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The electron-phonon interaction is fundamental to many physical and chemical processes. The ab initio
computation based on modern many-body Green’s function (MBGF) theory can be used to accurately calculate
the properties of matters including the electron-nucleus coupling of bulk materials and nanocrystals. Yet it is
hard to find reports of computed electron-phonon interaction and phonon-assisted dynamics of electrons and
excitons in nanocrystals using MBGF theory without any input of semiempirical parameters. We establish a
computationally executable approach for modeling electron-phonon and exciton-phonon interaction under the
framework of the GW Bethe-Salpeter equation in semiconductor nanoclusters. We computed both nonradiative
relaxation and inelastic scattering of electrons and excitons, and uncovered that both single-phonon relaxation
and multiple-phonon relaxation are significant for nonradiative relaxation of electrons and excitons in nanocrys-
tal of Si46, and the two relaxations correspond to two types of physical processes that have totally different
spectral line shapes, respectively. The inelastic scattering decay is a primary decay mechanism for multiexciton
relaxation. The computed single-phonon and multiphonon nonradiative relaxation rates in Si46 are between 1
and 1000 fs for different excitonic energies, which is consistent with experimental results reported for similar
nanocrystals.
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I. INTRODUCTION

Dynamics of electrons and excited carrier relaxation in
semiconductor nanocrystals is fundamental to many physical
and chemical processes. Such a process is photoexcitation,
where absorption of a sufficiently high-energy photon in semi-
conductors initially promotes an electron from the valence
band to the conduction band, and creates an electron-hole pair
or quasiparticle or hot carrier. Hot carriers could be cooled
quickly by losing energy through interacting with the host
matrix or the lattice phonons. Because of strong electrons
and carriers’ interaction in nanocrystals (NCs), hot electrons
in the conduction band or holes in the valence band also
undergo inelastic scattering and promote another electron in
the valence band to the conduction band, in a way similar to
impact ionization. This is the so-called multiplication (CM) or
multiexciton generation (MEG). The thus produced multiex-
citon, including a biexciton, two electron-hole pairs, or a pair
of quasiparticle and trion, can relax by Auger recombination
among biexcitons and between trions and electron/hole back
into single excitons. Experiments have also demonstrated that
electron-phonon interaction participates in the electron relax-
ation in nanocrystals [1].

In a series of experimental and mechanistic investigations,
Spoor and co-workers [2–4] showed that both the CM rate
and the phonon emission rate are energy dependent; the CM
rate constant is about 0.3–0.7 ps−1, and the phonon emission
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rate is about 147–174 ps−1 for PbSe NCs and the photoexci-
tation energy range studied. Klimov and co-workers proposed
an earlier two-competing energy relaxation mechanism for
carrier multiplication to describe their experiments [5]. They
suggested that the CM efficiency is set by two competing
relaxation pathways of impact-ionization-like scattering and
non-CM relaxation due to phonon emission.

By using a multidimensional coherent spectroscopy, Cun-
diff and co-workers [6] performed a direct probe of exciton-
phonon coupling in colloidal quantum dots. They found that
spectral diffusion of exciton resonances in the quantum dots
is strongly modified in the presence of coupled vibrational
excitation.

Theoretically, however, it was still lack of a reliable
description of the major mechanisms of the carrier thermal-
ization in NCs as pointed out by Efros and co-workers [7].
In their recent papers [8,9], they reported experimental and
computational results for dynamics of intraband and interband
Auger processes in NCs. They argued that “normal” cooling
through the emission of a phonon is impossible because there
are no phonon modes of sufficiently high energy to bridge the
separation between the conduction band levels. Instead, hot
electron cooling was mainly due to its Auger coupling with
the hole, where the hot electron transfers the relaxation energy
to a valence band hole, and the hole then rapidly cools down
to the top of the valence band by emission of phonons [8–10].

A more fundamental approach for the phonon’s effect
on electron relaxation dynamics is first-principle based.
Prezhdo and co-workers have applied the time-dependent
density function theory (TDDFT) to model a suite of
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NCs and studied the MEG dynamics including light-matter
interaction, phonon-induced dephasing and electron relax-
ation, and reverse Auger recombination [11–14]. TDDFT,
however, can only be used to compute very small nanoclusters
and for a short duration of the dynamic processes because
of the massive CPU demanded by TDDFT. Actually, it can
be seen that their modeling has not reached steady state.
For example, the SE (single exciton) population still rapidly
decays after a duration of 3 ps of modeling as shown in Ref.
[11]. Therefore it should be cautioned that when the results
are used to evaluate the performance of an MEG-based device,
which is the net effect of photoexcitation under steady state.
Additionally, in the TDDFT computation single-electron
Kohn-Sham (KS) orbitals are generally adopted. TDDFT is
actually TDKS under the framework of one-particle represen-
tation, and TDKS often fails for charge-transfer excited states,
multiple excitations, and avoided crossings [15–17].

An alternative approach to model the effect of phonon
emission to electron or MEG dynamics is the ab initio GW
Bethe-Salpeter equation (BSE). The GW can be used to accu-
rately calculate electronic structures, and the BSE explicitly
includes the exchange and dynamic screened Coulomb in-
teraction between two particles; it is the standard for the
simulation of excitons in bulk materials. Louie and co-
workers have applied the approach to model the effects of
doping on excitons and carrier lifetimes [18], hot carrier ther-
malization in bulk silicon under sunlight illumination [19],
and singlet fission in solid pentacene [20]. Based on GW BSE,
Rabani and co-workers modeled MEG in semiconductor NCs
with input parameters from experimental phonon self-energy
[21], MEG efficiency in nanorods within the static screen-
ing approximation and with semiempirical dielectric constant
input [22], and Auger recombination in semiconductor NCs
[23].

