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Order parameter for the multichannel Kondo model at quantum criticality
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A multichannel Kondo model, where two or more equivalent but independent channels of electrons compete to
screen a spin- 1

2 impurity, shows overcompensation of the impurity spin, leading to the non-Fermi-liquid behavior
in various thermodynamic and transport properties. However, when the channel symmetry is broken, an impurity
quantum phase transition can occur at zero temperature. Identification of an order parameter describing the
impurity quantum phase transition is very difficult since it is beyond the conventional Landau-Ginzburg-Wilson
theory. By employing the natural orbitals renormalization group method, we study both two-channel and three-
channel Kondo models, from the perspective of spin correlation between the impurity and electrons in electronic
channels. Here we demonstrate that by introducing the spin-correlation ratio as an order parameter we can
characterize impurity quantum phase transitions driven by channel asymmetry. In particular, the universal critical
exponents β of the spin-correlation ratio and ν of the correlation length are explicitly determined by finite-size-
scaling analysis, namely, β = 0.10(1) and ν = 2.0(1), and β = 0.10(1) and ν = 2.5(1) for the two-channel and
three-channel Kondo models, respectively.

DOI: 10.1103/PhysRevB.103.045111

I. INTRODUCTION

The Kondo effect [1,2], induced by the antiferromagnetic
exchange interaction between a localized spin- 1

2 impurity and
conduction electrons in the Fermi sea, is an intensively studied
problem in quantum many-body physics. Below a character-
istic energy scale TK , namely, the Kondo temperature, the
magnetic impurity is collectively screened by the surrounding
conduction electrons, leading to the Fermi-liquid behavior
in low-temperature properties. The concise interpretation of
the Kondo effect is through the well-known single-impurity
Kondo model [1,3,4], whose ground state is a Kondo singlet.
On the other hand, the Kondo screening is strongly modified if
the magnetic impurity is coupled to two or more independent
channels of electrons.

Nozières and Blandin [5] proposed a multichannel gener-
alization of the standard Kondo model, i.e., the multichannel
Kondo (MCK) model, where M > 1 equivalent but indepen-
dent channels of electrons compete to screen a spin- 1

2 impurity
and then the impurity is ultimately overscreened. Corre-
spondingly, the various physical properties have been studied
by the Bethe ansatz [6–10], conformal field theory (CFT)
[11–15], bosonization [16,17], and the numerical renormal-
ization group (NRG) method[4,13,18], as well as other
approaches [19,20]. At low temperatures, the spin- 1

2 impu-
rity is simultaneously screened by each channel, resulting in
the non-Fermi-liquid behavior in various thermodynamic and
transport properties. These nontrivial low-temperature prop-
erties include the nonvanishing zero-temperature impurity
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entropy Simp(T = 0) = ln[2 cos( π
2+M )] and the fractional

power-law behavior of impurity magnetic susceptibility
χimp ∝ T 2�−1 and of the impurity specific-heat ratio γimp =
Cimp/T ∝ T 2�−1 for T → 0, where 1 + � = 1 + 2/(2 + M )
is the scaling dimension of the leading irrelevant operator at
the fixed point. In addition, the resistivity at low temperature
goes as R ∝ T �, which is different from that of the Fermi liq-
uid with R ∝ T 2. In particular, in the two-channel case M = 2,
i.e., the two-channel Kondo (2CK) model, logarithmic correc-
tions in the thermodynamic properties occur instead, leading
to χimp ∝ ln T and γimp ∝ ln T for T → 0 with an anomalous
Wilson ratio RW = χimp/γimp = 8

3 , in contrast to the result of
the standard single-impurity Kondo model RW = 8

4 = 2. On
the experimental side, several realizations of the 2CK effect
have also been obtained [21–27].

