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It is well known that the ambient environment can dramatically renormalize the quasiparticle gap and exciton
binding energies in low-dimensional materials, but the effect of the environment on the energy splitting of the
spin-singlet and spin-triplet exciton states is less understood. A prominent effect is the renormalization of the
exciton binding energy and optical strength (and hence the optical spectrum) through additional screening of
the direct Coulomb term describing the attractive electron-hole interaction in the kernel of the Bethe-Salpeter
equation. The repulsive exchange interaction responsible for the singlet-triplet splitting, on the other hand, is
unscreened within formal many-body perturbation theory. However, Benedict argued that in practical calcula-
tions restricted to a subspace of the full Hilbert space, the exchange interaction should be appropriately screened
by states outside of the subspace, the so-called S approximation [L. X. Benedict, Phys. Rev. B 66, 193105
(2002)]. Here, we systematically explore the accuracy of the S approximation for different confined systems,
including a molecule and heterostructures of semiconducting and metallic layered materials. We show that the S
approximation is actually exact in the limit of small exciton binding energies (i.e., small direct term) and can be
used to significantly accelerate convergence of the exciton energies with respect to the number of empty states,
provided that a particular effective screening consistent with the conventional Tamm-Dancoff approximation is
employed. We further find that the singlet-triplet splitting in the energy of the excitons is largely unaffected by
the external dielectric environment for most quasi-two-dimensional materials.
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I. INTRODUCTION

Electron-hole interactions are greatly enhanced in low-
dimensional systems as a consequence of both the spatial
confinement of the electronic wave functions and the strongly
inhomogeneous dielectric environment with a concomitant
overall reduction in screening of the Coulomb interaction.
For instance, as a consequence of reduced screening in low
dimensions, in quasi-one-dimension (quasi-1D), suspended
semiconducting carbon nanotubes have strongly bound ex-
citons with binding energies of up to 1 eV [1,2], and
in quasi-two-dimensions (quasi-2D), suspended monolayers
of layered transition metal dichalcogenides (TMDs) have
strongly bound excitons with binding energies on the order of
0.5 eV, orders of magnitude larger than their bulk counterparts
[3–9]. In addition, the electronic and optical properties of
quasi-low-dimensional systems are easily tuned by changing
the ambient dielectric environment through substrate engi-
neering and encapsulation. In few-layer TMDs, for instance, a
graphene substrate or capping layer can renormalize the quasi-
particle gap and exciton binding energies by 100–300 meV
[6,10,11], while encapsulation of few-layer black phosphorus,
which displays a weaker intrinsic screening than TMDs, can
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qualitatively change the optical response from a system with
strongly bound excitons to a system whose optical excitations
are nearly free-carrier-like [12,13].

Theoretically, excitons can be described with the inter-
acting two-particle Green’s function formalism within the
ab initio GW plus Bethe-Salpeter equation (BSE), or GW-
BSE, approach [14]. However, two significant challenges arise
when applying this formalism to low-dimensional systems.
First, calculations of low-dimensional systems and nanos-
tructures are typically associated with large unit cells or
supercells, so the correlated low-energy neutral excitations
often require a large number of band states to be accurately
described and are thus computationally demanding. Secondly,
while the effect of substrate screening on the quasiparticle
(QP) band gaps and exciton binding energies is basically well
established, the effect of the ambient dielectric environment
on the energy splitting of the spin-singlet and spin-triplet
exciton states has not been as thoroughly explored, and as
we argue here, much care is needed to account for its ef-
fect within the ab initio GW-BSE approach. For example,
obtaining accurate theoretical predictions of the singlet-triplet
splitting is essential for describing singlet fission processes
(the dissociation of one singlet exciton into two triplet exci-
tons) in some organic photovoltaic materials [15–17], exciton
lifetimes [18,19], and exciton dispersion and topology [20].
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The above two theoretical challenges arise as a conse-
quence of the truncation of the Hilbert space for compu-
tational efficiency when solving the BSE; that is, only a
subspace A associated with low-energy bands close to the
Fermi energy is explicitly included in solving the BSE. The
remaining subspace B of the Hilbert space—associated with
higher-energy bands and/or other physical subsystems such
as substrates—is often completely neglected. This approxima-
tion comes into two separate parts of the GW-BSE formalism:
(a) the construction of the electron-hole interaction terms in
the BSE kernel and (b) the construction of the basis functions
for the exciton wave function in solving the BSE. In general,
different physics and different cutoffs for the partition into
subspaces A and B come into these two parts. In this paper,
we focus on part (a), which is on the construction of the
terms in the BSE kernel. For part (a), in Ref. [21], Benedict
argued that instead of completely neglecting subspace B, one
could capture its effect by modifying the interaction kernel
defined in subspace A. The resulting scheme, known as the
S approximation, amounts to simply solving the BSE on the
subspace A, but screening the exchange interaction kernel,
Kx, in the BSE—which would otherwise involve only the
bare Coulomb interaction—using a screening scheme that
includes only free electron-hole pair excitations from the
subspace B [21].