In our previous research, we developed a GW BSE ap-
proach for direct modeling of energies and lifetimes of
electrons and excitons in small silicon nanoclusters and
quasiparticle lifetimes in magnesium clusters [24,25]. In the
modeling, an initially excited electron naturally transfers part
of its energy above the band gap to another electron and
promotes it to the conduction band, which produces another
exciton, thus forming a biexciton. Approximations including
the Tamm-Dancoff are made to enable calculability of BSE
without use of any input parameter. Self-consistency of the G
function and reduced polarizability are considered. Our mod-
eling for silicon nanoclusters has been verified by comparing
the computed ionization potential and optical absorption spec-
tra with experiments.

Reviewing the existing literature, one can find that the con-
troversy about the contribution of phonon emission to MEG
in NCs still remains, though more new experiments confirm a
fast phonon-dominant pathway. A theory or simulation that
can clarify the phonon related processes in NCs is highly
needed.

Nevertheless electron-phonon and exciton-phonon have
been extensively studied in an ab initio manner. Some related
works from the literature are reviewed herein. Piryatinski
and Velizhanin developed an exciton scattering model for
the CM dynamics [26]. Yet the model has not found any
application in modeling. By assuming that the eigenstates

of excitons are a linear combination of electron-hole pairs,
Marini derived equations for temperature dependence of the
excitonic energies, and nonradiative excitonic lifetime, which
were used to explain optical absorption spectra of bulk silicon
and hexagonal boron nitride [27]. Marini and colleagues later
on developed an electron-phonon interaction theory based on
many-body perturbation formalism [28]. The complication
of the formula, however, makes it too difficult to execute
numerical computation or modeling. Recently, Antonius and
Louie developed a theory for the exciton-phonon coupling
[29], whose application in modeling has not been reported yet.

Some review papers have well documented the progress in
the field of electron-phonon interaction and phonon-assisted
dynamics of electrons and excitons in NCs [30–31]. Summa-
rizing the above studies, one can find that ab initio (without
any semiempirical parameter input), GW BSE based formulas
and corresponding approach, that are computationally exe-
cutable, are yet to be developed for accurate and feasible
calculations for electron-phonon interaction and exciton-
phonon interaction in semiconductor NCs.

The goal of this research is to contribute such an effort
to lay out a fundamental understanding for phonon effect
on exciton relaxation, more specifically for singlet exciton
relaxation with the presence of phonon emission. Based on
our previous GW -BSE modeling for quasiparticle and exciton
lifetimes in nanostructures, electron-phonon and exciton-
phonon interactions are formulated and modeled that are
computationally executable under the framework of the GW
BSE approach. In this paper the phonon effect is computed
with two-particle representation; i.e., the excitonic states are
treated as interacting electrons and holes. We find that both
single-phonon and multiple-phonon effects are major path-
ways for exciton and MEG dynamics in the semiconductor
NCs studied. It also shows that the inelastic scattering decay
is a major decay mechanism, and the nonradiative relaxation
rates are larger than the inelastic scattering rates for most
excitonic states in Si46.

II. METHODOLOGY

A. Many-body Green’s function theory and inelastic
scattering rates

Formulas and approaches for the computation of quasipar-
ticle lifetimes and inelastic scattering (carrier multiplication)
rates in nanoclusters have been reported in our previous papers
[24,25]. For the completeness of the present paper, a brief de-
scription for many-body Green’s function theory is presented
herein.

1. Quasiparticle excitation

The electronic energies of a many-body system can be
obtained by solving the quasiparticle (QP) equation,

(T + Vext + VH )ϕi(r) +
∫

dr′ ∑
xc

(r, r′; Ei )ϕi(r′) = Eiϕi(r),

(1)
where T is the kinetic energy operator, Vext the external po-
tential, VH the Hartree potential, Ei and ϕi the energy and
wave function of the ith QP, and �xc(r, r′; Ei ) the exchange-
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correlation self-energy operator. The QP equation is solved
based on the results of the density functional theory (DFT),

(T + Vext + VH )ϕi(r) + Vxc(r)ϕi(r′) = εiϕi(r), (2)

where εi and ϕi are the eigenvalue and eigenfunction of
the ith Kohn-Sham (KS) particle, respectively, and Vxc(r) is
the exchange-correlation potential. With the assumption that
the KS eigenfunctions agree well with the QP wave functions
in most cases, QP energies are usually solved with the pertur-
bative method to the first order,

〈ϕi|
∑

xc

(r, r′; Ei )|ϕi〉 − 〈ϕi|Vxc(r)|ϕi〉 = Ei − εi. (3)

According to Hedin’s equations [32], �xc = ih̄GW �,
where Г is the vertex function and G is the one-particle
Green’s function,

G(r, r′; E ) =
∑

n

ϕn(r)ϕn(r′)
E − En + iηn0+ . (4)

The coefficient ηn is +1 for unoccupied states and −1 for
occupied states. W is the screened Coulomb interaction which
can be written as