The above anomalous low-temperature properties of an
MCK system are based on the condition that all the channels
are equivalent, namely, symmetric. However, the non-Fermi-
liquid physics is extremely delicate against the channel
symmetry-breaking perturbation: Even the smallest asym-
metry destabilizes the non-Fermi-liquid fixed point in the
renormalization group (RG) flow. For instance, in the 2CK
model with Ja and Jb denoting the two Kondo couplings,
when the channel symmetry is broken (Ja �= Jb), a new tem-
perature scale T ∗ ∝ (Ja − Jb)2, along with a corresponding
length scale ξ ∗ ∼ 1/T ∗, for the crossover from the unstable
overscreened non-Fermi-liquid fixed point to the stable fully
screened Fermi-liquid fixed point has been found [18,28]. In
this case, T ∗ characterizes the energy scale for flow away
from the overscreened fixed point at intermediate tempera-
tures and the impurity is hence completely screened by the
channel with the stronger coupling at T = 0. Only on fine-
tuning the Kondo couplings Ja → Jb to the symmetry point
with T ∗ → 0, one obtains the non-Fermi-liquid physics at the
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lowest-energy scales. Therefore, at T = 0, an MCK system
may undergo an impurity quantum phase transition (IQPT)
[29] driven by channel asymmetry, where only the impurity
contribution to the free energy becomes singular at the crit-
ical point. The simple physical picture is that one channel
couples to the impurity more strongly than the rest and then
the impurity is screened only by this channel while the other
channels decouple, leading to the standard 1CK physics with
a Fermi-liquid phase [5,20,30]. An IQPT can then occur at the
channel-symmetric point as the channel asymmetry is varied.

To describe a phase transition, we need to introduce an
order parameter. However, interpretation for IQPTs goes
beyond the classical Landau-Ginzburg-Wilson scenario due to
the fact that an IQPT is distinct from any bulk phase transi-
tions, and thus identification of an order parameter describing
an IQPT is very difficult. Recently, much effort has been made
to explore order parameters characterizing an IQPT [31–33].
Inspired by quantum information, the Schmidt gap [31] and
negativity [32] have been introduced as order parameters to
describe the IQPT in a 2CK model. Nevertheless, there is a
still lack of order parameters based on correlation functions,
especially an observable one.

In this work, using the natural orbitals renormalization
group (NORG) method [34], we explore such order parame-
ters to describe the IQPTs driven by the channel asymmetry in
both 2CK and 3CK models, from the perspective of spin cor-
relation between the impurity and electrons in the electronic
channels. The corresponding universal critical exponents can
be further extracted by finite-size-scaling analysis.

This paper is organized as follows. In Sec. II the 2CK and
3CK models and the NORG numerical method are introduced.
In Sec. III we study the spin correlation between the impurity
and electrons in electronic channels. The spin-correlation ratio
is then introduced and further demonstrated as an appropriate
order parameter to describe the IQPTs driven by the chan-
nel asymmetry in both models. Finally, by finite-size-scaling
analysis, we explicitly determine the universal critical expo-
nents β of the spin-correlation ratio and ν of the correlation
length to be β = 0.10(1) and ν = 2.0(1), and β = 0.10(1)
and ν = 2.5(1) for the 2CK and 3CK models, respectively.
Section IV gives a short discussion and Sec. V summarizes
this work.

II. MODELS AND NUMERICAL METHOD

Generally, the Hamiltonian for an MCK model, where M
independent channels of electrons compete to screen a sin-
gle spin- 1

2 impurity, can be written as HMCK = ∑
a Ha + Hint,

with

Ha =
∑

kσ

εkc†
akσ

cakσ ,

Hint =
∑

a

JaS0 · sa1,

(1)

where a = 1, 2, . . . , M is the electronic channel index. The
operator c†

akσ
creates an electron at a Bloch state with a

wave vector k and spin σ = ↑,↓ in channel a with εk denot-
ing the dispersion relation. The impurity spin S0 is coupled
to the electron spin sa1 at site 1 in channel a via Kondo
coupling Ja. Here we consider the tight-binding chain emu-