Benedict et al. later applied the S approximation to hydro-
genated Si clusters [22], and similar approaches to screening
the exchange term in the BSE have been used to obtain better
agreement with experiment for various nanocluster systems
[23,24], as well as to study carbon nanotubes on metallic
substrates [25]. Recently, Ref. [26] has explored the effect
of applying the S approximation for benzene on a gold sur-
face, using the random-phase approximation (RPA) dielectric
function for gold to screen the exchange term when solving
the BSE for an isolated benzene molecule, and found that
this form of screening results in a large renormalization of
the singlet-triplet splitting of the lowest-energy exciton in
benzene. These applications of the S approximation further
suggest that in general, the screening environment might have
a large effect on the singlet-triplet splitting in low-dimensional
systems and hence on their exciton lifetimes, dispersion, and
dynamics, since the exchange interaction kernel Kx is re-
sponsible for the splitting in energy between spin-singlet and
spin-triplet excitonic states. However, there has been to date
no systematic analysis of the accuracy of the S approximation
against explicitly full-Hilbert-space converged BSE calcula-
tions, nor has there been any comparison of the effect of
the substrate on the singlet-triplet splitting in the S approx-
imation against an explicit BSE calculation including both
substrate and adsorbate. Moreover, the S approximation be-
longs to a broad class of embedding schemes used to downfold
the many-body Hamiltonian across quantum chemistry and
condensed matter physics, including in dynamical mean-field
theory (DMFT) [27], the constrained RPA [28], self-energy
embedding theory (SEET) [29], and configuration interaction
calculations [30,31], but it is one of the few schemes where
the larger Hilbert space remains computationally accessible
thus allowing for numerical validation of the embedding pro-
cedure.

In this paper, we rederive the S approximation using the
Löwdin partitioning scheme, similarly to Ref. [26], and per-
form a systematic analysis of its accuracy by comparing the
solution of the BSE with and without the S approximation as
a function of the size of subspace A with respect to the full
Hilbert space. We investigate three prototypical systems: (1)
an isolated benzene molecule, where subspaces A (the low-
energy orbitals) and B (the high-energy orbitals) overlap in
real space but not energy space; (2) a monolayer of hexagonal
boron nitride (h-BN) encapsulated in bulk MoS2, where sub-
spaces A (h-BN orbitals) and B (MoS2 orbitals) do not overlap
in real space but subspace B is known to screen subspace
A; and (3) a superlattice of monolayer h-BN and graphene,
where again subspaces A (h-BN) and B (graphene) do not
overlap in real space but graphene can be expected to strongly
screen excitations in h-BN. Two major results are obtained.
(1) We find that if a carefully designed subspace screening is
employed that is consistent with the Tamm-Dancoff approx-
imation (TDA), the S approximation can significantly speed
up convergence of the excitation energies with respect to the
size of subspace A in molecules in the gas phase where the
exchange interaction couples a large number of unoccupied
orbitals. We emphasize that consistent with the usage of the
TDA, it is essential to only include electron-hole pairs that
are forward propagating in time—a subtlety which is either
neglected or not made explicit in previous work [21,25,26].
(2) We find that both metallic and semiconducting substrates
have a negligible effect on singlet-triplet splitting in layered
materials, where the wave functions of the adsorbate and
substrate do not significantly hybridize, and we show that this
is true in general for any adsorbate where the electron and hole
band wave functions can be described by Wannier functions
whose extent is smaller than the adsorbate-substrate distance.

This paper is organized as follows. In Sec. II, we rederive
the S approximation. In Sec. III, we describe the details of our
implementation of the S approximation. In Sec. IV, we report
our results for an isolated benzene molecule. In Sec. V, we
report our results for monolayer h-BN encapsulated in bulk
MoS2 and a superlattice of alternating layers of monolayer
h-BN and graphene. We conclude in Sec. VI by summarizing
our results.