W = V + V �V, (5)

where V (r, r′) is the Coulomb interaction, and �(r, r′; E )
is the reducible polarizability and can be expressed as the
summation of well-defined resonant modes [33],

�(r, r′; E ) = 2
∑

s

ρs(r)ρ∗
s (r′)

[
1

E − (ωs − i0+)

− 1

E + (ωs − i0+)

]
, (6)

where

ρs(r) =
∑
v,c

Rs
v,cϕ

∗
v (r)ϕc(r) (7)

is the particle-hole amplitude for the sth particle-hole excita-
tions. The eigenvectors Rsρ

v,c and eigenvalues ωs are obtained
by solving the equation � = P + PV �, where P = −iGG�

is the irreducible polarizability. Both �xc and � (or W )
include the vertex function Г. It has been shown that a
consistent choice of Г is necessary for the QP calculation.
In this paper, � is obtained by solving the equation � =
1 + (∂�0/∂G)GG� in the framework of the local density
approximation (LDA), which is equivalent to the time-
dependent LDA (TDLDA) for � and GW � for �xc. The
self-energy term 〈ϕi|�xc|ϕi〉 in Eq. (3) can be separated into an
energy-independent exchange part 〈ϕi|�x|ϕi〉 and an energy-
dependent correlation part 〈ϕi|�c|ϕi〉. The latter is evaluated
as [34] 〈ϕi|�c(r, r′; E )|ϕi〉 = ∑

n

∑
s

an,s,i

E−En−ωsηn
, where an,s,i

equals 2〈ϕiϕn|(V + fxc)|ρs〉〈ρs|V |ϕiϕn〉 in the GW � imple-
mentation.

The imaginary parts of the QP energies can be ob-
tained by applying analytical continuation of �xc(r, r′; E )
in the complex energy plane, and the complex QP energy
Ei − iηiγi is calculated by solving a complex equation set

numerically,

Re〈ϕi|
∑

xc

(Ei − iηiγi)|ϕi〉 − 〈ϕi|Vxc|ϕi〉 = Ei − εi, (8a)∣∣∣∣∣Im〈ϕi|
∑

xc

(Ei − iηiγi )|ϕi〉
∣∣∣∣∣ = γi, (8b)

where γi is the inelastic scattering rate of the ith QP because
of electron-electron interaction.

2. Electron-hole interaction and the Bethe-Salpeter equation

An excitonic state of a system with N electrons essentially
involves two particles, which can be investigated by the Bethe-
Salpeter equation (BSE) [35–37],

L(1, 2; 1′, 2′) = G(1, 2′)G(2, 1′) +
∫

d (33′44′)G(1, 3)

× G(3′, 1′)�(3, 4′; 3′, 4)L(4, 2; 4′, 2′), (9)

where L(1, 2; 1′, 2′) is the two-particle correlation function.
In Eq. (9) an integer label is assigned to a set of space, spin,
and time variables, namely, (1) = (x1, t1) = (r1, σ1, t1). The
integral kernel � can be approximated as [37]

�(3, 4′; 3′, 4) ≈ −iδ(3, 3′)δ(4+, 3′)V (3, 4)

+ iδ(3, 4)δ(3′, 4′)W (3+, 3′). (10)

Thus the BSE Eq. (9) can be converted to a complex eigen-
value problem,

[(Ec − iγc) − (Ev + iγv )]Aq
vc +

∑
v′,c′

Aq
v′c′

(
Kx

vcv′c′ + Kd
vcv′c′

)
= (�q − i�q) Aq

vc, (11)

where γc and γv are damping rates of electrons and holes,
respectively, and �q and �q on the right-hand side of Eq. (11)
are, respectively, the excitation energy and the imaginary en-
ergy or the inelastic scattering rate of the qth exciton [25]. In
this paper, only singlet excitations are considered, and thus
the exchange term is Kx

vcv′c′ = 2〈ϕvϕc|V |ϕv′ϕc′ 〉. The direct
interaction term Kd

vcv′c′ can be calculated as

Kd
vcv′c′ = −〈ϕvϕv′ |V |ϕcϕc′ 〉

−�s

{(
1

�q − i�q − ωs − (Ec′ − Ev )

+ 1

�q − i�q − ωs − (Ec − Ev′ )

)
×(〈ϕvϕv′ |V |ρs〉〈ρs |(V + fxc)|ϕcϕc′ 〉

+〈ϕvϕv′ |(V + fxc)|ρs〉〈ρs |V |ϕcϕc′ 〉)

}
(12)

3. Approximation and solutions

Actually Eq. (11) explicitly includes four terms related to
the decay of the exciton, which are illustrated by the Feynman
diagrams in Fig. 1.

In Eq. (11) only the resonant part is included, while the
antiresonant part is neglected. This is the Tamm-Dancoff ap-
proximation, whose effect on excitonic energies was found
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FIG. 1. Feynman diagrams of terms in Eq. (11) related to the de-
cay of particle-hole excitations. Arrowed lines are Green’s functions.
Zigzag lines are screened interactions. Diagrams (a), (b) correspond
to the diagonal elements in Eq. (11). Diagrams (c), (d) denote the
screeed particle-hole interaction in Eq. (11).

to be negligible. However, it is unfeasible to directly solve
Eq. (11), which we call dynamic BSE, since the matrix on the
left-hand side is explicitly dependent on the eigenvalues �q to
be solved.

