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The recently discovered cuprate superconductor Ba2CuO3+δ exhibits a high Tc � 73 K at δ � 0.2. The
polycrystal grown under high pressure has a structure similar to La2CuO4 but with dramatically different lattice
parameters due to the CuO6 octahedron compression. The crystal field in the compressed Ba2CuO4 leads to
an inverted Cu 3d eg complex with the dx2−y2 orbital sitting below the d3z2−r2 and an electronic structure
highly unusual compared to the conventional cuprates. We construct a two-orbital Hubbard model for the
Cu d9 state at hole doping x = 2δ and study the orbital-dependent strong correlation and superconductivity.
For the undoped case at x = 0, we found that strong correlation drives an orbital-polarized Mott-insulating
state with the spin-1/2 moment of the localized d3z2−r2 orbital. In contrast to the single-band cuprates where
superconductivity is suppressed in the overdoped regime, hole doping the two-orbital Mott insulator leads to
orbital-dependent correlations and the robust spin and orbital exchange interactions produce a high-Tc antiphase
d-wave superconductor even in the heavily doped regime at x = 0.4. We conjecture that Ba2CuO3+δ realizes
mixtures of such heavily hole-doped superconducting Ba2CuO4 and disordered Ba2CuO3 chains in a single-layer
or predominately separated bilayer structure. Our findings suggest that unconventional cuprates with liberated
orbitals as doped two-band Mott insulators can be a direction for realizing high-Tc superconductivity with
enhanced transition temperature Tc.
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I. INTRODUCTION

The current understanding of high-Tc cuprate supercon-
ductors [1] crucially relies on the crystal field due to the
Jahn-Teller distortion of the elongated CuO6 octahedra. The
topmost Cu 3d-electron eg states split accordingly into well-
separated lower d3z2−r2 (dz2 ) and upper dx2−y2 (dx2 ) orbitals.
In the parent compound, such as the prototypical single-layer
La2CuO4 (La214), the Cu2+ is in the 3d9 configuration with
a fully occupied dz2 orbital and an active dx2 orbital partially
occupied by one electron. The strong correlation produces a
spin- 1

2 antiferromagnetic (AF) Mott insulator. Hole doping
leads to an effective one-band model of Zhang-Rice singlets
formed by the hole in the dx2 orbital and a doped hole in the
planar oxygen 2p5 orbitals [2]. The AF exchange interactions
give rise to nodal d-wave high-Tc superconductivity in the
CuO2 planes [3]. Such a picture describes the vast majority
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of the conventional cuprates, where the dormant dz2 orbital
plays only a minor role [4–7].

The recent discovery of the high-Tc superconductor
Ba2CuO3+δ at δ � 0.2 [8] highlights a class of “unconven-
tional” cuprates where the different crystal field distributions
lead to electronic structures with liberated dz2 orbital [9,10].
The polycrystal samples have been synthesized under high
pressure in a strongly oxidizing environment. Extraordinary
properties were observed by a combination of magnetiza-
tion, specific heat, neutron scattering, x-ray diffraction, x-ray
absorption spectroscopy (XAS), μ spin-rotation (μSR) ex-
periments [8], and resonant inelastic x-ray scattering (RIXS)
[11]: (i) The Ba2CuO3+δ has an atomic structure similar to
La214 but with dramatically different lattice parameters due
to octahedral compression, leading to inverted dz2 and dx2

orbitals; (ii) the extra Oδ occupy the planar oxygen sites; (iii)
despite the large hole doping reflected in the Cu L3 XAS
and RIXS spectra, the O K-edge XAS shows spectral weight
transfer similar to La214, indicative of strong Mott-Hubbard
correlations [12,13]; and, remarkably, (iv) the superconduct-
ing (SC) transition temperature Tc � 73 K nearly doubles that
of the La214 family with a SC volume fraction above 30% at
low temperatures.
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FIG. 1. Mixed structures of (a) Ba214 regions with CuO2 plane and Ba213 regions with short Cu-O chains and substantial oxygen vacancies
within a single layer and (d) bilayer of a mostly Ba214 with CuO2 plane and a disordered Ba213 with short Cu-O chains and substantial oxygen
vacancies. [(b) and (e)] Atomic structures of stoichiometric Ba214 and Ba214/Ba213 bilayer corresponding to (a) and (d). [(c) and (f)] DFT
band structures of compressed Ba214 corresponding to (b) and (e) using structural parameters measured by neutron scattering. Zero marks the
Fermi level corresponding to Cu 3d9 configuration.

In this work, we present a theoretical description of the
possible electronic structure and the SC state of Ba2CuO3+δ

based on the remarkable experimental findings described
above. The focus is to address the outstanding puzzle
of high-Tc superconductivity at extremely high hole dop-
ing concentration x = 2δ ∼ 0.4 that defies all conventional
single-band cuprates where superconductivity is known to
be suppressed in the overdoped regime [3]. In doing so, we
find that the cuprate phenomenology is remarkably enriched
due to the liberated dz2 orbital in addition to the dx2 orbital
and that the doped two-orbital Mott insulator with strongly
orbital dependent correlations may provide a mechanism for
the emergence of superconductivity with dramatic Tc enhance-
ment. Specifically, we construct a two-orbital Hubbard model
describing the low-energy bands of the compressed Ba2CuO4

with partially occupied and inverted dz2 and dx2 bands and
study the correlated electronic states.

For the undoped case at x = 0, we find that strong correla-
tion induces interorbial/interband carrier transfer and drives
an orbital-polarized Mott-insulating state with the spin-1/2
moment originating from the localized dz orbital. Hole dop-
ing the two-orbital Mott insulator leads to an itinerant state
with orbital-dependent strong correlation effects. We find that
a novel two-band superconductor with an antiphase d-wave
gap function due to the robust spin and orbital exchange
interactions, suggesting multiband and orbital selectivity are
crucial for high-Tc superconductivity in the heavily hole-
doped regime of the unconventional cuprate Ba2CuO3+δ .

