(q) + £2(¢")8Ns2(q")

8Ns(q) = 0,%x1; 8Ny(q") =0, -1
SNp(g") =0, 1.

o, = + & (8JF —28J5) + @ 5 (thry. )5N,(q)

and

(D4)

Here the deviations N, §JF, and 8J;, are given in Eq. (D1),
the « = £1 phase shifts @, (tkr|, q) and Py (tkp,,q) in
units of 2w are defined by Eq. (E43), the phase-shift related
parameter £! is defined in Eq. (E50), and the energy dis-
persions &5(g) and &5 (g) are given in Egs. (E8) and (E9),
respectively.

The relative weights a(my, m_1) in Eq. (D3) can be ex-
pressed in terms of the y function as [17]

a(myy, m_y) = l_[ a,(m,), where
1==+1

(m, + 9?)

T(m + 1T (02) D)

a,(m,) =

In the present thermodynamic limit, the matrix elements
weights have the following asymptotic behavior [17]:

A00 _ (1
L B;

(ml + d>t2/4
r(e;)

_1+21:11 cI)LZ
) 1_[ e—fb+fz(25>z)2—ﬂ(2d~>t)4’
(=%l

)—1+<1>,2
almyy,m_y) = 1_[ (D6)

(==%1

Here &, = @, — LcSNfl, the constant 0 < B, < 1 and the con-
stants 0 < f; < 1 where [ =0, 2, 4 depends on u and m and
depend only on u, respectively, and are independent of L.

Importantly, in that limit the matrix elements square in Eq. (4)

then read

1 —1Y 7
LBS)

|(WI8{IGS))* = (

e~ fot (e ~fi28)*
X m,+®; /4
Ll_i[l r (CDLZ) ( l t

< 1 )_]+Zt—il¢’12 l_[
L B; 1=+1

X [47fvs (w—€+tv; k)]

)*1+¢L2

e_f0+fé(2&)L)2_f4(2&>L )4

r(@?)

— 14?2

D7)

Here the equality m, = ﬁ(a) —€+tvk) — d>[2 /4 imposed
by the §-functions in Eq. (D3) has been used.

In the general case in which the two ¢« = %1 functionals ®,
are finite the s-particle spectral function B,(k, w), Eq. (D3),

can be written as [17]

1
O — k
47 B, v, L[I Ch R

Bi(k, w) =

o= Jo+ L2 - 129 <w —etiu, k)”“"z
I'(02) 47 B g ‘
(D8)

To reach the second expression, which in the thermodynamic
limit is exact, Egs. (D6) and (D7) were used.

The summation of the terms B;(k, w) that lead to expres-
sions for the dynamical structure factors can be performed and
reach several kinds of contributions.

When 8N;(q) = 6Ny(¢') =0 and 6SNp(¢")=0 or
3Ny (q") =1 at ¢” = 0 in Eq. (D4), such summations lead to

ab

Sk, w) x (w—wy) for (w — wp) #* Fv; (k — ko), where
wo =0 and wy = 4uph for 8Ny (¢") = 0 and SNp(0) =1,
respectively, ko = 2kp, 8JF, and ¢ =-24% _. &%

Moreover, they lead to an alternative behavior B(k, ) o
ab

(w — wy F v, (k — ko)) : for (w — wg) ~ xv, (k — ky) where
¢8> = —1 + @4 These behaviors are only valid in very small
(k, w)-plane regions associated with very small values of w
or (w —4uph) and of (k — ky) and lead to cusp singularities
when ¢% < 0 and/or ¢* < 0 [17].

When only one of the deviations 8N;(g), dN;(¢'), and
3Ny (q") in Eq. (D4) reads 1 (or —1) the summation of terms
By (k, ) gives the line shape of the dynamical structure fac-
tors in the (k, w)-plane vicinity of branch lines associated
with the lower thresholds, Eqgs. (20) and (32). The form of
the exponents ¢5”(k) = —1+),_., ®7, Eq. (21), in these
expressions is fully determined by the square matrix elements,
Eq. (D7).

When several of the deviations §Ny(g), §Ny(¢'), and
3Ny (q") in Eq. (D4) are given by 1 (or —1), the summation of
terms B;(k, w) leads to a line shape without cusp singularities.