We have demonstrated that an approximate method that
only takes into account the first two diagrams in Fig. 1
can be used to solve Eq. (11), which was simplified to
a computable frequency-independent eigenproblem [25]. In
the computation, it was found that partial self-consistence
of G and � provides stable numerical computation, where
only complex eigenvalues are updated iteratively by the
frequency-independent BSE matrix, with eigenvectors fixed
to the TDLDA amplitudes.

To further accelerate and stabilize the self-consistency pro-
cedure, an important and useful initial guess for the imaginary
part of the excitation energy for a given exciton was made:

�q =
∑
vc

∣∣Rq
vc

∣∣2
(γc + γv ), (13)

where Rq
vc is the coefficient that defines the qth exciton in

terms of an expansion of quasielectron and quasihole. The
above initial guess for the qth exciton’s energy can be ra-
tionalized by the fact that the true excitonic eigenstates shall
be close to the approximated eigenstates of excitons with a
linear combination of electron-hole pairs as in Ref. [27]. The
absorption spectra obtained by our approximation approach
are found to be in good agreement with those obtained by the
dynamic BSE [Eq. (11)] [25], which are computed by using
the results from the approximate method as the initial guess
input.

B. Electron-phonon interaction

It is indispensable to study MEG dynamics through the
carriers’ interaction with their host matrix by activating lat-
tice vibration (phonon). Though there are extensive reports
on electron-phonon interaction [26–31], the formulas derived
in those papers have yet to find applications in numeri-
cal modeling for semiconductor NCs, probably due to their
complications and coding infeasibility. It is thus essential to
formulate the interactions that are feasible for programing and
are coherent with the ab initio many-body Green’s function
theory. The electron-phonon and exciton-phonon interactions

are formulated under the framework of the GW BSE approach
as follows. It should be emphasized that the term “nonra-
diative relaxation” may stand for different processes under
different circumstances. In this paper, it is further categorized
as a single-phonon relaxation process and a multiphonon re-
laxation process of carriers.

The single-phonon process means that an electron makes a
phonon-assisted transition from an electronic state to another
electronic state, with the electron emitting or absorbing a
phonon at the same time. In the field of physics, the theoretical
work on this process originated from the investigation of the
temperature dependence of the optical gaps of bulk silicon
and germanium. The process leads to the broadening of the
electronic states in semiconductors. The formula associated
with this process was first developed by Fan [38] in 1951,
and the derived electron-phonon self-energy term is called
the “Fan” term, where the imaginary part of the Fan term
is exactly the single-phonon relaxation rate. Note that the
temperature effect also manifests itself through the thermal
expansion of the crystal lattice, and through a Debye-Waller
term corresponding to the elastic interaction between elec-
trons and phonons [39]. However, the thermal expansion and
Debye-Waller terms only influence the real parts of the elec-
tronic energies, and make no contribution to their imaginary
parts. This means that the two effects are irrelevant for de-
scribing the finite lifetimes of electronic states, and will not
be covered in this study.

The multiple-phonon process means that an electron in
one electronic state makes a transition to another electronic
state, with the quantum numbers of several coupled phonon
modes changed at the same time. In the field of chemistry, the
theoretical work describing this electronic process originates
from the investigation of radiationless transitions of electronic
states in large molecules [40]. Usually the energy gap be-
tween the first two electronic states is so large that it cannot
be matched just by the energy of one phonon. Therefore a
process involving multiple phonons is the only possible relax-
ation mechanism. The formulas for the transition rates have
been developed based on the perturbation theory. It should be
pointed out that the anharmonic effect has to be taken into ac-
count for multiple-phonon processes, and such processes are
attributed to the displacement of the potential energy surface
during the electronic transitions [41].

Physical and chemical studies have tackled the electron-
phonon interaction from different aspects. The question is
which aspect we shall follow for the electron-phonon inter-
action in a semiconductor NC. If a NC is more like a bulk
material then we should focus on a single-phonon process,
or if it is more like a molecule then we should focus on
a multiple-phonon process. In this study we show that both
mechanisms should be included. Because a NC or a nan-
ocluster takes essentially the transition peculiarity in between
a bulk material and a molecule, it has all features of both
matters, i.e., molecules and bulk materials.

The argument can be rationalized with the assistance of the
schematic energy diagram for a semiconductor nanocluster
schematically shown in Fig. 2. In the cluster, an electron in
the electronic state on the top can jump to those states right
below it through a single-phonon process, as the energy gaps
between these states and the top one are smaller than the
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FIG. 2. Schematic illustration of nonradiative relaxation processes and energy diagram of a semiconductor nanocluster. In the left pane,
the top electronic state (magenta) can jump to the states right below it (red upper zone) through a single-phonon process (middle pane), or
jump to the states far below it (orange lower one) through a multiphonon process (right pane). The energy criterion to distinguish between the
two mechanisms is based on the single-phonon frequency.

energy of one phonon ωk . On the other hand, the electron in
the electronic state on the top can also jump to those states
far below it through a multiple-phonon process, since now
the energy gaps between these states and the top one are so
large that single-phonon process is prohibited. According to
Fig. 2, we can find that the final states available for a single-
phonon process are fewer than those for a multiple-phonon
process. However, the single-phonon process is usually faster
than the multiple-phonon process. Therefore the contributions
of the single-phonon process and multiple-phonon process
to the overall nonradiative relaxation rate of a high-energy
state could be comparable in magnitude. This means that both
the single-phonon and the multiple-phonon mechanisms are
essential for the calculation of nonradiative relaxation rates of
electronic states in nanoclusters.