The rest of the paper is organized as follows. In Sec. II,
the crystal structure and the density-functional theory (DFT)
calculations are discussed, taking into account the observa-
tions by neutron, x-ray scattering, and RIXS experiments. In
Sec. III, we construct a two-orbital tight-binding model for
the two low-energy bands in the DFT and study the correlated
electronic states in the Cu eg complex using the two-orbital
Hubbard model at hole doping concentration x = 2δ relative
to the 3d9 state. The correlation-driven interband carrier trans-
fer and orbital-dependent band renormalization are studied
using the strong-coupling Gutzwiller approximation. We ob-
tain the orbital polarized Mott-insulating state at x = 0 and the
correlated paramagnetic state with strongly orbital-dependent
correlation effects at x = 0.4. In Sec. IV, the strong-coupling
Kugel-Khomskii spin-orbital superexchange interactions are
derived for the doped two-orbital Mott insulator. We show
that the ground state is the novel two-band d±-wave super-

conductor at x = 0.4 in the renormalized mean-field theory. A
detailed renormalization group analysis is also presented for
the competing instabilities of superconductivity with different
pairing symmetries and the incipient density wave orders.
Summary and outlook are given in Sec. V.

II. CRYSTAL AND ELECTRONIC STRUCTURE

Based on the findings of neutron diffraction and x-ray
scattering experiments, the compressed Ba2CuO3+δ near δ �
0.2 is likely to crystalize into mixed structures of Ba2CuO4

(Ba214) regions with CuO2 planes, which will be shown to ex-
hibit two-band high-Tc superconductivity, and normal regions
of Ba2CuO3 (Ba213) with Cu-O chain planes. One example,
shown in Fig. 1(a), has the SC Ba214 containing limited
oxygen vacancies embedded in the non-SC disordered Ba213
hosting short Cu-O chains and substantial oxygen vacancies
within a single layer. Intriguingly, evidence from recent RIXS
experiments points to a mixed bilayer structure with the dis-
ordered Ba213 containing short Cu-O chains and vacancies
separated from the SC layer in a unit cell [11]. Figure 1(d)
illustrates such a bilayer structure with a close to ideal CuO2

plane of SC Ba214 and a non-SC disordered Cu-O chain
plane of Ba213 acting as a charge reservoir layer, similarly to
YBa2Cu3O7−x [14]. Since Cu4+ (3d7) in Ba214 is not a stable
ionization state, self-doping takes place with respect to the
Cu2+ in Ba213 both within the plane as in Fig. 1(a) and across
the bilayer as in Fig. 1(d). The absence of apparent charge
disproportionation in μSR [8] suggests equal valence of the
Cu atoms in the Ba213 and Ba214 regions. This leads to a
heavily overdoped average hole concentration x = 2δ � 40%
relative to the Cu 3d9 configuration, independent of specific
realizations of the mixed structure.

Using the structural parameters measured by neutron scat-
tering summarized in Table I, we carried out DFT calculations
for the stoichiometric structures of the compressed Ba214
[Fig. 1(b)] and Ba213/Ba214 bilayer [Fig. 1(e)], as well as
Ba213 using the Vienna ab initio simulation package (VASP)
[15–17]. The band structures are calculated in the general-
ized gradient approximation [18,19]. The details of the DFT
calculations are given in Appendix A. The orbital-resolved
electronic structure of Ba214 is shown in Fig. 1(c). There are
two bands crossing the Fermi level, involving predominately
the Cu 3dx2 and 3dz2 orbitals. Since the compressed CuO6

octahedron has a shorter distance connecting the Cu to the
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TABLE I. Experimental determined crystal structure of
Ba2CuO3+δ in space group I4/mmm with lattice constant
a = 4.003Å and b = 12.942 Å [8].

Atom site x y z Occupancy

Ba 4e 0 0 0.35627 1
Cu 2a 0 0 0 1
O1 4e 0 0 0.1438 1
O2 4c 0 0.5 0 0.592

apical oxygens than to the planar oxygens (Table I), the dz2

orbital couples strongly to the apical oxygen pz orbital. The
inverted crystal field pushes the energy of the dz2 orbital
to lie ∼0.93 eV above the dx2 orbital. Thus the atomic 3d9

configuration has one-electron in the dz2 orbital, while the dx2

orbital is fully occupied by two electrons, in contrast to the
conventional cuprates.

On crystallization, although the smaller hopping integrals
of the out-of-plane dz2 orbital produce a narrow band, the dx2

orbital generates a much wider band through the larger hop-
ping integrals via the planar oxygens, such that the two bands
overlap near the Fermi level. For the Ba213/Ba214 bilayer
structure, we find that the orbital-resolved band dispersions in
the Ba214 plane, shown in Fig. 1(f), are remarkably similar
to those in the compressed single-layer Ba214 [Fig. 1(c)].
The projected electronic structure in the Ba213 plane is, on
the other hand, similar to that of the bulk single-layer Ba213
as discussed in Appendix A, with a single one-dimensional
(1D) band near the Fermi level [20]. The primary d-electron
content is dx2−z2 , a linear combination of the dx2 and dz2

orbitals, for the ideal Cu-O chains along the x direction. The
40% hole doping of the single band and the strong disorder
effects associated with the oxygen vacancies and short Cu-O
chains shown in Figs. 1(a) and 1(d) are expected to lead to
disordered metallic Ba213 regions.

We thus study the compressed Ba214 as an unconven-
tional cuprate where both dx2 and dz2 orbitals in the eg

sector contribute to superconductivity. Although multiorbital
superconductivity has been studied extensively for the t2g

electrons in the iron pnictides and chalcogenides supercon-
ductors [21–25], this is rare for the eg electrons in the cuprates.
We will show that a new two-band d-wave superconductor
with antiphase pairing gaps on the two Fermi surfaces (FSs)
emerges from the multiorbital correlated electronic structure
at the high doping x = 0.4 achieved experimentally.