The results of this paper focus on the line shape near the
branch lines associated with the lower thresholds, Egs. (20)
and (32). They rely on the specific form that the functional,
Eq. (D4), has for the s2, s2’ branch lines, 5 branch lines, and
5" branch lines that are part of the gapped lower thresholds.
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In the case of the s2 and s2’ branch lines, that spectral
functional’s form is

SNF
D,(q) = LE) > L 8IF + Dy o (tkry, )
L8NF P
=~ + & 8IF + @ o (thry, q)
2553

for s2 and

52/ branch lines. (DY)
For the excited energy eigenstates that contribute to the singu-
larities at and above the s2 and s2’ branch lines, the maximum
interval of the s2 band momentum ¢ in Eq. (D9) is ¢q €
[0, (kpy — kpy)lor g €] — (kpy — ki), 0.

For 5 and § branch lines, the spectral functionals are dif-
ferent and have the form

lész

D.(q) =1 s;’s + &8I — @, ,(tkpy, q)
L(SNf LEY, F
= —= 5-] 5,8 k s
2% +—== +&) D (tkry, q)
for 5 branch lines, (D10)
and
SNF
D.(q) = L&) > 1 (8T = 2805) — @, (thpy, )
LSNF | F
= £ (81 —2872) — @y ,(tkry, q)

for § branch lines, (D11)

respectively. Here the maximum interval of the s band mo-
mentum is g €] — kp, kp [, =1 /E at one electron per
site and we accounted for the phase shlft & oltkr, £lkry —
kr))] reading F&/ [see Eq. (E53)].

The values of the s and s2 bands number and current
number deviations that in the case of the transverse and lon-
gitudinal spin excitations are used in Egs. (D9)—(D11) are
provided in Tables I and II, respectively.

Finally, the momentum dependent exponents that control
the line shape near the s branch lines that refer to parts of the
lower thresholds of the combined spectra, Eqs. (B1) and (B2)
of Appendix B, and of the spectrum, Eq. (B3), involve spectral
functionals of general form

1SN F
251

where

D,(q) = + &8I F @ (kry, @),

— — maximum interval g €] —kp, kp|[

+ — maximum interval |q| €lkry, kr4]

for s branch lines. (D12)

Here — and + is the phase-shift sign in F®; ;(tkr |, g) suitable
to s branch lines involving s band hole and s particle creation,
respectively, at a g belonging to the given maximum intervals.
The values of the s band number and current number devi-
ations that are used in Eq. (D12) are provided in Table III.

In terms of many-electron processes, the quantum prob-
lem studied in this paper is not perturbative. However, in
terms of the fractionalized particles that naturally emerge
from the rotated-electrons degrees of freedom separation it
is perturbative. (In the subspace of the present quantum
problem, rotated-electron operators are expressed in terms of
corresponding fractionalized particles operators as given in
Eq. (80) of Ref. [17].)

The case of most interest for the studies of this paper refers
to the gapped excited energy eigenstates populated by one
52 particle. For the +—, xx, and zz spin dynamical structure
factors, such states are behind the (k, w)-plane spectral weight
located above the gapped lower thresholds shown in Figs. 1-6.
For such +—, zz, and —+ factors the s-particle number devia-
tions, 8N, = SNF + SNV Eq. (D2), are given by SN, = —1,
8Ny = —2, and 8N, = —3, respectively. That Y _., ®>(¢)
increases upon increasing |8N;| is behind both a decreasing
amount of spectral weight above the corresponding gapped
lower threshold and an increase of the momentum-dependent
exponents, Egs. (20) and (32).

APPENDIX E: SOME USEFUL QUANTITIES

In this Appendix a set of quantities needed for our study
are defined and corresponding useful limiting behaviors are
provided.

The quantum problem described by the 1D Hubbard model
with one electron per site in a magnetic field acting in the spin
subspaces considered in this paper involves a subset of Bethe
ansatz equations.

The equation associated with the s band of the classes of
excited energy eigenstates that span such spin subspaces is
given by

L .
2 Ag(qj) — sink(q;
9% =7 E arctan( @) usm 4 ))

j=1

Ny
2 Av@) — Aslgy
— Z Z N?(qj’) arctan (W)

j=1

Ny =N, +N;
2 i N () larctan (22092 = Aaay)
L —~ s2\qj U

+ arctan <As(6]j) - Asz(CIj')> }
3u

Jj=1,.., Ny (ED)
That associated with the s2 band reads

L .
2 Ap(gi) — k(g
q; = Z Z arctan ( 24 ) zusm (@ ))

=1

NT ) — .
- % Z Ny(g;){arctan (Asz(%) - As(q; )>
Jj=

where

Ap(gi) — A(g i
+ arctan ( .2(‘]/) s(‘Z] )>}’
3u
where j=1,..,N;y — N, + Ny
and N, =0, 1. (E2)
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In these equations, Ny(¢;) = 1 and Nyp(g;) = 1 for occupied
qj and Ny(gq;) = 0 and Ny»(g;) = 0 for unoccupied g.