II. THE S APPROXIMATION

Excitons can be described within the two-particle Green’s
function formalism via the BSE [14]

L = L0 + L0KL, (1)

where L is the electron-hole correlation function, L0 is the
noninteracting counterpart describing the free propagation of
an electron and a hole (as quasiparticles), and K is an in-
teraction kernel. The BSE is often written, within the TDA
[14] and a static approximation for K , in terms of an effective
eigenvalue problem expressed in a quasiparticle basis,

HψX = �X ψX ,

H = D + K,

Dvck,v′c′k′ = [
ω − L−1

0

]
vck,v′c′k′

= (εck − εvk )δvv′δcc′δkk′ ,

(2)
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FIG. 1. (a) BSE kernel diagrams consisting of an exchange term
Kx and a direct term Kd . (b) Expansion of the electron-hole correla-
tion function L in the BSE in powers of the BSE kernel. (c) Effective
screened exchange interaction kernel K

x
AA, which contains electron-

hole bubbles in the B subspace.

where H is the effective BSE Hamiltonian; ψX and �X are
the associated eigenvectors and eigenvalues, which describe
electron-hole neutral excitations of the system; εn are quasi-
particle excitation energies; v (c) label valence (conduction)
bands; and k is a k point in the Brillouin zone. For simplicity,
the spin index is omitted here.

Rigorous conserving approximations for the kernel K can
be obtained by expressing it in terms of the functional deriva-
tive of the single-particle self-energy � with respect to the
single-particle Green’s function G, K = δ�

δG . Within the com-
monly employed GW approximation for � and neglecting
the variation of the dynamically screened interaction when
computing the functional derivative [14], K can be expressed
as the sum of an attractive direct term (Kd ) involving the
screened Coulomb interaction and a repulsive exchange term
(Kx) involving the bare Coulomb interaction. The exchange
term, Kx, is solely responsible for the splitting of spin-singlet
and spin-triplet excitations, if spin-orbit interaction is ne-
glected. The two kernel terms are shown diagrammatically in
Fig. 1(a), and Fig. 1(b) shows the expansion of the electron-
hole correlation in Eq. (2) in powers of Kx and Kd . An
important property that the interaction kernel K must have in
Eq. (2) is that it must be a proper interaction [32]; that is, no
component of K can be written in terms of two interaction
kernels Ka and Kb connected by a noninteracting correlation
function, K �= KaL0Kb. This property is automatically satis-
fied when the kernel is computed in terms of the functional
derivative of a conserving electronic self-energy. Following
this analysis, one should indeed use the bare Coulomb in-
teraction in Kx instead of the screened counterpart KW =
Kx + KxL0Kx + · · · , as the latter is improper.

While it is straightforward to justify the usage of the the
bare interaction in Kx through the aforementioned analytic
arguments, the situation is more nuanced in numerical cal-
culations when the BSE is solved in a subspace of the total
Hilbert space. Motivated by Benedict [21], we formally sep-
arate the Hilbert space into two subspaces. Subspace A—the
one that we wish to explicitly solve for—may include (i) only
a small number of quasiparticle states necessary to describe

correlated neutral excitations and/or (ii) a subset of the phys-
ical system of interest, e.g., a molecule or a quasi-2D material
but not the substrate supporting it. We denote the remainder
of the Hilbert space by subspace B.

We write the full BSE effective Hamiltonian in a block
form in terms of the two subspaces as

HBSE =
(

HAA HAB

HBA HBB

)
, (3)

where the noninteracting electron-hole correlation function is
diagonal in the quasiparticle basis, so any terms involving
LAB

0 or LBA
0 [and DAB or DBA in Eq. (2)] must be zero. We

emphasize that this is not an approximation, unlike what was
originally stated in the proposal of the S approximation [21].
The form of the energy-dependent effective Hamiltonian pro-
jected onto subspace A is described by Löwdin partitioning
[33] as

Heff (ω) = HAA + HABLB(ω)HBA,

LB(ω) ≡ (ω − HBB)−1,
(4)

where LB(ω) is the interacting electron-hole correlation func-
tion for the subspace B alone, i.e., without any cross term with
subspace A.

The effective Hamiltonian Heff in A cannot be obtained
without explicit knowledge of B, so it is typically approxi-
mated by truncating the full Hamiltonian to the A subspace
(Heff ≈ HAA). Calculations are then converged with respect
to the size of subspace A. This approach is reasonable as
long as the eigenenergies of HAA are far from those of HBB

at convergence, and the coupling of the subspaces HAB and
HBA is small. Additionally, even though there are formalisms
that solve the BSE without explicitly including unoccupied
states [34,35], the Hilbert space is still often separated into
subspaces A and B, for instance, through the definition of the
projection operator or by not explicitly including the support-
ing substrate in the corresponding Hamiltonian.