III. TWO-ORBITAL HUBBARD MODEL AND
ORBITAL-DEPENDENT CORRELATED STATES

To this end, we construct an effective two-orbital model
on the Cu square lattice H = Ht + HI , where Ht describes the
DFT band structure near the Fermi level and HI the electron
correlations. The model constitutes a generalized Zhang-Rice
singlet construction where the charge degrees of freedom on
the oxygen sites have been integrated out, and the Cu3+ in the
3d8 configuration includes the spin singlets of a hole (3d9) on
the Cu site and a hole (2p5) on its neighboring O sites with
compatible symmetries to the dx2 and dz orbitals [2].

TABLE II. Hopping parameters of the TB model in eV.

Hopping integral 1rd (t) 2nd (t ′) 3rd (t ′′)

Intraorbital tx −0.4968 0.0503 −0.0652
Intraorbital tz −0.2135 −0.0190 −0.0219
Interorbital txz 0.3324 0.0 0.0390

A. Two-orbital tight-binding model

Denoting a spin-σ electron in the effective dx2 - and dz2

-like orbitals by dασ with α = x, z, the tight-binding (TB)
model is given by

Ht =
∑
kαβσ

ε
αβ

k d†
kασ

dkβσ +
∑
kσ

eαd†
kασ

dkασ , (1)

where eα denotes the crystal field energy of each orbital. The
lattice structure of Ba214 belongs to the D4h point group.
The intra- and interorbital hopping can be expressed in terms
of the lattice harmonics of different symmetry. Specifically,
γk = cos kx + cos ky, αk = cos kx cos ky, and γ ′

k = cos 2kx +
cos 2ky in the A1g channel and βk = cos kx − cos ky and β ′

k =
cos 2kx − cos 2ky in the B1g channel, for up to third nearest
neighbors. The corresponding expressions for the hopping
energies in Eq. (1) are thus given by

εαα
k = −2tαγk − 4t ′

ααk − 2t ′′
αγ ′

k, (2)

εxz
k = 2txzβk + 2t ′′

xzβ
′
k, (3)

where the values of the hopping parameters are given in
Table II together with ex = 2.275 eV and ez = 3.204 eV, as
discussed in Appendix B.

The band structure of the two-orbital TB model is shown
in Fig. 2(a). It faithfully represents the low-energy DFT band
structures in Figs. 1(c) and 1(f), including the orbital content,
as a two-band system with a bandwidth W � 4eV. Since the
interorbital mixing εxz

k has B1g symmetry, the band structure
along the � → M direction is orbital diagonal. Moreover, the
interband mixing is also weak along the � → X direction
because of the large band energy separation. However, the
two bands hybridize strongly when the band energies are
close, as seen along the X → M direction. The undoped d9

configuration at x = 0 has ne = 3 electrons with the bare or-
bital occupations n0

z � 1.3 and n0
x � 1.7. For the experimental

doping level corresponding to x = 0.4, ne = 2.6 and the bare
occupations change to n0

z = 1.04 and n0
x = 1.56. There are

two FSs, one electron-like of dominant dz2 character around
the � point at the center and a much smaller holelike dx2 FS
around the M point in the Brillouin zone. We next turn to the
correlation effects beyond the band description.

B. Hubbard correlations and Gutzwiller approximation

The correlation part of the Hamiltonian HI follows the two-
orbital Hubbard model for the eg complex [26–28],

HI = U
∑
i,α

n̂iα↑n̂iα↓ +
(

U ′ − 1

2
JH

) ∑
i,α<β

n̂iα n̂iβ

− JH

∑
i,α �=β

Siα · Siβ + JH

∑
i,α �=β

d†
iα↑d†

iα↓diβ↓diβ↑, (4)
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FIG. 2. (a) Band dispersion in the TB model with color-coded or-
bital content: dx2 orbital (red and 1) and dz2 orbital (blue and 0). The
Fermi levels are marked by black (x = 0) and blue (x = 0.4) dashed
lines. (b) The hopping renormalization factor gαβ as a function of
U at x = 0, showing a Brinkman-Rice transition at Uc � 4.4 eV.
(c) Correlated band dispersion at x = 0 and U = 4.4 eV. (d) Cor-
related band structure at x = 0.4 and U = 7 eV.

where the intra- and interorbital repulsion U and U ′ are related
by the Hund’s rule coupling JH through U = U ′ + 2JH . Since
JH is small for the eg electrons, it is set as JH = 0.1U and does
not affect our results.

We next study the strong correlation effects using the mul-
tiorbital Gutzwiller projection method [29–31]: H = Ht +
HI → HG = PGHt PG, where PG is the finite-U Gutzwiller
projection operator that reduces the statistical weight of the
Fock states with multiple occupations. The projection can be
conveniently implemented using the Gutzwiller approxima-
tion [29,30] developed to study the multiorbital cobaltates
[32], Fe pnictides [31], and the monolayer CuO2 grown
on Bi2Sr2CaCu2O8+δ substrate [9]. In this approach, the
Gutzwiller projected Hamiltonian is expressed as

HG =
∑
kαβσ

gσ
αβε

αβ

k d†
kασ

dkβσ +
∑
kσ

(
eα + λσ

α

)
d†

kασ
dkασ . (5)

The strong correlation effects are described by the orbital-
dependent hopping renormalization gσ

αβ and the renormalized
crystal field λσ

α , which must be determined self-consistently
for a given electron density.