For the spin subspaces spanned by excited states populated
by Ny = N, — 2s particles and one s2 particle, the Bethe-
ansatz equation, Eq. (E2), does not include the third term
that involves the spin rapidity differences Ay (g;) — Awn(g)).
Indeed, it vanishes for g; = q;.

The s band Bethe ansatz rapidity is real and associated with
the rapidity function A(q;). The s2 band rapidity function
A (q;) that appears in Eqgs. (E1) and (E2) is the real part of
the following two Bethe ansatz complex rapidities associated
with a spin n-string of length n = 2,

Ap(gj) Liu. (E3)

The rapidity function k(g;) that appears in the above equa-
tions is associated with the ¢ band that in the present subspaces
is full with a constant occupancy of N ¢ particles and thus
is not dynamically active. That function is defined by the
following equation:

N
2 ¢ sink(g;) — Algy)
klg))=4q;— 7 Y Ni(g;)arctan ( / - J )
J'=1
Ny =N, +N; .
_ % T i: i Ny (g ) arctan Slnk(Qj) - As2(q/")
L j'=1 o 2u '
where j=1,...,N. (E4)
In the above equations,
27 g
q;j = le for B=c,s,s2, (E5)

where the quantum numbers / b are either integers or half-odd
integers according to the following boundary conditions [10]:

I]? =0,+1,£2,... for N, + Ny even
=+1/2,+£3/2,4£5/2,... for Ny + Ny odd,

If =0,£1,£2,... for N; odd
==£1/2,£3/2,£5/2,... for N; even,

I[P =0,+1,42,... for No=1. (E6)

In the thermodynamic limit, we often use continuous mo-
mentum variables ¢ that replace the discrete s and s2 bands
momenta ¢g; such that g;;; —¢q; =2m /L. They read g €
[—kry, kpy]l and g € [—(kpy — kp)), (kpy — k)], respec-
tively. In that limit the momenta kr| and kry rare given by

i T
kFLZE(l_m); kF¢=E(1+m); kp = —, (E7)

for the spin-density interval, m €]0, 1[ where kp =
limm_>0 k].w = limm_>() kFT~

The energy dispersions &;(g) and &5,(g) that appear in the
spectra of the spin excitations are defined as follows:

e5(q) = &(As(q)) Tfor g € [—kpy, kpy], where

A
&(A) = / dA 2t ng(N), (E8)
B

and
£02(q) = 4 h + £%(q)  for
q € [—(kpy —kry), (kpy — kpy)]l, where
£%(q) = E5(An(g))  and
A
Ep(A) = / dA 2t np(A), (E9)
o0
respectively.

The corresponding s and s2 bands group velocities are

given by
0e52(q)
U2 (CI) = .
dq

The distribution 2¢ n,(A) appearing in Eq. (ES8) is coupled
to a distribution 2¢ . (k) through the following integral equa-
tions:

(E10)

o cosk [® 21 ny(A)
2t no(k) = 2t sink + dN ————, (Ell)
wu L i)
and
1 m 2t n.(k
2nn) = — [ ax 200
Tu ) 1+(A—,jmk)
LB, 2N
- = E12)
wu )

The distribution 2¢ n,(A) appearing in Eq. (E9) is given
by

1 T 2t n.(k
2t np(N) = Y dk %

Tu J 5 14+ %L:n
1 B . 2t (A)

Tu /) g 14+ (%)2
1 (B 2t s (A

Tl e e

mulop 14 (58)

where the distributions 27 1.(k) and 2¢ n,(A) are the solutions
of Egs. (E11) and (E12).

The rapidity distribution function A (gq) where g €
[—kr4, kpy] in the argument of the auxiliary dispersion & in
Eq. (ES8) is defined in terms of the s band inverse function
q = qs(A) where A € [—00, 0co]. The latter is defined by the
equation

1 [" A —sink
q=qs(A) = —/ dk2m p(k) arctan | ——
7 ) u

T
A—A
2u

(E14)

1 B
—— / dA' 2o (A') arctan (
T J-B

for A €[—00, 00].