An intermediate approximation, which is expected to be
more accurate than setting Heff ≈ HAA, is to include only the
exchange contribution to the interaction kernel in coupling
terms other than KAA. This is physically motivated by the fact
that unlike Kx, the direct term Kd depends on the spatial over-
lap of electron and hole states between initial and final states.
Hence Kd

AB and Kd
BA are expected to vanish when subspaces

A and B are separated in space, such as when subspace A
contains the states for a molecule and subspace B contains
the states for the substrate supporting it. Within this approxi-
mation, we obtain

Heff (ω) = DA + Kd
AA + K

x
AA(ω),

K
x
AA(ω) = Kx

AA + Kx
ABLB(ω)Kx

BA(ω),

LB(ω) = L0
B(ω) + L0

B(ω)KBBLB(ω).

(5)

We identify LB in Eq. (5) as the electron-hole polarization
propagator for subspace B evaluated within the ring approxi-
mation [32], so that K

x
AA is simply the exchange contribution

to the interaction kernel but with the bare Coulomb interaction
modified to include screening arising from positive-energy
electron-hole pair excitations from subspace B. The effec-
tive Hamiltonian in Eq. (5) is equivalent to solving for the
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electron-hole correlation function in the subspace A but us-
ing a modified screened exchange interaction kernel, which
incorporates the coupling of subspace A with subspace B. The
effective interaction kernel K

x
AA is shown diagrammatically in

Fig. 1(c). We note that in the limit of small exciton binding
energies or vanishing direct interaction, Eq. (5) is exact, as
the modified interaction kernel K

x
AA is equivalent to the down-

folding within Löwdin partitioning [33].
We note that the approximation obtained in Eq. (5) is

equivalent to the S approximation obtained by Benedict [21]
but with an important difference: Consistent with the use of
the Tamm-Dancoff approximation in the BSE, the screening
from subspace B that is used in K

x
AA only contains positive-

energy electron-hole pair excitations as opposed to positive
and negative excitations. This is an often overlooked detail,
which can cause an overscreening within the S approximation
if neglected.

Finally, we emphasize that even if the interaction kernel
Kd and Kx are strictly static, the effective interaction kernel
K

x
AA(ω) picks up a dynamic dependence due to the down-

folding procedure. Correspondingly, the screened Coulomb
interaction constructed from states from outside the subspace
A should rigorously be self-consistently evaluated at the ex-
citation energy ω = �X of the state X that one is interested
in solving for. However, we drop the dynamical dependence
in K

x
AA(ω) in this paper. This is partially justified by the fact

that when subspace B is separated enough in energy, K
x
AA(ω)

will be a smooth function up to an energy scale of the order
of the smallest quasiparticle band-to-band transition energy
difference DB

vck,v′c′k′ in the B subspace. This is typically much
larger than the excitation energy of the low-energy excitons
we are interested in when we use the S approximation to
accelerate the convergence with respect to the number of
bands included in the A subspace. Yet, this is not strictly the
case when the B subspace overlaps in energy with the lowest
exciton excitation energy, as in the case when subspace B is
a substrate. The static approximation to K

x
AA(ω) in this case

may cause an additional error, although our calculations show
that this error is small, as we show in the next sections.

In the next section, we describe how to implement the S
approximation within an ab initio GW-BSE framework.

III. NUMERIC IMPLEMENTATION OF THE S
APPROXIMATION

In this section, we detail the modifications in the BERKE-
LEYGW software package [36–38] to implement the S
approximation. For all systems, we solve for the electron-
hole excitations within the ab initio GW plus Bethe-Salpeter
equation (GW-BSE) approach in the Tamm-Dancoff approxi-
mation (TDA). We modify the kernel of the BSE to implement
the S approximation by screening the exchange matrix ele-
ments in the following way:

〈vck|Kx|v′c′k′〉
=

∑
GG′

M∗
vck(Q, G)W GG′ (ω = 0, Q)Mv′c′k′ (Q, G′). (6)

Here, the BSE matrix elements are written in the basis of
electron-hole pairs vc at a k-point k. On the right-hand side,