1. One-particle representation vs two-particle representation

As can be found, all existing simulations (computations) of
electron-phonon interactions are conducted in the framework
of a one-particle representation, and the nonradiative relax-
ation of an excited state is always treated as the decay of an
electron or a hole. This is acceptable for some cases when
electrons and holes themselves are essentially at one-particle
states. However, treating excitons in a one-particle repre-
sentation implies an independent-particle assumption, where
excitonic states are written as |i, j〉, instead of a combination
of |i, j〉. With this assumption, the decay of an excitonic state
|i, j〉 does simplify to the decay of its electron component
(|i, j〉 → |i, j′〉) or its hole component (|i, j〉 → |i′, j〉).

The independent-particle assumption may hold for the first
several excitonic states, classified according to their energies,
because in most cases they can be approximated by |i, j〉.
However, high-energy excitons shall always be expressed as
the linear combination of |i, j〉, because the one-particle pic-
ture is expected to break down for these excitonic states.
We thus propose treating all exciton-phonon interaction in
the framework of two-particle presentation. Changing from
the one-particle presentation to the two-particle presentation
will significantly affect the phonon-assisted relaxation rates

of excitons, which is proportional to the scaling of the density
of final states and the square of Coulomb coupling [42–44].
Usually the density of final states determines the available
number of transition channels; the higher the final density
of state (DOS), the higher the transition rates could be. As
will be shown, the two-particle density of state (DOS) can be
regarded as a convolution of the electron DOS and the hole
DOS. The excitonic DOS is much higher, which contributes
to the significant difference between the relaxation rates of
excitons and those of electrons.

2. Adiabatic approximation

The Hamiltonian of a system composed of electrons and
nuclei can be expressed as

H = T (r) + T (Q) + U (r, Q), (14)

where r and Q are the coordinates of electrons and nuclei,
respectively, T (r) and T (Q) the kinetic energy operators of
the electrons and nuclei, and U (r, Q) is the total potential
energy among all electrons and nuclei.

Within the framework of the Born-Oppenheimer approx-
imation [45], the wave functions of electrons and nuclei are
assumed to be independent. Thus the wave functions �i(r, Q)
and energies Ei(Q) of electrons can be obtained for each
nuclear configuration Q by solving the electronic Schrödinger
equation

[T (r) + U (r, Q)]�i(r, Q) = Ei(Q)�i(r, Q). (15)

The wave function ψ (r, Q) of the whole system can be
expanded with �i(r, Q) as the basis,

ψ (r, Q) =
∑

i

χi(Q)�i(r, Q). (16)

Substituting this wave function into the Schrödinger equa-
tion of the system

Hψ (r, Q)= [T (r) + T (Q) + U (r, Q)]ψ (r, Q)=V ψ (r, Q),
(17)

and then projecting both sides onto the electronic wave func-
tion � j (q, Q), we will obtain a set of coupled equations for
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χi(Q), ∑
i

Hi j (Q)χi(Q) = V χ j (Q), (18)

where χi(Q) is the nuclear wave function, V is the energy of
the state ψ (q, Q), and Hi j (Q) is the Hamiltonian,

Hi j (Q) = H0
i j (Q) + H1

i j (Q), (19)

where the unperturbed and perturbation Hamiltonians are

H0
i j (Q) = δi j

[
Ei(Q) −

∑
k

h̄2

2Mk

∂2

∂Q2
k

]
, (20a)

H1
i j (Q) = −

∑
k

h̄2

2Mk

(
2〈� j | ∂

∂Qk
|�i〉 ∂

∂Qk

+〈� j | ∂

∂Q2
k

|�i〉
)

, (20b)

where Mk are the masses of the normal coordinates Qk .
Within the framework of the adiabatic approximation, the

nonadiabatic coupling term H1
i j (Q) is neglected [40]. There-

fore the Hamiltonian matrix becomes diagonal, and Eq. (18)
is simplified to[

Ei(Q) −
∑

k

h̄2

2Mk

∂2

∂Q2
k

]
χi(Q) = V χi(Q), (21)

which implies the nuclei move on the adiabatic potential en-
ergy surface (PES) Ei(Q). The nuclear wave functions χi(Q)
can be obtained by solving Eq. (21).

Within the harmonic approximation, all anharmonic effects
are neglected. Thus Ei(Q) can be expressed as the linear
combination of linear and quadratic terms,

Ei(Q) =
∑

k

αi
kQk +

∑
k

β i
kQ2

k +
∑
k,l

γ i
k,lQkQl , (22)

where αi
k, β

i
k, γ

i
k,l are coefficients. By choosing the equilib-

rium position as the origin Q0, αi
k can be eliminated. For

normal coordinates Qk , bilinear terms vanish and γ i
k,l = 0.

Therefore Eq. (21) yields k independent one-dimensional
harmonic-oscillator equations, which have analytical solu-
tions θi,vk (Qk ) in which vk are the quantum numbers. Then
the nuclear wave function χi,v (Q) is expressed as

χi,v (Q) =
∏

K

Qi,vk (Qk ), (23)

where v = (v1, v2, . . . , vk ).