FIG. 1. Schematics of the (a) 2CK and (b) 3CK models with the
electronic channels being simulated by independent periodic tight-
binding chains. (a) A spin- 1

2 impurity is coupled to its left and right
channels by Kondo couplings Jl = J/� and Jr = J�, respectively,
with � standing for the asymmetry parameter. For � = 1, the impu-
rity is overscreened by both channels, resulting in the 2CK physics,
while for � �= 1 in the thermodynamic limit, the impurity is screened
only by the channel with the stronger coupling, representing the 1CK
physics. (b) A spin- 1

2 impurity is coupled to the top, middle, and
bottom electronic channels with Kondo couplings Jt = Jm = J/�
and Jb = J�. The 3CK physics occurs at the symmetric point � = 1
while the impurity is screened simultaneously by all the channels.
For any � < 1, the 2CK physics emerges with the impurity being
overscreened by the top and middle channels, while the bottom chan-
nel decouples. In contrast, for any � > 1, the 1CK physics emerges
with the impurity being screened only by the bottom channel.

lation of the MCK model, as shown in Fig. 1, in which a
localized spin- 1

2 impurity is coupled to M independent peri-
odic tight-binding chains by an antiferromagnetic exchange
interaction.

A typical model for studying IQPTs in the MCK system
is the 2CK model, where there exists a nontrivial critical
crossover at the channel-symmetric point with the impurity
being overscreened by the two channels. As illustrated in
Fig. 1(a), the Hamiltonian for the 2CK model is given by
H2CK = ∑

a Ha + Hint, with

Ha = −t
∑

i jσ

(c†
aiσ ca jσ + H.c.),

Hint = J

�
S0 · sl1 + J�S0 · sr1. (2)

Here c†
aiσ (caiσ ) represents the creation (annihilation) operator

of a conduction electron at site i in channel a ∈ {l, r} and
sa1 = 1

2

∑
αβ c†

a1ασαβca1β , with σ representing the vector of
Pauli matrices. The system size is N = L + 1 = Nl + Nr + 1,
with Na denoting the number of sites in channel a and L the
number of total sites in all the electronic channels, and we take
Nl = Nr in this work. We keep the Kondo couplings Jl = J/�
and Jr = J�, where the dimensionless quantity � plays a
controlling role. The system presents critical behavior around

045111-2



ORDER PARAMETER FOR THE MULTICHANNEL KONDO … PHYSICAL REVIEW B 103, 045111 (2021)

� = 1, where the two channels are symmetric with Jl = Jr ,
resulting in the 2CK physics with a non-Fermi-liquid phase.
For any � �= 1 in the thermodynamic limit N → ∞, the 1CK
physics with a Fermi-liquid phase emerges and the impurity is
screened only by the channel with the stronger coupling, while
the other channel decouples. Hence, the � = 1 point acts as a
critical point separating the two phases.

Another typical model we consider is the 3CK model.
Likewise, the Hamiltonian for the 3CK model presented in
Fig. 1(b) can be given by H3CK = ∑

a Ha + Hint, with

Hint = J

�
S0 · st1 + J

�
S0 · sm1 + J�S0 · sb1. (3)

Here a spin- 1
2 impurity is coupled to three [top (t), middle

(m), and bottom(b)] tight-binding chains with Kondo cou-
plings Jt = Jm = J/� and Jb = J�. Again, the system size
is N = L + 1 = ∑

a Na + 1, with a ∈ {t, m, b} and L denot-
ing the number of total sites in all the electronic channels,
and we take Nt = Nm = Nb in this work. The 3CK physics
with a non-Fermi-liquid phase occurs around the critical point
� = 1, where the Kondo couplings to all the channels are
equal, namely, the three channels are symmetric, and thus
the impurity is overscreened by all the channels. For any
� > 1 in the thermodynamic limit N → ∞, the impurity is
screened only by the bottom channel, leading to the emer-
gence of the standard 1CK physics. In contrast, for any
� < 1, the 2CK physics emerges with the top and middle
channels equally competing for screening the impurity, while
the bottom channel decouples. As a result, the channel-
symmetric 3CK point � = 1 separates two distinct phases,
namely, the 2CK non-Fermi-liquid phase for � < 1 and the
1CK Fermi-liquid phase for � > 1. Recently, the global phase
diagram of the three-channel spin-orbital Kondo model, which
is relevant for Hund metals, was studied using the NRG
method [35].