Mvck(Q, G) = 〈vk + Q|ei(Q+G)·r|ck〉, where G is a recipro-
cal lattice vector and Q is the center-of-mass momentum of
the electron-hole pair (for simplicity, the numerical exam-
ples we show will only consider excitations where Q = 0).
W GG′ (ω = 0, Q) is the screened Coulomb interaction in the
static limit. In the absence of the S approximation, W is the
usual bare Coulomb interaction, W GG′ (Q) = v(Q + G) δGG′ ,
where v(Q + G) are the Fourier components of the Coulomb
interaction. Since we solve the BSE within the TDA, solutions
with positive and negative excitation energies do not mix,
and hence the virtual electron-hole pairs introduced by the
exchange diagram in the BSE also do not couple positive
and negative excitation energies. Consequently, within the S
approximation, W is screened by the polarizability of the B
subspace created only by positive electron-hole excitations,
which, at ω = 0, is equal to half of the noninteracting polar-
izability that is typically computed within the random-phase
approximation (RPA). That is,

W GG′ (ω = 0, Q) = ε−1
GG′ (ω = 0, Q)v(Q + G), (7)

where ε is a dielectric matrix of the form

εGG′ (ω = 0, Q) = δGG′ − v(Q + G)
1

2
χ0

GG′ (ω = 0, Q). (8)

The factor of 1
2 removes the electron-hole pairs that are back-

ward propagating in time, and χ0 is the static, noninteracting
RPA polarizability due to all electron-hole pairs not in sub-
space A,

χ0
GG′ (Q) =

occ∑
n

unocc∑
n′

∑
k

M∗
nn′k(Q, G)Mnn′k(Q, G′)

Enk+Q − En′k

− [χAA]0
GG′ (Q), (9)

while [χAA]0 is the noninteracting RPA polarizability formed
by transitions from occupied to unoccupied states both be-
longing to the A subspace,

[χAA]0
GG′ (Q) =

occ∑
n∈A

unocc∑
n′∈A

∑
k

M∗
nn′k(Q, G)Mnn′k(Q, G′)

Enk+Q − En′k
.

(10)

In Eqs. (9) and (10), we have dropped the ω = 0 variable for
compactness.

IV. BENZENE MOLECULE

In this section, we calculate the neutral excitations of
a single benzene molecule in a 16 × 16 × 16-Åsupercell.
First, we use density functional theory (DFT) [39,40] in
the local-density approximation (LDA) [41], as implemented
in QUANTUM ESPRESSO [42], to obtain a mean-field start-
ing point for our GW and GW-BSE calculation. Plane-wave
components up to 80 Ry are included in the wave function.
We then performed a GW-BSE calculation with the BERKE-
LEYGW code [37,38,43]. In the GW calculation, the dyna-
mical screening effects were accounted for within the
Hybertsen-Louie generalized plasmon-pole (HL-GPP) model
[43]. The dielectric matrix includes plane-wave components
up to 20 Ry, and the summation over unoccupied states
includes 2000 states. The static remainder technique was
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used to speed up convergence with respect to the number
of empty states [44]. We truncate the Coulomb potential in
a sphere with a radius of 8 Å to prevent spurious interac-
tions between periodic images of the supercell. For these
parameters, we find a highest-occupied-molecular-orbital–
lowest-unoccupied-molecular-orbital (HOMO-LUMO) gap
of 10.4 eV. For the BSE calculation, we include plane-wave
components up to 6 Ry in the dielectric matrix. Then, we solve
the BSE with and without the S approximation and examine
the convergence of the singlet and triplet excitation energies
with respect to the number of unoccupied bands explicitly
included in the BSE Hamiltonian. The number of occupied
states included in the BSE Hamiltonian is fixed at 10.

We focus on two low-energy exciton states in analyzing the
results of the BSE: (1) the lowest-energy excited state, which
we label Ed,1, whose singlet exciton is dark for polarizations
of light in the plane of the benzene ring perpendicular to the
carbon-carbon bond, and (2) the lowest-energy exciton state
for which the singlet exciton is bright when the polarization
of the external electric field is in the plane of the benzene ring
perpendicular to the carbon-carbon bond, which we label Eb,1.
To analyze the effect of the exchange interaction, we compare
the convergence of the spin-singlet exciton ES

d,1 (ES
b,1) for state

“d”(state “b”), which has a contribution from the exchange
interaction, with the convergence of the spin-triplet exciton
ET