C. Orbital-polarized Mott insulator as x = 0

We first study the correlation effects in the undoped
case at x = 0. The band renormalization factors gαβ are
calculated self-consistently and plotted in Fig. 2(b) as a
function of the Hubbard U . Clearly, these band narrowing
factors are strongly orbital dependent. As U is increased, the
interorbital/interband carrier transfer ensues [32] and drives
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FIG. 3. (a) Normal state FSs at x = 0.4. (b) Anisotropic pairing
energy gaps as a function of angle θ depicted in (a) along the two
FSs around � (blue) and M (red), showing two antiphase d-wave
gap functions. (c) Total (red line) and dz2 orbital contribution (black
dashed line) to local tunneling density of states, showing two d-wave
gaps with coherent peaks. A thermal broadening of 0.5 meV is used.
(d) Variations of the larger d-wave gap as a function of U and K .

the dz2 band toward half-filling with nz = 1. As a result, the
band narrowing factors gzz and gxz reduce with increasing U
and vanish at Uc � 4.4 eV, indicating an orbital-selective Mott
transition of the Brinkman-Rice type [33]. The renormalized
band dispersions in the paramagnetic phase are plotted in
Fig. 2(c) near the transition, showing a half-filled flat dz2 band
of localized spin-1/2 moment and a wide, completely filled
dx2 band below the Fermi level. Thus, the ground state is an
orbital-polarized Mott insulator for U > Uc with the insulat-
ing gap and antiferromagnetic ordered moments originating
from the electrons in the dz2 orbital.

D. Orbital-dependent correlations: Normal state at x = 0.4

We next study the correlation effects in the hole-doped
two-orbital Mott insulator for U > Uc. First, we focus on the
normal state at large hole doping x = 0.4 relevant for the
experiments. For the conventional cuprates, the correlation
effects are significantly weakened in the overdoped regime,
consistent with doping a single-band Mott insulator [3]. The
situation changes significantly in the case of doping two-
orbital Mott insulator. To stay on the Mott-insulating side,
we choose a large on-site replusion U = 7eV, which cor-
responds to a correlation to bandwidth ratio of U/W � 1.8
typically considered for the cuprates [3,34]. Figure 2(d) dis-
plays the Gutzwiller renormalized band dispersions obtained
self-consistently for an average electron number ne = 2.6 in
the two eg orbitals, with the corresponding FSs shown in
Fig. 3(a). Interestingly, the calculated orbital occupations nz =
1.02 and nx = 1.58 are close to their bare values discussed
in Sec. III.B, reflecting the tendency of the correlations to
keep the dz2 orbital close to half-filling. As a result, the band
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renormalization effect remains strong and orbital dependent.
The strongly correlated dz2 band narrows significantly by a
factor gzz = 0.33, while the dx2 band only narrows by a factor
gxx = 0.87. Consequently, the orbital-dependent correlation
effect in the multiorbital doped Mott insulator is responsible
for the heavily hole-doped compressed Ba214 to remain as a
strongly correlated Mott-Hubbard system.

IV. TWO-BAND SUPERCONDUCTIVITY

It is thus conceivable that a two-band superconductor can
emerge from the spin and orbital superexchange interactions
of the doped two-orbital Mott insulator, even at the very
high doping level of x = 0.4. The spin-orbital superexchange
interactions are of the Kugel-Khomskii type [26,28], which
have been recently derived for the two-orbital Mott insula-
tor for the 3d Cu eg electrons [9]. In the spin-orbital basis
(dx↑, dx↓, dz↑, dz↓)T , the fermion bilinears at each site can
be represented as a tensor product T μ

i Sν
i , where Sμ

i and T μ
i ,

μ = 0, x, y, z are the identity and Pauli matrices divided by
2, acting in the spin and orbital sectors, respectively. For
example, d†

ix↓diz↑ = T +
i S−

i , where T ±
i = T x

i ± iT y
i and S±

i =
Sx

i ± iSy
i . The spin-orbital superexchange interactions can thus

be derived and written as

HJ−K =
∑
〈i j〉

[
JSi · S j +

∑
μν

IμνT μ
i T ν

j

+
∑
μν

Kμν (Si · S j )
(
T μ

i T ν
j

)]
, (6)

where the J term is the SU(2)-invariant Heisenberg spin ex-
change coupling, while the terms proportional Iμν and Kμν

describe the anisotropic orbital and spin-orbital entangled
superexchange interactions, respectively, since the orbital ro-
tation symmetry is broken by the lattice in the hopping
Hamiltonian Ht .

A. Renormalized mean-field theory and antiphase
d-wave superconducting state

In Ref. [9], it was shown that despite the orbital order in T z
i ,

i.e., 〈T z
i 〉 �= 0, induced by the crystal field, the transverse or-

bital fluctuations associated with T ±
i contribute to SC pairing.

The possible SC state can be studied using the renormalized
mean-field theory commonly applied to studying the pure
spin superexchange interaction induced superconductivity in
conventional cuprates described by the single-band t-J model
[3]. Including all spin-singlet pairing order parameters,

�
αβ†
i j = d†

iα↑d†
jβ↓ − d†

iα↓d†
jβ↑, (7)

in the spin and spin-orbit entangled quadruple exchange in-
teractions in Eq. (6), we arrive at the effective Hamiltonian
describing the SC ground states in the strongly correlated
two-orbital model,

H = PGHt PG −
∑
〈i j〉

[
Js

2

∑
αβ

�
αβ†
i j �

αβ
i j

+ K

2

∑
α �=β

(
�

αα†
i j �

ββ
i j + �

αβ†
i j �

βα
i j

)]
. (8)

The couplings (Js, K ), which are explicit but complicated
functions of tαβ , U , and JH [9], will be considered as phe-
nomenological parameters in our effective theory. Evidence
from RIXS experiments shows that the spin exchange inter-
action has an average value ∼150 meV in Ba2CuO3.2, which
can be as high as 180 meV [11], similarly to the conventional
cuprates [3]. We thus set Js = 200 meV and treat the orbital
exchange coupling K as a parameter. The emergent SC state
and its pairing symmetry can be obtained by calculating the
expectation values of the nearest-neighbor pairing fields

〈
�

αβ
i j

〉 = 1

Ns

∑
k,αβ

�αβbαβ (k)eik·(ri−r j ), (9)

self-consistently from Eq. (8) in the Gutzwiller approxima-
tion. Here Ns is the number of lattice sites and bαβ (k) the
symmetry form factors in the D4h point group of the crystal.
Specifically, bαα (k) = γk and bxz(k) = βk in the A1g channel,
and bαα (k) = βk and bxz(k) = γk in the B1g channel.