We adopted the NORG approach to study the critical be-
havior in the 2CK and 3CK models. The NORG method
works efficiently on quantum impurity models in the whole
coupling regime and it preserves the whole geometric in-
formation of a lattice [34,36,37]. We emphasize that the
effectiveness of the NORG is independent of any topological
structure of a lattice. The NORG method works in the Hilbert
space constructed from a set of natural orbitals [34,38]. Its re-
alization essentially involves a representation transformation
from a site representation into a natural orbital representation
through iterative orbital rotations. In practice, to efficiently
realize the NORG approach, we rotate only the orbitals of
the bath, that is, only the bath orbitals are transformed into
a natural orbital representation. By using the NORG method
we can solve hundreds of noninteracting bath sites with any
topological structures, while the computational cost is about
O(N3

bath), with Nbath the number of bath sites.
Throughout the work, we take an even number of sites

in each channel, in which case the particle-hole symmetry
is preserved. We set the nearest-neighbor hopping integral
t = 1

2 and keep half-filling of the conduction bands. All the
calculations are carried out in the subspace of Sz

total = 1
2 .

FIG. 2. Ground-state spin correlations C, Cl , and Cr between the
localized impurity and electrons in the electronic channels in the
2CK model, versus � for a system of size N = 205 with the fixed
coupling J = 1.

III. SPIN-CORRELATION RATIO AS AN ORDER
PARAMETER

Screening of the single magnetic impurity in an MCK
model by the electronic channels, whether full screening as in
the standard 1CK physics or overscreening as in the 2CK and
3CK physics, certainly manifests itself in the structure of the
spin correlation between the localized impurity and electrons
in the electronic channels in the ground state. Moreover, the
spin correlation may be measured by spin-polarized scanning
tunneling microscopy. To be specific, the spin correlation be-
tween the impurity and electrons at site i in channel a has the
form

Ca(i) = 〈0|Sz
0sz

ai|0〉, (4)

where |0〉 denotes the ground state. We then consider the total
correlation in channel a as well as in all the channels, which
are given by

Ca =
∑

i

Ca(i) =
∑

i

〈0|Sz
0sz

ai|0〉,

C =
∑

a

Ca =
∑

ai

〈0|Sz
0sz

ai|0〉. (5)

We first take the 2CK model (2) illustrated in Fig. 1(a)
into consideration. When the two channels are symmetric,
namely, Jl = Jr , the 2CK physics is valid with the impurity
being overscreened by the two channels, where the tempera-
ture scale T ∗ ∝ (Jl − Jr )2 vanishes and the diverging length
scale ξ ∗ (∼1/T ∗) → ∞ emerges in the thermodynamic limit.
On the other hand, in the channel-asymmetric case, the stan-
dard 1CK physics emerges, where the magnetic impurity is
screened only by the channel with the stronger coupling in the
thermodynamic limit, while the other channel decouples. It is
thus expected that the total correlation in a decoupled channel
is 0, namely, Ca = 0, with a representing the decoupled chan-
nel, meaning that there is no correlation between this channel
and the impurity.

We have studied the 2CK model by using the NORG
method. In Fig. 2 we plot the calculated total correlations C,
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FIG. 3. (a) Spin-correlation ratio RC as a function of � for a
system of size N = 205 and (b) derivative of RC with respect to �,
namely, R′

C = ∂RC/∂�, for systems of sizes N = 205 and N = 405
with fixed coupling J = 1 in the 2CK model.