d,1 (ET
b,1) for state d (state b), which has no contribution

from the exchange interaction. We note here that both d and
b states can be either spin singlet or spin triplet. Only the
b spin-singlet state is optically active. For the d states, the
spin-singlet state is optically inactive due to the mirror plane
symmetry of the molecular orbitals composing the exciton.
The convergence of the singlet states and triplet states with
respect to the number of unoccupied states and without the S
approximation is shown by the red circles and green squares
in Fig. 2, respectively. We see that the excitation energy of
the Ed,1 singlet and triplet states converge rapidly with re-
spect to the number of unoccupied bands, while the excitation
energy of the Eb,1 singlet converges very slowly, requiring
more than 200 bands to converge the error in the excitation
energy to less than 100 meV. Including dynamical effects in
the screening changes the eigenvalues by less than 50 meV.
The triplet state associated with the Eb,1 singlet state, however,
converges much more rapidly with the number of unoccupied
bands, suggesting that the slow convergence can be primarily
attributed to the exchange interaction, making the Eb,1 exciton
an ideal test case of the S approximation.

Next, we apply the S approximation to the benzene
molecule by screening the exchange interaction. The results
are shown by the blue triangles in Fig. 2. We see that the S
approximation does indeed speed up convergence with respect
to the number of unoccupied states. To understand where this
improvement is coming from, we then solve the BSE with the
direct Kernel term, which is responsible for the finite binding
energy of bound excitons, set to zero—the limit where the S
approximation becomes exact. The convergence of the BSE
with only the exchange interaction is shown in Fig. 3. In the
restricted subspace, the convergence of the eigenvalues for
Eb,1 is slow, but when the exchange is screened within the
S approximation, the eigenvalue immediately jumps to the
converged value after a small number of unoccupied states
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FIG. 2. Convergence of exciton excitation energies for a benzene
molecule with respect to the number of unoccupied bands (Nunocc)
used to diagonalize the BSE Hamiltonian of (a) the singlet excitation
energy for the lowest-energy dark exciton ES

d,1 (which is dark due
to a separate selection rule), (b) the excitation energy for the triplet
state [spin partner to the state in (a)] associated with the lowest-
energy dark exciton ET

d,1, (c) the singlet excitation energy for the
lowest-energy bright exciton ES

b,1, and (d) the excitation energy for
the triplet state [spin partner to the state in (c)] associated with
the lowest-energy bright exciton ET

b,1. Red circles give singlet ex-
citation energies calculated in the A subspace only. Blue triangles
are singlet excitation energies calculated with the S approximation.
The red dashed line is the linear extrapolation of the red circles to
1/Nunocc → 0. The green squares show the convergence of the triplet
state, which does not include any exchange contribution.
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FIG. 3. Convergence of singlet excitation energy in a benzene
molecule for Ed,1 (top panel) and Eb,1 (bottom panel) with respect
to the number of unoccupied bands (Nunocc) used to diagonalize the
BSE Hamiltonian with only the exchange interaction included in the
interaction kernel (i.e., Kd = 0). Red circles are excitation energies
in the restricted subspace only. Blue triangles are excitation energies
calculated with the S approximation. The dashed line is the linear
extrapolation of the red circles to 1/Nunocc → 0.
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FIG. 4. (a) Illustration of supercell with strained h-BN encapsu-
lated in MoS2. The dashed rectangle indicates the boundaries of the
supercell used in the calculation, which is periodic in all directions.
(b) Band structure at LDA level of the MoS2 and h-BN supercell (red
lines) superimposed on the band structure of an isolated MoS2 slab
(blue circles).

have been included. These results suggest that the S approx-
imation can be used to moderately speed up convergence of
the excitation energies when the exchange interaction couples
a large number of unoccupied orbitals.

V. SUBSPACE PARTITIONING IN LOW-DIMENSIONAL
MATERIALS ON A SUBSTRATE

A. Boron nitride encapsulated in MoS2

In this section, we study how the singlet-triplet splitting
may be affected by the presence of substrates and whether
the S approximation can accurately describe this effect. We
first consider the case of a monolayer of h-BN encapsulated
between bulklike slabs (four layers) of MoS2. In order to pro-
vide a computationally feasible test of the S approximation,
we set up an artificial system where the BN is strained by
20% in order to match the lattice of MoS2. The MoS2 and
BN slabs are separated by 6 Å to prevent hybridization of
the wave functions. The supercell setup is shown in Fig. 4(a).
In Fig. 4(b), we compare the band structure of the supercell
with the band structure of the MoS2 slab alone. The overlap
of the two band structures indicates that there is minimal
hybridization of the wave functions near the Fermi level.
We emphasize that this supercell setup is not meant to de-
scribe realistic experimental conditions but rather to provide a
computationally tractable test case, where the wave functions
of subspaces A and B do not hybridize but the screening
environment is dramatically changed from quasi-2D (for a
freestanding atomic layer of monolayer h-BN) to bulklike (for
h-BN encapsulated in MoS2). Here, we focus on the effect of
screening from MoS2 on excitations in h-BN because MoS2 is
more polarizable and h-BN has a large singlet-triplet splitting
on the order of 100 meV compared with 20 meV in MoS2, so
any screening effect on the exchange interaction is expected
to be more pronounced in h-BN.