Remarkably, the ground state is found to be a prominent
superconductor with B1g symmetry at the high doping con-
centration x = 0.4 relevant for the experiment. In Figs. 3(a)
and 3(b), the obtained gap functions at K = 80 meV are plot-
ted along the two FSs. They exhibit a two-band antiphase
d-wave structure with four gap nodes on each FS and an
overall sign change between the two FSs. This is a strong
coupling d±-wave analogy of the proposed s± gap function
in Fe-based superconductors. This new mechanism of doping
an orbital-selective Mott insulator in the two-band unconven-
tional cuprate is crucial for the emergent high-Tc SC state in
the highly overdoped region. The close to half-filled, strongly
correlated dz2 band is responsible for the large pairing gap
(∼25 meV). The highly overdoped wider dx2 band develops
a smaller (∼9 meV) antiphase gap and boosts the super-
fluid density for the phase coherence. To probe the basic
spectroscopic properties of the novel two-band d-wave super-
conductor, we calculate the orbital resolved local tunneling
density of states,

Nα (ω) =
∑
kσ

Im
∫ β

0
eiωτ 〈Tτ dkασ (τ )d†

kασ
(0)〉. (10)

The total local density of states N (ω) = Nx(ω) + Nz(ω) and
the Nz(ω) are plotted in Fig. 3(c), showing the mixing of
two d-wave gap structures with the dominant spectral weight
coming from the dz2 band.

Our results show that the ground state at x = 0.4 is always
the antiphase d-wave SC state in the explored parameter space
of the Hubbard U and the orbital exchange interaction K .
Fig. 3(d) shows the map of the larger d-wave gap magnitude
in the (K,U ) plane. The lower limit of U is chosen to be
close to Uc of the Mott transition, so that our model describes
the doped two-orbital Mott insulator. Note that the gap is
appreciable for U > 5.5 eV even if K = 0. Such a strongly
correlated two-band superconductor can provide both a siz-
able pairing amplitude and a substantial superfluid density,
which together control the high-Tc superconductivity in doped
Mott insulators [3]. It is thus conceivable that this mechanism
provides an explanation for the nearly doubled Tc compared
the isostructural single-band La214.
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B. Renormalization group analysis for superconductivity
and density wave orders

The strong-coupling results can be further supported by
direct weak-coupling renormalization group (RG) studies of
the two-orbital Hubbard model defined in Eqs. (1) and (2).
This will also allow us to study the competition among su-
perconducting instabilities of different pairing symmetries as
well as instabilities toward spin or charge density waves in
a unbiased manner. Indeed, the model at x = 0.4 has two
rounded squarish FSs centered at � and M points of the Bril-
louin zone as shown in Fig. 3(a). The nearly parallel sections
of the FSs raise the issue of competing instabilities involving
incommensurate density waves in addition to superconduc-
tivity. In metals with nested FS sections, incommensurate
spin density wave (SDW) or charge density wave (CDW) can
become the ground state. However, in the presence of pairing
interactions, the ground state is usually a superconductor since
it is more effective at gapping out the entire FS by developing
the SC gap. For example, although an SDW instability is
present for a single idealized square FS with perfect nesting,
careful RG studies have shown that the rounding of its corners
causes d-wave superconductivity to be the leading instability.
The ground state is therefore a superconductor and the SDW
fluctuation only plays a role at intermediate energy scales or
at elevated temperatures [35,36].

For our highly overdoped two-orbital Mott insulator, the
two rounded square FSs in Fig. 3(a) are very different in
size, leading to two very different nesting vectors Q1 and
Q2 connecting the flat sections of the FSs. As a result, the
incommensurate SDW and CDW with either Q1 or Q2 are
further frustrated since they cannot gap out all the FSs and
are thus energetically unfavorable than the SC states that can
gap out both FSs entirely. The SC state usually emerges with
the d-wave symmetry because the large AF fluctuations near
(π, π ) mediate a repulsive interaction in the pairing channel.
Hence the nontrivial solution of the gap function to the BCS
gap equation would change sign along the FS, gapping out
the latter except for a set of measure-zero d-wave nodes. In
this subsection, we elaborate on this point by performing an
RG analysis [24,35–39] for the leading instability of the two
FSs. The RG results concretely demonstrate that, even for
two perfectly square FSs of very different areas, the leading
instability is indeed toward the antiphase d-wave supercon-
ductivity and the density waves are subleading, which further
support the prediction of the strong coupling theory. Note
that the situation changes when the areas of the two FSs are
comparable and close to being nested by the wave vector
(π, π ). Nodeless s-wave pairing can become the dominate SC
state, where the sign of the s± gap function changes across the
two FSs. This situation happens at much higher doping where
the Cu is close to the d8 configuration and will be discussed
in the next subsection.

To this end, we approximate the two FSs in Fig. 3(a) by
two perfectly square FSs around � and M points, respec-
tively, as shown in Fig. 4(a). The eight flat sections of the
FSs are represented by 8 patches in the RG [24,37] marked
by the solid and dashed circles on the FS around � and
by the solid and dashed triangles on the FS around M. On
each FS, the two parallel sections are related by inversion,

(d)

(c)

g
3

g
1

(Q1,0)

(b)

g
2

(0,Q1)

(a)

g
u//

g
u┴

Γ

Μ

FIG. 4. (a) The two FSs (solid squares) inside the first BZ
(dashed square). Circles and triangles denote the eight patches,
each representing one flat section of the FS. The inter-FS coupling
gu‖ (green arrows) describes the pair scattering between two same
colored patches (circles and triangles), while gu⊥ (orange arrows)
describes the pair scattering between two different colored patches.
(b) The intra-FS coupling g1 describes the backward scattering of
electrons between solid and dashed patches. The red line indicates
the (Q1, 0) nesting vector. (b) g2 describes the forward scattering of
electrons on the solid and dashed patches. The red line indicates the
the (0,Q1) nesting vector. (c) g3 describes the scattering of electrons
between black and blue patches.

or inversion followed by translation by a reciprocal lattice
vector. They introduce the nesting vectors (Q1, 0), (0, Q1),
and (Q2, 0), (0, Q2), respectively, with Q1 > Q2. Hence,
besides the logarithmical divergent Cooper susceptibility
χ

pp
0 (q) at q = (0, 0), the particle-hole susceptibilities χ

ph
0 (q)

at the nesting vectors q = (Q1,2, 0) and q = (0, Q1,2) also
diverge.