Cl , and Cr as functions of � with the fixed coupling J = 1.
As the figure shows, when the parameter � � 1, Cr → 0 and
Cl → − 1

4 , indicating that the impurity is correlated only with
the left channel. In contrast, the impurity is correlated only
with the right channel for � � 1. The correlations Cl and
Cr cross at the critical point � = 1, where the 2CK physics
is valid with the impurity being equally correlated with the
two channels. It is expected that for any � �= 1 in the ther-
modynamic limit, the correlation in channel a with smaller
coupling Ca → 0 while Cā → − 1

4 , where ā denotes the other
channel with the stronger coupling. Deviations of Ca and C
from the values in thermodynamic limit in Fig. 2 result from
the finite-size effect of the system we choose.

We hence introduce the spin-correlation ratio RC in the
form

RC = Cr

C
=

∑
i〈0|Sz

0sz
ri|0〉∑

ai〈0|Sz
0sz

ai|0〉 . (6)

At the channel-symmetric point � = 1, the overscreened im-
purity is correlated equally with the two channels, leading to
RC = 1

2 , while for any � �= 1, the impurity is correlated only
with the channel with the stronger coupling, while the other
channel decouples. As a result, the value of RC is expected to
go from 0 to 1 around the critical point � = 1. Indeed, such
a behavior of RC is confirmed by the NORG calculations, as
shown in Fig. 3(a). The thermodynamic limit behavior can be
examined by further studying the derivative of the correlation
ratio with respect to �, i.e., R′

C = ∂RC/∂�, which is plotted
in Fig. 3(b). Figure 3(b) clearly shows that the derivative
peaks at the critical point � = 1 and this peak becomes more
pronounced as the system size N increases. This indicates that
R′

C tends to diverge at the critical point � = 1 as N → ∞,
illustrating that the Kondo singlet in 1CK physics is destroyed
and the overscreened ground state in 2CK physics emerges
when � tends to 1 from � �= 1. Therefore, we adopt the spin-
correlation ratio RC as an order parameter to characterize the
IQPT in the 2CK model driven by the channel asymmetry.

In practical calculations, to characterize the critical behav-
ior around a critical point, we need to do finite-size-scaling
analysis [39–42] for an order parameter [43]. It has been
known that a diverging characteristic length ξ emerges at the
critical point gc for a quantum phase transition, which scales
as ξ−1 ∼ |g − gc|ν , with ν a critical exponent and g a control

FIG. 4. Finite-size scaling of the spin-correlation ratio RC with
Kondo couplings (a) J = 1.0 and (b) J = 0.5 in the 2CK model. The
obtained values are β = 0.10 ± 0.01 and ν = 2.0 ± 0.1.

parameter. Meanwhile, an order parameter scales as |g − gc|β
in the vicinity of the critical point, where β is a critical ex-
ponent. It is emphasized that ν is uniquely determined by the
system Hamiltonian. Here in the 2CK model, the correlation
length is taken as the critical crossover scale ξ ∗ at which the
RG flow crosses over from the overscreened 2CK fixed point
to the fully screened Fermi-liquid fixed point.

For the spin-correlation ratio RC in the 2CK model, we
adopt a standard finite-size-scaling form

RC (L) = L−β/νF ((� − 1)L1/ν ), (7)

where F is a scaling function and L the number of total sites
in all the electronic channels. The order parameter RC should
show a scale-invariant behavior around the critical point � =
1, and thus we plot RCLβ/ν as a function of (� − 1)L1/ν in
Figs. 4(a) and 4(b) for Kondo couplings J = 1.0 and J = 0.5,
respectively. We explore the values of β and ν such that the
curves for different system sizes N collapse on each other.
When ν = 2.0 ± 0.1 and β = 0.10 ± 0.01, all the curves in
Figs. 4(a) and 4(b) respectively collapse to a single one,
indicating that a very good data collapse is achieved. The
value of the critical exponent ν = 2 is in agreement with the
result of CFT and bosonization [12,20,44], as well as with
the analysis based on the Schmidt gap and negativity [31–33].
This demonstrates that RC is an appropriate order parameter
for characterizing the IQPT in the 2CK model.