The rapidity distribution function Ap(q) where g €
[—(kps — kpy), (kpy — kp )] is also defined in terms of the
s2 band inverse function ¢ = g, (A) where A € [—o0, o0] as
follows:

1
0= qa(A) = —/
T

-7

T

A —sink
dk2m p(k) arctan (%)
u
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1 B
- — / dA' 2o (A')arctan (
T J_B

A—N
-)
A—AN
3u )

(E15)

1 B

- —/ dA’ 2710(A/)arctan<
T J-B

for A €[—o00, 0]

Here the distributions 2 p(k) and 27t o (A) are the solution of
the following coupled integral equations:

k (B 2o (A
2rpk) =1 4+ =2 / dA L)z (E16)
Tu J_g 1+(smk A)
and
1 T 2 p(k
2no(A) = _/ dkL()
Tu ) 1+(A smk)
_ 1 B , 2mo(A) E17)
27 u A=A)2T
()

Such distributions obey the sum rules

T

-7

(E18)

The parameter B = A (kr ) appearing in the above equa-
tions has the limiting behaviors

B = Ay(kr,), with

limB =00 and Ilim B =0.
m—0 m—1

(E19)

Other A(g) and Ay, (g) values are
Ag(0) =0 and Ay(Ftkps) = Foo,

ASQ(O) =0 and Asz[i(ka — kFi)] = to0. (E20)

The s band dispersion,

%(q) = £%[As(q)], where

A
g2%(A) = / dN' 2t ng(A), (E21)
oo
whose zero-energy level is for 0 < m < 1 shifted relative to
that of £,(g) defines the spin density curve, as given in Eq. (3).
In the m — 0 limit, the s2 band does not exist in the ground
state. In that limit, it reduces to g = 0 with £, (0) = 0 when
Ny = 1. In the same limit, the s band energy dispersion can
be written as,

&) =&lA@) for ge[-T. 7] where
B(A) = —2 f L CEO R (E22)
0 w cosh(w u)

and the rapidity function A(g) is defined in terms of its
inverse function ¢ = g;(A), where A € [—00, 00] as

q=q,(A) = / do S0@D) ),
0

w cosh(w u) (E23)

In these equations Jy(w) and J; (w) are Bessel functions.

1 1 (B
— dk2mp(k) =2 and —/ dA2mo(A) = (1 —m).
T T J_B

The s and s2 band energy dispersions &,(q) and &5(q),
Eqgs. (E8) and (E9), respectively, have limiting values,

&5(0) = —Ws”, es(kp,) =0,
es(Lkpy) = =2ugh,
8s2(0) = 4MB h — WsZa
eplE(kpy —kpy)] = 4uph, (E24)
where
lim WP = 2t[l — sin (z m>i|
u—0 2
lim W" = Tim 2y h = 41 sin = m
u—0 5 us0 mp it = 2 ’
‘ 5 e
llrr(l)Ws =W/ + W' =2¢t|1+sin Fm)
lim W, = W” + W =0,
Uu— 00
. . s
lim Wy, = 4¢ sin (— m)
u—0 2
uli)rglo Wy =0, (E25)
for spin densities m €]0, 1[ and
lim W, = W' = 2pp he = /(402 + U2 ~ U,
lim] Wy =/ (41)? 4+ QU)? — (E26)

for all u > 0 values.
In the ¥ — O limit, the s band energy dispersions have for
spin densities m €]0, 1[ the following expressions:

es(q) = €2(q) — e¥(kp ) = —2t(cos g — coskr )

e
= 2t sin (E m> — 2t cosgq,

%(q) = —2t(cos g — cos kry)

= —2¢sin <% m) —2tcosgq

for q e [—kFT, kFT]- (E27)

The s2 band energy dispersions have for u — 0 and spin
densities 0 < m < 1 the following expressions:

en(q) = 4uph — 2t[cos(|q| + kpy) — coskpq]

. s . T
= 8¢ sin (5 m) - 2t[cos(|q| +kry) + sin (5 m)i|

= 6t sin (% m) — 2t cos(|q| + kry),

e%(q) = —2t(cos(|q| + kr|) — coskpy)