3. Perturbation theory

Within the framework of the perturbation approximation,
the nonradiative transition rate between any two adiabatic
states χi,v′ (Q)�i(r, Q) and χ j,v′′ (Q)� j (r, Q) with energies
Vi,v′ and Vj,v′ can be calculated with the Fermi golden rule
by taking H1

i j (Q) as the perturbation Hamiltonian [46,47],

Wi→ j = 2π

h̄

∑
v′,v′′

Pv′
∣∣〈χ j,v′′ |H1

i j |χi,v′ 〉∣∣2
δ(Vj,v′′ − Vi,v′ ), (24)

where the summation is over all initial vibronic states v′
weighted by the Boltzmann factor Pv′ , and all final vibrational
states v′′. The perturbation term is

〈χ j,v′′ |H1
i j |χi,v′ 〉 = −

∑
k

h̄2

Mk

〈
� jχ j,v′′

∣∣∣∣ ∂�i

∂Qk

∂χi,v′

∂Qk

〉

−
∑

k

h̄2

2Mk

〈
� jχ j,v′′

∣∣∣∣χi,v′
∂2�i

∂Q2
k

〉
. (25)

The second term in Eq. (25) is usually neglected with
the assumption that the electronic wave functions are slowly
varying functions of the normal coordinates Qk , and Eq. (25)
becomes [48,49]

〈χ j,v′′ |H1
i j |χi,v′ 〉 = −

∑
k

h̄2

Mk

〈
� j

∣∣∣∣ ∂�i

∂Qk

〉〈
χ j,v′′

∣∣∣∣∂χi,v′

∂Qk

〉
. (26)

4. Single-phonon relaxation rates

The line shape function is the crucial issue to evaluating
relaxation rate �i→ j numerically, which is essentially deter-
mined by the underlying decay mechanisms. As shown in
Fig. 2, a high-energy exciton can decay through both single-
phonon and multiple-phonon processes. Both processes
should be considered. Here we propose an energy crite-
rion to distinguish between the two processes, �Ei j < h̄ωk

for single-phonon relaxation, and �Ei j > h̄ωk for multiple-
phonon relaxation.

For a single-phonon process, the decay only occurs be-
tween two electronic states with an energy difference smaller
than that of the kth phonon, h̄ωk . In this case a Lorentzian line
shape is applied and Eq. (24) is simplified as

γ SP
i→ j =

∑
k

h̄2

Mk

∣∣Ci j
k

∣∣2
h̄ωk

[
(nk + 1)γ SP

i

(�Ei j − h̄ωk )2 + (
γ SP

i

)2

+ nkγ
SP
i

(�Ei j + h̄ωk )2 + (
γ SP

i

)2

]
, (27)

where Ci, j
k = 〈ϕ j |∂/∂Qk|ϕi〉, �Ei j = Ei − Ej , and γ SP

i is the
width of the Lorentzian function corresponding to the ith
electron, which is exactly the single-phonon decay rate to be
determined. Here nk is the average quantum number of the
kth vibrational mode at the thermal equilibrium. γ SP

i→ j can be
found as the imaginary part of the following self-energy term:

SP∑
i→ j

=
∑

k

h̄2

Mk

∣∣Ci j
k

∣∣2
h̄ωk

[
nk + 1

�Ei j − h̄ωk − iγ SP
i

+ nk

�Ei j + h̄ωk − iγ SP
i

]
. (28)

This term is close to the self-energy term in Ref. [38],
with a difference in coefficients arising from different per-
turbation mechanisms. Note that �SP

i→ j corresponds to a
Feynman diagram similar to �xc in the GW case. Thus γ SP

i =∑
j,|Ej |<|Ei| γ

SP
i→ j can be evaluated numerically in the same

manner as that for the QP inelastic scattering rates in the GW �

implementation [25].
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5. Multiple-phonon relaxation rates

The multiple-phonon decay process is more complicated
and can only be treated properly by including anharmonic
effects. Since a small cluster can be regarded as a polyatomic
molecule, the dominant anharmonic effect is attributed to the
displacement of the potential energy surface for different elec-
tronic states [50]. By adopting the displaced potential surface
approximation, the normal coordinates Qk and their masses
Mk and frequencies ωk are assumed to be constant for all
electronic and excitonic states. Only the equilibrium positions
Q0

k change for different states, namely, Q0,i
k �= Q0, j

k . We can
define the dimensionless displacements �

i j
k as

�
i j
k =

(
Mkωk

h̄

) 1
2 (

Q0,i
k − Q0, j

k

)
, (29)

which measures the displacement along the kth normal mode
when the electron changes from state i to state j.

Following Freed and Jortner [41], the transition rate be-
tween two states through the multiple-phonon process is

γ MP
i→ j =

∑
k

h̄2

Mk

∣∣Ci j
k

∣∣2
h̄ωkπ

1

h̄Dk
i j

√
2π

×
[

(nk + 1)exp

(
−

(
�Ei j − h̄ωk − Ei j

M

)2

2h̄2
(
Dk

i j

)2

)

+ nkexp

(
−

(
�Ei j + h̄ωk − Ei j

M

)2

2h̄2
(
Dk

i j

)2

)]
(30)

with (
Dk

i j

)2 = 1

2

∑
k

ω2
k

(
�

i j
k

)2
(2nk + 1),

nk = 1

exp(h̄ωk/kBT ) − 1
,

Ei j
M = 1

2

∑
k

h̄ωk
(
�

i j
k

)2
.