The couplings in the eight-patch model can be classified
into the intra-FS and inter-FS couplings. For the intra-FS
scattering, there are three relevant coupling constants g1, g2,
and g3 as shown in Figs. 4(b)– 4(d). The remaining couplings
turn out to be irrelevant here [38]. For the inter-FS scattering,
since Q1 �= Q2, the coupling constants in the particle-hole
sector related to SDW and CDW associated with each FS do
not couple. Thus, only the q = 0 Copper channel is divergent.
The relevant coupling is the pair scattering gu between the two
FSs [24], which is an Umklapp process with momentum trans-
fer (2π, 2π ) of the reciprocal lattice vector. We decompose
gu into gu‖ [green arrows in Fig. 4(a)] between two parallel
patches and gu⊥ [orange arrows in Fig. 4(a)] for two patches
that are perpendicular. This allows us to account for both the
in-phase and antiphase pairing gap functions on the two FSs.
The effective coupling constants in the CDW, SDW, antiphase
d-wave paring (dSC±) and s-wave paring (sSC±), and in-
phase d-wave pairing (dSC++) and s-wave pairing (sSC++)
channels can all be expressed in terms of the couplings gi. We
obtain

�
(Q1,0)
CDW = g2 − 2g1

�
(Q1,0)
SDW = g2

(11)
�

(Q2,0)
CDW = �

(0,Q2 )
CDW = �

(0,Q1 )
CDW = �

(Q1,0)
CDW

�
(Q2,0)
SDW = �

(0,Q2 )
SDW = �

(0,Q1 )
SDW = �

(Q1,0)
SDW
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Γ/
g 0

FIG. 5. The RG flow of the effective couplings (�’s) normalized
by a scaling factor g0. (a) Comparison of the RG flow of antiphase
d-wave superconductivity (�±

dSC) (red) to those associated with den-
sity waves: the SDW [�(Q1,0)

SDW ] (blue) and CDW [�(Q1,0)
CDW ] (black).

(b) Comparison of the RG flow of antiphase d-wave superconduc-
tivity (�±

dSC) (red) to other superconductivity channels: In-phase
d-wave superconductivity (�++

dSC) (green), antiphase s-wave super-
conductivity (�±

sSC) (orange), and in-phase s-wave superconductivity
(�++

sSC) (dark green). The initial dimensionless coupling constants are
g1 = g2 = 1.0, g3 = 1.0, gu‖ = 1.3, gu⊥ = 1.0, and α = 0.8. Panels
(a) and (b) show that the antiphase d-wave pairing is the leading
instability.

in the particle-hole density wave channels and

�±
dSC = g1 + g2 − 2g3 − (gu‖ − gu⊥)

�++
dSC = g1 + g2 − 2g3 + (gu‖ − gu⊥)

(12)
�±

sSC = g1 + g2 + 2g3 − (gu‖ + gu⊥)

�++
sSC = g1 + g2 + 2g3 + (gu‖ + gu⊥)

in the particle-particle pairing channels.
Evaluating the corresponding Feynman diagrams involving

the divergent susceptibilities χ
pp
0 and χ

ph
0 , we obtain the cou-

pled RG flow equations for the coupling constants to leading
order [24,37],

dg1

dy
= −2g1g2 − 2g2

3 + 2αg1(g2 − g1) − 2
(
g2

u‖ + g2
u⊥

)
dg2

dy
= −(

g2
1 + g2

2

) − 2g2
3 + αg2

2 − 2
(
g2

u‖ + g2
u⊥

)
dg3

dy
= −2g3(g1 + g2) − 4gu‖gu⊥ (13)

dgu‖
dy

= −2(g1 + g2)gu‖ − 4g3gu⊥

dgu⊥
dy

= −2(g1 + g2)gu⊥ − 4g3gu‖,

where y = χ
pp
0 is the RG flow parameter, and α = χ

ph
0 /χ

pp
0 is

the ratio of the bare susceptibilities in the Cooper channel and
particle-hole channel, which is generally smaller than unity.
The instability of the system can be obtained by integrating
the RG equations in Eqs. (13) for the flow of the coupling
constants. The calculated RG flow of the effective coupling
constants �� for different density waves in Eqs. (11) and
for different pairings in Eqs. (12) are shown in Fig. 5 for
generic repulsive interactions with initial values g1−3 > 0. A
positively divergent effective coupling constant in the density
wave channel and a negatively divergent effective coupling
constant in the pairing channel indicate the instability of the
FSs. The instability temperature T� for developing each order

can be defined by the condition of a nonzero solution in the
corresponding linearized equation for the order parameter,

leading to T� ∼ εF e− 1
|�� | [24]. The leading instability, which

determines the true instability of the system, is given by the
channel that has the highest instability temperature, i.e., the
most divergent interaction �� under the RG flow.

In the RG approach, the pairing interactions are mediated
by the electronic fluctuations. Fig. 5(a) shows that under the
RG flow, the mediated pairing interaction in the antiphase
d-wave pairing channel diverges faster than those in the CDW
and SDW channels. Different from a single idealized square
FS favoring a leading SDW instability [35], the presence of
the second square FS enables the inter-FS scattering described
by gu‖ and gu⊥ to greatly enhance �±

dSC, allowing the antiphase
d-wave SC instability to win over the density wave instabil-
ities as revealed in Fig. 5(a). In Fig. 5(b) we compare the
RG flow in the different pairing channels. Since gu‖ > gu⊥
due to the large scattering density of states connecting the
parallel sections in Fig. 4(a), the antiphase d-wave pairing
(�±

dSC) also wins over the in-phase d-wave and the s-wave
pairings to become the leading SC instability as can be seen
from the RG flows in Fig. 5(b). Thus the RG analysis shows
that the ground state in the two-orbital model at x = 0.4 is
a two-band d±-wave superconductor, in agreement with the
strong-coupling results discussed above.