—2¢ sin (% m) — 2t cos(|q| + kry)

for g e [—(kpy —kpy), (kpp —kp))]. (E28)
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In the u — O limit, the corresponding group velocities,
Eq. (E10), read

vs(gq) = 2tsing for gq € [—kry, kpyl,

v(q) = sgn{q} 2t sin(|q| + kr,) for

q € [—(kpy —kpy), (kry —kg))],  (E29)
respectively, so that
7
Us(kry) = vo(kpy — kry) = 2t cos (Em) (E30)

In the m — 1 spin density limit, the s band energy dis-
persions are for all u > 0 values given by the following
integrals:

b4

ink — A;
dk sin k arctan <sm—(q)>

2t
Es (Q) - -
T u

-7

+Vuanr+u2-vU

b4

dk sin k arctan <M>

. 2
&(q) = - »

-7

for ¢ e€[—m,n], (E31)

where the rapidity function A (gq) is defined by its inverse
function as

1 [~ A —sink
q=qs(A)=— dkarctan [ ———= ).
T J- u

Y

(E32)

In the same m — 1 limit, the s2 band energy dispersions
are for all u > 0 values given by the integrals

sink — A(q)
2u

/g

2t
en(q) = — - dk sin k arctan (

+ V(@) + 2U)* —-2U,

822(5]) = _;

kAL
dk sin k arctan <M>
2u

-7

for gqel[—m,n], (E33)

where the rapidity function Ay (q) is again defined by its
inverse function as

1 [ A —sink
q=qp(A)=— dkarctan [ ——— .
T 2u

-7

(E34)

For u > 1, one can derive analytical expressions for the s
and s2 band energy dispersions and the corresponding group
velocities, Eq. (E10), for spin densities m in the limits m —
0 and (1 —m) < 1. For u > 1 and in the m — 0 limit, the
behaviors of the s band energy dispersions and group velocity
are

mt 0
8s(q)=—5008q and &;(q) = &(q),

Tt
Us(‘]) = E sing

for ge[—n/2,7/2] and m — 0. (E35)

For u > 1 and (1 — m) < 1, the s band energy dispersions
and group velocity, Eq. (E10), behave as

t 1t
g(q) = ——(cosqg — 1)+ — (1 —m)sing
u u

1 q
X arctan | — tan (—) s
2 2

0 2t
g,(q) = —— + &5(q)
u

t
= ——(cosg+1)
u

t . 1 q
+ — (1 —m)sing arctan | — tan (—) ,
u 2 2
sing

t t
v, =-sing+-(1—-m)—————
s(q) = —sing + - ( )1+3COSZ(%)

t 1 q
+ — (1 —m)cosq arctan | - tan (—)
u 2 2

for qe [—%(1+m),%(1+m)]
and (1 —m) <K 1. (E36)

For u > 1 and in the m — 0 limit, the s2 band energy
dispersion and group velocity vanish, consistent with the mo-
mentum and energy widths of the s2 band vanishing. For
u > 1and (1 —m) < 1, they behave as

@ ¢t

en(q) = — — — (1 +cosq)
u 2u

2

+ arctan <§ tan (g)) }

0 4¢
£5,(q) = en(q) — e

+ Lu (1 - m)sinq{ arctan (Ztan (g))

1

tr t .
Usz(q) = 2—smq+ Z(l —m)51nq{H3s—m2(g)
2

u

3
+4+500s2 (%)}

t
4+ — (1 — m)cos g { arctan (2 tan (2))
2u 2

+ arctan <§ tan (g)) } for

gel[—mm,am] and (1 —-m)<K1. (E37)

For u > 1 and (1 — m) < 1, the following equality holds:

wlkry) = valkes —kr) = 2-(1—m). (E38)

The phase shifts play an important role in the spin dynam-
ical properties. They are given by

2m @,4(q, q') = 2w D, 4(r, 1),

A(g)
u

and

A !
where r = r = M
u

(E39)
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In the case of the excited energy eigenstates involved in the
studies of this paper, 8 = s, s2. The rapidity phase shifts
27 d, 4(r, r') on the right-hand side of the above equality are
functions of the rapidity-related variables » = A/u of the s
and s2 branches. They are defined by the following integral

equations:
r—r
2

B/u
+ f dr" G(r, r") @, ,(r", r'), (E40)
—B/u

_ 1
@, (r, r') = — arctan (
T

and

- , 1 , 1 r—7
D, (1, r') = — arctan(r — ') + — arctan
T T 3

B/u
+ / dr" G(r, ") &, 0", ¥).  (E41)