Herein the rearrangement energy Ei j
M will be neglected

without losing calculation accuracy, since Ei j
M are usually very

small. Unlike γ SP
i→ j with a Lorentzian line shape, γ MP

i→ j exhibits
a Gaussian line shape, with its spectral width Di j temperature
dependent. Note that both γ SP

i→ j and γ MP
i→ j share the same form

as the peak intensities go to infinity and the linewidths become
δ functions, which is as follows:

γi→ j =
∑

k

h̄2

Mk

∣∣Ci j
k

∣∣2
h̄ωkπ [(nk + 1)δ(Ei − Ej − ωk )

+ nkδ(Ei − Ej + ωk )]. (31)

It is the decay mechanism that determines how the delta
functions are broadened.

The total relaxation rates of an electronic state through
electron-phonon interaction are expressed as the sum of all
decay rates between this state and states with lower energies:

γ E−P
i =

∑
j,|E0,j|<|E0,i|

(
γ SP

i→ j + γ MP
i→ j

)
. (32)

FIG. 3. Optimized structure of Si46 with the C2v symmetry.

III. NUMERICAL IMPLEMENTATIONS AND EXCITONIC
NONRADIATIVE RELAXATION RATES

A smaller silicon cluster, Si20, has been investigated and
reported to demonstrate our methods developed for the elec-
tronic and excitonic inelastic scattering rates [25]. With the
developed approach, we study the nonradiative relaxation
rates of electrons and excitons in a larger cluster, Si46. The
NC (cluster) of Si46 is selected for two reasons. First, we
need a relatively larger nanocluster to narrow the distribution
of the data points, which will facilitate our analyses. Second,
our previously reported cluster (Si20) has degenerate states be-
cause of its C3v symmetry. Si46 does not have any degenerate
state because of its C2v symmetry. Thus we can focus on the
nonradiative relaxation rates for Si46.

The ground state LDA calculation is performed using the
SIESTA code [51] The core electrons [1s22s22p6] of Si are
replaced by the nonlocal norm-conserving pseudopotential
based on the Troullier-Martins scheme [52]. A quintuple-
ζ double-polarization (5Z2P) basis set of numerical atomic
orbitals is used for the four valence electrons of Si. The
optimized structure of Si46 is illustrated in Fig. 3, which has a
C2v symmetry.

All integrals are evaluated on a uniform grid in real
space with a grid spacing of 0.5 a.u. The exchange integrals∫

dr
∫

dr′ϕi(r)ϕ j (r)V (r, r′)ϕk (r′)ϕl (r′) are evaluated by first
solving Poisson equations with the multigrid method [53].
The convergence of the QP calculation usually requires a large
number of unoccupied states for the evaluation of the polariz-
ability. Thus a Coulomb-hole screened-exchange (COHSEX)
remainder scheme [34] has been applied to accelerate the
convergence of the correlation part 〈ϕi|�c|ϕi〉.

The properties of the one-particle states are obtained by
solving the quasiparticle equation in Sec. II A 1. After ap-
plying analytical continuation of �c(r, r′; E ) in the complex
energy plane, the energy Ei and the inelastic scattering rates γi

of an electronic state are obtained by solving a set of complex
equations numerically [Eq. (8)] [24]. The inelastic scattering
rates of excitons are calculated with the method in Secs. II A 2
and II A 3 as developed in our previous paper [25].
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The normal coordinates Qk and frequencies ωk are ob-
tained by diagonalizing the mass-weighted second-order force
matrix (Hessian matrix) [54]. The second-order derivatives
∂2U/∂Xi∂Xj are calculated with a finite difference approach.
Here U is the total potential energy among all electrons and
nuclei. Xi are nuclear Cartesian coordinates. A unitary matrix
without translational and rotational vectors is used to trans-
form the Hessian matrix to a block diagonal matrix with each
block corresponding to an irreducible representation [54].
Block off-diagonal elements are small and are thus eliminated
to ensure that each Qk belongs to a specific irreducible repre-
sentation exclusively.

The force on the ith atom due to the jth electronic state is
calculated as f j

i by our modified version of the SIESTA code.
The calculation sums up all the energy derivatives associated
with the jth electronic state, namely, those from the kinetic
energy, the nonlocal pseudopotential energy, Hartree energy,
exchange-correlation energy, and basis overlap [51]. Then the
shift of the ith atom due to the jth electronic state is estimated

as �X j
i,n ≈ f j

i,n

∂2U/(∂X j
i,n )

2 , n = 1, 2, 3.

Therefore the shift along the kth normal coordinate due
to the jth electronic state �Q j

k can be obtained by the inner
product between �X j and Qk , where Qk is the vector repre-
sentation of Qk in Cartesian coordinates. Here we do not take
into account the Jahn-Teller effect, since the silicon cluster
investigated here does not have degenerate electronic states.
The pseudo-Jahn-Teller effect is not included either. There-
fore we only need to calculate those �Qk belonging to the
irreducible representation with the total symmetry, namely, A1

of the C2v point group, since the square of each irreducible
representation of the C2v point group is A1.