We proceed with considering the 3CK model. At the
channel-symmetric point, the 3CK physics is valid with the
impurity being overscreened by all the channels, whereas
when one of the Kondo couplings Ja is increased (or de-
creased), the 3CK fixed point crosses over to a Fermi-liquid
fixed point with the impurity being screened only by this
channel (or to a 2CK fixed point with the impurity being
overscreened by the other two channels) on the new tempera-
ture scale of T ∗ ∝ |Ja − Jc

a |2.5, with Jc
a the critical coupling at

the channel-symmetric point [30]. Therefore, on fine-tuning
the Kondo coupling Ja → Jc

a to the symmetric point, the
3CK physics is obtained with the vanishing temperature scale
T ∗ → 0 and a diverging length scale ξ ∗ (∼1/T ∗) → ∞ at the
lowest-energy scales. On the other hand, similar to the 2CK
model, in the channel-asymmetric case, it is expected that
there is no correlation between a decoupled channel and the
impurity, namely, the total correlation in a decoupled channel
is 0.
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FIG. 5. Ground-state spin correlations C, Ct (Cm ), and Cb between
the localized impurity and electrons in the electronic channels in
the 3CK model versus � for a system of size N = 199 with fixed
coupling J = 1.

By using the NORG method, we have also studied the
3CK model (3) illustrated in Fig. 1(b). Figure 5 shows the
calculated spin correlation with the fixed coupling J = 1. As
we see, Cb → 0 when the parameter � � 1, indicating that
the bottom channel decouples while the impurity is corre-
lated equally with the top and middle channels. In contrast,
when the parameter � � 1, Cb → − 1

4 while Ct (or Cm) →
0, demonstrating that the impurity is correlated only with
the bottom channel while the other two channels decouple.
At the channel-symmetric point, the impurity is correlated
equally with all the channels, as shown by Ct , Cm, and Cb

crossing at the critical point � = 1. On the other hand, for a
small parameter � � 1, where the impurity is overscreened
by the top and middle channels, there is an uptick instead
of a monotonic decrease towards − 1

4 for the curves of Ct

(Cm) and C. This results from the nonmonotonic dependence
of the Kondo temperature TK on the Kondo coupling J0 =
J/� for the 2CK model, where TK depends exponentially on
1/J0 and J0 in the two regimes of small and large coupling,
respectively [45].

In comparison with the case of the 2CK model, the defini-
tion of the spin-correlation ratio RC is given by

RC = Cb

C
=

∑
i〈0|Sz

0sz
bi|0〉∑

ai〈0|Sz
0sz

ai|0〉 . (8)

Accordingly, similar to the 2CK model, at the channel-
symmetric point � = 1, the overscreened impurity is corre-
lated equally with all the channels, leading to RC = 1

3 . On the
other hand, for any � > 1, the impurity is correlated only with
the bottom channel, while the other two channels decouple.
In contrast, for any � < 1, the bottom channel decouples and
the impurity is correlated equally with the top and middle
channels. As a result, the value of RC is expected to go
from 0 to 1 around the critical point � = 1. The calculated
spin-correlation ratio RC and its derivative R′

C = ∂RC/∂� with
respect to � are presented in Figs. 6(a) and 6(b), respectively.
As we see, the value of RC goes from 0 to 1 around the
critical point � = 1 and R′

C peaks at � = 1 with this peak
sharpening as the system size N increases, indicating that

FIG. 6. (a) Spin-correlation ratio RC as a function of � for a
system of size N = 199 and (b) derivative of RC with respect to �,
namely, R′

C = ∂RC/∂�, for systems of different size N with fixed
coupling J = 1 in the 3CK model.