C. Antiphase s-wave superconducting
state near Cu d8 configuration

Finally, we summarize our findings on the SC state of the
two-band Hubbard model at even higher hole doping con-
centrations. To this end, the δ-oxygen density is increased to
δ = 0.45, corresponding to a hole doping x = 0.90 currently
unreachable in the high-pressure experiments on Ba2CuO3+δ ,
where the copper valence is close to the d8 configuration.
Carrying out the strong coupling renormalized mean-field
theory, we found that the ground state changes to a differ-
ent SC state of A1g symmetry with a two-band antiphase
s± gap function. Indeed, this two-band nodeless SC state
has been proposed recently [9] for the monolayer CuO2

grown on Bi2Sr2CaCu2O8+δ substrate [10] as electron-doped
two-orbital AF Mott insulator associated with the Cu d8 con-
figuration.

We have subsequently carried out the weak-coupling RG
analysis of the two-band Hubbard model close to the Cu d8

configuration. At x = 0.9, the electron-like FS around the
� point is comparable in size to the holelike FS around
the M point. As a result, the inter-FS particle-hole scatter-
ing increases significantly and plays a key role in realizing
an emergent s-wave SC state with an s± pairing gap func-
tion, consistent with the prediction of the strong-coupling
renormalized mean-field theory. This finding is in qualitative
agreement with the SC state obtained using the weak-coupling
random-phase approximation for a related two-band Hubbard
mode at x = 0.9 [40]. Moreover, the result of the RG analysis
is analogous to that obtained in weak-coupling studies of the
multiorbital Fe-based superconductors [21–24].

This prediction of nodeless antiphase s-wave superconduc-
tor near the Cu d8 configuration in unconventional cuprates
awaits future materials realization. High-pressure growth of
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cuprates in strong oxidation environment, such as the realiza-
tion of Ba2CuO3+δ , may present a promising path.

V. SUMMARY AND DISCUSSION

We presented a theoretical description of the atomic and
electronic structure, and the emergence of high-Tc super-
conductivity in the newly discovered 73K unconventional
cuprates Ba2CuO3+δ at δ = 0.2 [8]. The key difference to
the conventional cuprates is the high pressure and oxygena-
tion growth stabilized polycrystals that are isostructural to
La214, but with an the inverted crystal field due to the com-
pressed octahedron that liberates the dz2 orbital in addition to
the dx2 orbitals, realizing a highly hole overdoped (x = 0.4)
d9 configuration. This is complimentary to the monolayer
CuO2 grown on Bi2Sr2CaCu2O8+δ substrate [10], where the
liberation of the dz2 orbital and nodeless antiphase s-wave
superconductivity was argued to arise from the crystal field
of the unbalanced octahedron and the heavy carrier doping
through the interface carrier transfer that realize an unconven-
tional state near the Cu d8 configuration [9].

Constructing a minimal two-orbital Hubbard model using
the DFT band structure, we studied the compressed Ba214
with inverted dz2 and dx2 orbitals both in the undoped case
with three electrons and in the heavily overdoped region. We
found that the correlated electronic states can be described by
a doped orbital-polarized Mott insulator and a novel two-band
high-Tc supercondcutor with d±-wave gap functions emerges
through the spin and orbital exchange interactions. The multi-
band and the orbital-dependent correlations are crucial for
achieving the high-Tc superconductivity observed at a high
doping near x = 0.4, in contrast to the conventional single-
band cuprates. The basic prediction of the dz2 orbital libration
and the two-band superconductivity should be amenable to
experimental tests for two pairing gaps in the heat capacity,
NMR, and tunneling measurements.

These central results on the two-band antiphase d-wave SC
state do not depend on specific realizations of the SC Ba214
regions in Ba2CuO3+δ . Even if the entire sample were viewed
as compressed Ba214 with randomly distributed oxygen va-
cancies in the plane, one would arrive at the same conclusion
if the disorder effects of the significant oxygen vacancies can
be ignored. However, it is known that the high density of such
in-plane oxygen vacancies can be destructive for supercon-
ductivity in the cuprates. The proposed structures in Figs. 1(a)
and 1(c) have the advantage of avoiding significant oxygen
vacancies in the superconducting Ba214 regions. Accordingly,
Ba2CuO3+δ may exhibit features of granular superconductiv-
ity [41–43], with grain sizes larger than the short coherence
length ξ . Taking the SC gap � ∼ 25 meV, we estimate ξ =
h̄vF /π� ∼ 1 nm using the renormalized bands. In this case,
the Josephson-coupled SC grains stabilize a macroscopic
phase-coherent SC state [44,45]. The significant flux penetra-
tion revealed by the magnetization measurements, the ∼30%
SC volume fraction from the dc susceptibility and μSR, and
the broad specific heat anomaly in the current experiments [8]
are consistent with this picture. While further experimental
and theoretical studies are necessary, the present theory offers
a conjecture that the 73K Ba2CuO3+δ highlights a class of
unconventional cuprates, including the high-pressure grown

95K Sr2CuO3+δ and 84K Cu0.75Mo0.25Sr2YCu2O7.54 [46–49],
as a possible route toward higher Tc by utilizing the electrons
partially occupying both of the copper eg orbitals.
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APPENDIX A: DENSITY-FUNCTIONAL
THEORY CALCULATIONS

Our calculations are performed using DFT employing the
projector augmented wave method encoded in the VASP
[15–17]. Generalized-gradient approximation [18] for the ex-
change correlation functional is used. Throughout the work,
the cutoff energy is set to be 500 eV for expanding the
wave functions into plane-wave basis. In the calculation,
the Brillouin zone (BZ) is sampled in the k space within
Monkhorst-Pack scheme [19]. On the basis of the equilibrium
structure, the k mesh used is 10 × 10 × 4.