In solving the BSE, the dielectric matrix is calculated on a
24 × 24 × 1 k-point grid with plane-wave components up to
5 Ry included in the dielectric matrix and band states with

TABLE I. Singlet-triplet splitting for the lowest-energy exciton
in monolayer h-BN encapsulated in MoS2 (MoS2 + h-BN) and in a
superlattice with alternating layers of monolayer h-BN and graphene
(graphene + h-BN) calculated in three ways: (1) with the basis of
the BSE matrix restricted to the subspace of h-BN (A subspace), (2)
with the S approximation, and (3) with the full Hamiltonian including
states from both h-BN and MoS2 or graphene.

Singlet-triplet splitting (eV)
A subspace S approximation Full Hamiltonian

MoS2 + h-BN 0.07 0.07 0.06
Graphene + h-BN 0.1 0.1 0.09

energies up to 5 Ry included in the sum over unoccupied
states. We calculate two dielectric matrices: one that includes
the full supercell of monolayer h-BN encapsulated in a slab
of MoS2 (εBN+MoS2 ) and another that includes only the MoS2

slab (εMoS2 ). Then, we solve the BSE for three cases: (1)
the conventional treatment considering a freestanding mono-
layer of h-BN, where the direct kernel Kd is screened by
the full dielectric matrix εBN+MoS2 and the exchange kernel
Kx is unscreened; (2) the S-approximation case, where Kd is
screened by εBN+MoS2 and Kx is screened by εMoS2 ; and (3)
the explicit BSE calculation on the full supercell containing
both h-BN and MoS2. We compare the singlet-triplet splitting
of the lowest-energy exciton in h-BN for the three cases de-
scribed above. In case (3), when the BSE is solved for the full
system including MoS2 and h-BN, the calculation includes
many excitons arising from MoS2. To identify the spin-singlet
and spin-triplet excitons arising primarily from h-BN, we
calculated the charge density of the electron contribution to
each exciton state when the hole is fixed at the center of
the h-BN slab. We identify excitons with maximum electron
charge density that lies within 3 Å of the center of the h-BN
slab as excitons in h-BN.

The singlet-triplet splitting of the lowest-energy h-BN ex-
citon for the three cases is shown in the first row of Table I.
We see that encapsulation causes a small reduction in the
singlet-triplet splitting. Explicitly including the MoS2 states
in the BSE Hamiltonian reduces the singlet-triplet splitting
by 5 meV or about 7%. The S approximation gives the same
result as the freestanding h-BN. Here, the small error in the
S approximation, compared with the full BSE Hamiltonian,
arises from neglecting wave-function hybridization between
subspaces A and B and the assumption that the screening
from subspace B is static. We also perform an additional
calculation at a reduced distance of 3.5 Å to isolate the effect
of substrate distance. At the reduced distance, hybridization
effects are larger due to the artificial periodicity of the model
system, but we can qualitatively understand the role of the B
subspace in the exciton singlet-triplet splitting. When the sub-
strate adsorbate distance is reduced to 3.5 Å, including the
substrate screening within the S approximation reduces the
singlet-triplet splitting by only 2 meV.

B. Boron nitride/graphene superlattice

We next consider what happens when the external screen-
ing environment is metallic rather than semiconducting by
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FIG. 5. (a) Illustration of supercell with a superlattice of alternat-
ing layers of graphene and monolayer h-BN. The dashed rectangle
indicates the boundaries of the periodic supercell used in the calcu-
lation, which is periodic in all directions. (b) Band structure at LDA
level of the graphene and h-BN supercell (red lines) superimposed
on the band structure of the isolated h-BN monolayer (blue circles).

constructing a bulklike superlattice of alternating monolayers
of h-BN and monolayers of graphene. Again, in order to
make the calculation computationally tractable and reduce
wave-function hybridization, we construct an artificial super-
cell where the h-BN and graphene monolayers are separated
by 5 Å and the lattice of the h-BN is strained to match that
of graphene [Fig. 5(a)]. Figure 5(b) shows the DFT band
structure of the freestanding h-BN slab overlaid on the band
structure of the h-BN/graphene superlattice to show that hy-
bridization of the wave functions is minimal. We repeat the
three kinds of calculations in Sec. V A for the h-BN/graphene
superlattice.