R′
C goes to diverge at the channel-symmetric point � = 1 in

the thermodynamic limit. Consequently, the behaviors of RC

and R′
C in the 3CK model are similar to those in the 2CK

model.
Likewise, the same finite-size scaling form of Eq. (7) for

RC is used in the 3CK model. Here the correlation length
is taken as the critical crossover scale ξ ∗ at which the RG
flow crosses over from the overscreened 3CK fixed point
to the fully screened Fermi-liquid fixed point (� > 1) or to
the overscreened 2CK fixed point (� < 1). The correspond-
ing results are presented in Figs. 7(a) and 7(b) for fixed
Kondo couplings J = 1.0 and J = 0.5, respectively. We find
that the best data collapse is achieved by ν = 2.5 ± 0.1 and
β = 0.10 ± 0.01, with ν = 2.5 being in agreement with the
result of CFT [12,44]. Moreover, the values of the critical
exponent β for both the 2CK and 3CK models are equal
to 0.1, which is not given in CFT studies. Thus, the spin-
correlation ratio RC acts as an appropriate order parameter
for characterizing the IQPTs in both the 2CK and 3CK
models.

IV. DISCUSSION

Impurity quantum phase transitions occur in various quan-
tum impurity systems at zero temperature. The multichannel
Kondo system, associated with the intermediate-coupling
fixed point showing non-Fermi-liquid behavior, is a paradigm

FIG. 7. Finite-size scaling of the spin-correlation ratio RC

with Kondo couplings (a) J = 1.0 and (b) J = 0.5 in the 3CK
model, respectively. The values obtained are β = 0.10 ± 0.01 and
ν = 2.5 ± 0.1.
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for exploring IQPTs. According to the CFT, the nontrivial
low-temperature properties of an MCK system are determined
by the leading irrelevant operator at the overscreened fixed
point [12]. Specifically, for an MCK model which obeys
SU(2)spin × SU(M )channel symmetry, it has been proved that
the dimension of the leading irrelevant operator is 1 + � =
1 + 2/(2 + M ); for example, the impurity magnetic suscep-
tibility χimp ∝ T 2�−1 when T → 0 except M = 2. On the
other hand, at zero temperature, an IQPT can be driven by the
channel asymmetry, i.e., the SU(M )channel symmetry is bro-
ken. More specifically, when one of the couplings is increased,
the ground state of the system will transit into a Fermi-liquid
phase. In contrast, when one of the couplings is decreased,
the ground state will behave as that of an (M − 1)-channel
Kondo model with a non-Fermi-liquid phase (M > 2). For
this critical transition, the critical exponent ν of the correlation
length is 1/�, with � the dimension of the most relevant new
operator that appears in the Hamiltonian when the channel
symmetry is broken [14,46]. Thus, for the 2CK model ν = 2
and for the 3CK model ν = 2.5. As shown in this work, these
generic properties are well manifested by the spin-correlation
calculations for the 2CK and 3CK models. In particular, the
calculated critical exponents ν are the same as those given by
the CFT. Furthermore, the calculations give extra information
beyond the CFT, namely, the critical exponent β of the order
parameter.

V. SUMMARY

We have introduced an order parameter, namely, spin-
correlation ratio RC , for describing IQPTs in the multichannel
Kondo system driven by channel asymmetry, based on spin
correlation between the impurity and electrons in the elec-
tronic channels. By the calculations using the NORG method,
we demonstrated that the spin-correlation ratio RC is an
appropriate order parameter for describing the IQPTs. By
finite-size-scaling analysis, the critical exponents β of RC and
ν of the correlation length are further determined to be β =
0.10(1) and ν = 2.0(1) for the 2CK model and β = 0.10(1)
and ν = 2.5(1) for the 3CK model. Moreover, the values of
the critical exponent ν = 1/� are the same as the results of
the conformal field theory for the multichannel Kondo system.
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