In our DFT calculations, we adopt the experimental pa-
rameters listed in Table I, which are extracted from the
supplemental section in Ref. [8], and use the stoichiometric

FIG. 6. (a) Crystal structure of Ba2CuO4. (b) Effective molecular
orbital through hybridization between the Cu dz2 orbital and apical
oxygen pz orbital. Right side is the schematic molecular orbital
φ1. (c) Orbital-resolved DFT band structure for compressed Ba214
calculated using the structural parameters in Table I.
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FIG. 7. (a) Crystal structure of Ba2CuO3 with Cu-O chains along
the x direction. (b) The Fermi surface of Ba2CuO3. (c) Orbital-
resolved DFT band dispersions.

formula Ba2CuO4 (Ba214) and Ba2CuO3 (Ba213), whose
crystal structures are shown in Figs. 6(a) and 7(a). The cal-
culated band structures are shown in Figs. 6(c) and 7(c) for
Ba214 and Ba213, respectively. Note that the convention of
the BZ using the BCO primitive unit cell is slightly different
than the normal cuprates convention. To be consistent with
studies of other cuprates, we use the common conventions for
the cuprates. As can be seen from Fig. 7, Ba213 has 1D Cu-O
chain planes. We choose the Cu-O chain to be along the x
direction. As a result, the hopping in the y direction is greatly
reduced due to the lack of the oxygen in the Cu-Cu bond,
leading to a 1D band with two 1D Fermi surface sections
shown in Figs. 7(b) and 7(c). These are consistent with the
calculations in Ref. [20].

As discussed in the main text, we also studied a bilayer
structure with alternating Ba213 and Ba214 planes shown in
Fig. 8(a). The orbital-resolved electronic band dispersions in
the Ba214 CuO2 plane are shown in Fig. 8(b), which are
very similar to those of the compressed single-layer Ba214
[Fig. 6(c)]. Moreover, the orbital-resolved band dispersions
projected to the Ba213 Cu-O chain plane shown in Fig. 8(c)
closely follow those of the bulk Ba213 [Fig. 7(c)].

APPENDIX B: ORBITAL CONSTRUCTION
AND TIGHT-BINDING MODEL PARAMETERS

To construct an effective model describing the band struc-
tures near Fermi level, we can analyze orbital characters of
the electronic structure. The dx2−y2 orbital mixed with the
anti-symmetric combination of the in-plane oxygen px and
py orbitals is similar to the Zhang-Rice singlet of common
cuprate contributing a hole pocket around the M point. Due to
the compressed octahedron, the dz2 orbital strongly hybridizes
with the pz orbital from the top apical oxygen (OA) and bottom
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FIG. 8. (a) Crystal structure of Ba213/Ba214 bilayers corre-
sponding to Ba2CuO3.5. (b) Orbital-resolved band dispersions in the
CuO2 plane (Ba214). (c) Orbital-resolved band dispersions in the
chain plane with Cu-O chains along the x direction (Ba213).

apical oxygen (OB), as shown in the left-hand side of Fig. 6(b).
One can consider a local molecular model describing this
hybridization. Taking pA

z , dz2 , pB
z as the basis, the effective

Hamiltonian of the molecular model can be written as

Hlocal =
⎛
⎝ε1 t 0

t ε2 −t
0 −t ε1

⎞
⎠, (B1)

where ε1 and ε2 are the on-site energies of the pz and dz2

orbitals and t is the hopping parameter between pz and dz2

orbitals. The eigenvalues of Eq. (B1) can be found as

E1 = 1
2 [ε1 + ε2 +

√
8t2 + (ε1 − ε2)2]

E2 = ε1

E3 = 1
2 [ε1 + ε2 −

√
8t2 + (ε1 − ε2)2]. (B2)

The corresponding eigenvectors are

φ1 = −pA
z + pB

z − 1

2t
[−ε1 + ε2 +

√
8t2 + (ε1 − ε2)2]dz2

φ2 = pA
z + pB

z

φ3 = −pA
z + pB

z − 1

2t
[−ε1 + ε2 −

√
8t2 + (ε1 − ε2)2]dz2 .

The schematic molecular orbital φ1 is plotted in right side of
Fig. 6(b). From Fig. 6(c), we can also find that φ1 and φ3

are located around Fermi level and −4.5eV respectively. φ2 is
entirely attributed to OA/B-pz orbitals and distributes around
−2.6eV. Hence, φ1 with the dz2 -like bonding orbital and
Zhang-Rice singlet with the dx2 -like bonding orbital dominate
the electronic structure around the BCO Fermi level.
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Based on the DFT results and orbital fields, we construct
a two-orbital TB model of Cu eg complex for the BCO. The
Hamiltonian is given in Eq. (1) in the main text. Denoting dασ ,
α = x(dx2 ), z(dz2 )

Ht =
∑
kσ

εxx
k d†

kxσ dkxσ +
∑
kσ

εxz
k (d†

kxσ dkzσ + H.c.)

+
∑
kσ

εzz
k d†

kzσ dkzσ +
∑
kσ

eαd†
ασ dασ , (B3)

where ε
αβ

k is the kinetic energy due to intra- and interorbital
hopping, and eα is the on-site energy of dz2 and dx2 orbitals.

Up to third-nearest-neighbor hopping, we have

εxx
k = −2txγk − 4t ′

xαk − 2t ′′
x γ ′

k

εzz
k = −2tzγk − 4t ′

zαk − 2t ′′
z γ ′

k (B4)

εxz
k = 2txzβk + 2t ′′

xzβ
′
k,

where the intraorbital hopping involves lattice harmon-
ics of A1 symmetry γk = cos kx + cos ky, αk = cos kx cos ky,
and γ ′

k = cos 2kx + cos 2ky, and the interorbital hopping in-
volves B1 harmonics βk = cos kx − cos ky and β ′

k = cos 2kx −
cos 2ky. The hopping parameters for the first- (t), second-
(t ′), and third- (t ′′) nearest neighbors are listed in Table II.
The on-site energy of dx2 and dz2 are ex = 2.275 eV and
ez = 3.204 eV.
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