We find that similar to the case of h-BN encapsulated in
MoS2, graphene has a very small effect on the singlet-triplet
splitting of excitons in h-BN. Inclusion of the graphene in the
full BSE Hamiltonian reduces the singlet-triplet splitting of
the lowest-energy exciton in h-BN by 5 meV or about 5%.
Once again, the S approximation gives the same result as the
the conventional treatment using a freestanding h-BN with the
direct term screened.

C. Analysis of singlet-triplet splitting

Here, we connect the effect of the substrate screening
on the exciton singlet-triplet splitting to the character of the
exciton states in the adsorbate in order to understand why
the effect of the external screening is small. The screened-
exchange contribution to the BSE kernel matrix elements in
the S approximation is given by

〈vck, Q|KSX |v′c′k′, Q′〉 =
∫

d3rd3r′ψ∗
vk(r)ψck+Q(r)

× W (r − r′)ψv′k(r′)ψ∗
c′k′+Q′ (r′),

(11)

where W is the Coulomb interaction screened within the B
subspace of the BSE and evaluated within the TDA, as dis-
cussed in the previous sections.

The matrix elements can also be transformed into a Wan-
nier basis

〈vRv; cRc|KSX |v′Rv′ ; c′Rc′ 〉
=

∫
d3rd3r′W∗

v (r − Rv )Wc(r − Rc)W (r − r′)

×Wv′ (r′ − Rv′ )W∗
c′ (r′ − Rc′ ), (12)

where Wn(r − R) is a Wannier function for band n cen-
tered at R, and v and c label valence and conduction bands,
respectively.

Since Wannier functions are well localized in real space,the
singlet-triplet splitting is dominated by matrix elements in
Eq. (12) that correspond to having the electron and the hole
in the same position, and so, for a two-band Wannier exciton,
it is proportional to


ST ∼ 〈vR; cR|KSX |vR; cR〉

=
∫

d3rd3r′W∗
v (r)Wc(r)W (r − r′)Wv (r′)W∗

c (r′). (13)

Because of the localization of the Wannier functions, the
integral above is given by the screened Coulomb interaction
with separations constrained to the dimension of the unit cell,
a short length scale at which the screening due to the substrate
ε−1(r, r′) is not effective. Hence the screening due to the
substrate will not lead to a modification in the singlet-triplet
exciton energies, unless the separation between the substrate
and the sample of interest is smaller than the typical size of the
Wannier function. This is not the case in TMD monolayers,
where the Wannier functions are smaller than the unit cell
[12,45], and more generally, we predict that the singlet-triplet
splitting in most quasi-2D systems will not be influenced by
the screening due to the substrate. However, the substrate can
still affect the singlet-triplet splitting in other systems, such as
adsorbates that are metals or molecules, where the extent of
the Wannier functions is larger than the substrate-adsorbate
distance. This is consistent with previous calculations [26]
that show that the exciton singlet-triplet splitting in a benzene
molecule can be reduced by over 10% when the molecule-
substrate separation is smaller than the typical size of the
Wannier or Boys function of the frontier orbitals in a benzene
molecule (�5 Å).

VI. SUMMARY

In summary, we rederive the S approximation using the
Löwdin partitioning—obtaining a new expression with an
additional factor of 1

2 —and perform a systematic analysis
of its accuracy by comparing the solution of the BSE with
and without the S approximation as a function of the size of
subspace A of the Hilbert space. We find that screening the
exchange interaction in the BSE with a screening carefully
designed to be consistent with the TDA can moderately speed
up convergence with respect to subspace size in confined
systems, such as molecules, where the exchange interaction
couples a large number of occupied and unoccupied states
in the same spatial region. We find that both metallic and
semiconducting substrates have a negligible effect on singlet-
triplet splitting in layered materials, where the wave functions
of the system of interest and substrate do not significantly
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hybridize. In general, the screening from a substrate will not
affect the exciton singlet-triplet splitting in the sample unless
the extent of the maximally localized Wannier function for
the single-particle states is larger than the adsorbate-substrate
distance.
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