—B/u
The kernel G(r, ') in Egs. (E40) and (E41) is for u > 0 given
by

1
1+ [(r —r")/2]? } (F42)

The phase shifts that appear in the expressions of the
branch line exponents read

1
G(r, ) = _E{

. (B A,
q)s,s(LkFi’ t]) = (Ds,s (t_a ﬁ)
u u
- B Ap(q)
qu,sZ(LkFi’ q) == q)s,s2 (l_’ 24 >,
u u
where ¢ = *1. (E43)

In the m — O limit, the phase shift &, (g, ¢’) in units of
27 can be written as

q>s,s(Qv 61/) = qss,s(As(q)’ A(q/)), where

Dy (A, N) = l/wdww
T Jo

IERETIR (E44)

and the rapidity function A (g) is defined in terms of its
inverse function in Eq. (E23). The integral in Eq. (E44) can
be solved for u > 0, with the result

C(3 4880 (1 - %))
I — A2 +ie?)

d,,(A, A) = i ln{

4u
for A # 100 where ==+£lI
t
=—— for A=100 and A’ #1100

272
3

=i —=—1) for A=A =100, (E45
(2ﬁ > (54

where I'(x) is the usual y function.

The use of Eq. (E45) leads to the following expressions
for the phase shift ®; (tkr, g) = lim,,_,o O ((tkr, ) in the
m — 0 limit for u > 0,

r}qlir%) q)s,s([ka q) = q>s,s(”r/2» q)

l
= —— for

2V2
= L< 3 1) for =k
= 22 q = lkF

for u>0 where (= =+l. (E46)

q # tkr,

In the m — 0 limit and for u > 0, the phase shift
D o (tkr, 0) = lim,, 0 Py 0 (tkry, ¢) has in units of 27 the
following value:

l
N2
For > 1 and in the m — 1 limit, the phase shifts
D, (tkpy, q) and @, » (tkr, g) behave as

1111’1l (DS’S(LkF¢, C]) = q)s,s(ov 61)

1 1 q
= ——arctan { — tan (—) s
T 2 2

r}11_>m1 q)s,SZ(LkFi’ q) = q)s,ﬂ(oﬁ q)

1 q
= —— arctan (2 tan (—))
T 2

1 2
- arctan <§ tan (g)) (E48)

The s band Fermi-points phase-shift parameters g];, where
Jj =0, 1 are given by

Elo=1+4 ) ) O lkry. thry).
1==%1

Dy, 52(thp, 0) = (E47)

(E49)

They play an important role in both the spectral and static
properties. For one electron per site, the equality £° = 1/&}
holds, so that only one of these two parameters is needed,
for instance &', which is a diagonal entry of the 1D Hubbard
model dressed charge matrix [37,38].

From manipulations of the phase-shift integral equation,

Eq. (E40), one finds that the latter parameter is given by
&y = &5,(B/u).

The function &! () on the right-hand side of this equation
at r = B/u is the solution of the integral equation

£ =1+ /

—B/u

(E50)

B/u
dr' G(r, ) & (). (ES1)
The kernel G(r, r') appearing here is given in Eq. (E42).
For u > 0, the parameter Esls continuously increases from
1 =1/v2asm— 0to&! = 1form — 1, so that its limit-
ing values are

and  lim gl =1 (E52)

1
lim ¢! = —
m»OSU ﬁ

The parameter &! is also related to the phase shift
D, o(kry, q) in Eq. (E43) as follows:

gsls = _Qs,.YZ(ikF¢, (kFT — kpi))
ch,sZ(ikFL» _(kFT - kFL))-

(ES3)
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Finally, the parameter £°, that also appears in the momen-
tum dependent exponents is given by

E)o = 2@, 0(kry, 0), (E54)
where the phase shift @ (kry, g) is defined in Eq. (E43).
At g = 0 it is such that &y, (tkp,0) =1 D, o (kp, 0). This

justifies why L.;?SOSZ =20 o(thkpy,0) = 120, o (krFy, 0) for
1= =+1.

The parameter £, continuously decreases from £, = +/2
as m — 0 to &, = 0 for m — 1. Consitent, it follows from
Eqgs. (E47) and (E48) that

lim £7, = V2 and lim £, = 0. (E55)
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