The derivative |〈� j |∂/∂Qk|�i〉| is evaluated by a finite
difference method, which is more accurate than the frequently
used perturbation method in the literature. In the SIESTA code,
the molecular orbitals are expressed as the linear combination
of atomic orbital (LCAO),

�i(r) =
∑

m

ci,mφm(r), (33)

where φm(r) is the mth atomic orbital. Then we have

∂�i(r)

∂X
=

∑
m

∂ci,m

∂X
φm(r) +

∑
m

ci,m
∂φm(r)

∂X
(34)

and

〈� j | ∂

∂Xk
|�i〉 =

∑
m,n

c j,n
∂ci,m

∂Xk

∫
φn(r)φm(r)dr

+
∑
m,n

c j,nci,m

∫
φn(r)

∂φm(r)

∂Xk
dr. (35)

Here we only take into account the internal conversion and
neglect the intersystem crossing between singlet and triplet
states arising from the spin-orbit coupling. The derivation and
numerical treatment for excitonic states are similar to those of
electronic states. First the force on the ith atom due to the jth
excitonic state is calculated as

F j
i =

∑
v,c

∣∣R j
vc

∣∣2(
fc
i − fv

i

)
(36)

from which �X j
i,n, �Q j

k , �
i, j
k , and Ei, j

M can be obtained in ex-
actly the same manner as in the case of electrons. With phonon
emission the coupling between the two excitonic states is
approximated as

W i j
k = 〈ρ j |∂/∂Qk|ρi〉

=
∑
v,c

∑
v′,c′

Ri
vcR j

v′c′ (δvv′ 〈ϕc|∂/∂Qk|ϕc′ 〉

+ δcc′ 〈ϕv|∂/∂Qk|ϕv′ 〉). (37)

Then the excitonic nonradiative transition rates with single-
phonon relaxation and multiple-phonon relaxation can be
calculated as the following equations.

�SP
i→ j =

∑
k

h̄2

Mk

∣∣W i j
k

∣∣2
h̄ωk

[
(nk + 1)�SP

i

(�Ei j − h̄ωk )2 + (
�SP

i

)2

+ nk�
SP
i

(�Ei j + h̄ωk )2 + (
�SP

i

)2

]
,

�MP
i→ j =

∑
k

h̄2

Mk

∣∣W i j
k

∣∣2
h̄ωkπ

1

h̄Dk
i j

√
2π

{
(nk + 1)

× exp

[
−

(
�Ei j − h̄ωk − Ei j

M

)2

2h̄2
(
Dk

i j

)2

]

+ nkexp

[
−

(
�Ei j + h̄ωk − Ei j

M

)2

2h̄2
(
Dk

i j

)2

]}
, (38)

with

(
Dk

i j

)2 = 1

2

∑
k

ω2
k

(
�

i j
k

)2
(2nk + 1),

nk = 1

exp(h̄ωk/kBT ) − 1
,

Ei j
M = 1

2

∑
K

h̄ωK
(
�

i j
k

)2
.

It is noticed that the term for exciton-phonon interaction
of Eq. (37) was recently presented in a similar format in
Ref. [55] while the paper was being reviewed. Related for-
mulation can be found in Ref. [56].

IV. RESULTS AND DISCUSSIONS

A. Electronic relaxation dynamics in Si clusters

The inelastic scattering rates γ IS of electrons and holes
in the cluster Si46 calculated by the GW � method are plot-
ted vs the excitation energy |Ei − EF | in log-log style in
Fig. 4. Note that all relaxation rates are presented in units
of eV, which can be easily converted to fs−1 by being di-
vided by h̄ = 0.658 eV fs. Our calculations show that the
inelastic scattering rates of electrons and holes in Si46 are
similar to Si20 which was presented in our previous paper
[25]. Specifically, the electrons and holes in Si46 approach the
quadratic law of Quinn and Ferell in the high-energy regime
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FIG. 4. Log-log plot of inelastic scattering rates γ IS of electrons
(hollow circles) and holes (solid diamonds) in Si46 vs energy from
the Fermi level.

(|Ei − EF | > 6 eV),

τ IS
i = 263r−5/2

S (Ei − EF )−2eV2 fs. (39)

where τ IS
i = (2γ IS

i )−1 is the inelastic scattering lifetime.
The single-phonon nonradiative relaxation rates γ SP of

electrons and holes in Si46 vs the excitation energy |Ei − EF |
obtained at 0 K by Eq. (27) are plotted in Fig. 5(a). Note that
some data points in Fig. 4 do not have corresponding points
in Fig. 5(a), since γ SP for those states vanishes. This arises
from the fact that the energy gaps between two neighboring
states in a confined system may be larger than the maxi-
mum phonon frequency and thus the single-phonon relaxation
mechanism between such two states is strictly prohibited. The

FIG. 5. Log-log plots of (a) single-phonon nonradiative relax-
ation rates γ SP and (b) multiple-phonon nonradiative relaxation rates
γ MP of electrons (hollow circles) and holes (solid diamonds) in Si46

at 0 K.

multiple-phonon nonradiative relaxation rates γ MP at 0 K in
Si46 are presented in Fig. 5(b). The pattern of γ MP is quite
dispersive. For some electron (or hole) states, the relaxation
rates of the multiple-phonon process are even comparable to
those of the single-phonon process. More importantly all elec-
tronic states [except the highest occupied molecular orbital
(HOMO) and lowest unoccupied molecular orbital (LUMO)]
can decay through the multiple-phonon relaxation process,
which is an alternative nonradiative decay pathway when the
single-phonon process is absent. This shows that the multiple-
phonon decay pathway is an important relaxation mechanism
and should always be included for the study of nonradiative
rates for finite systems.

The patterns of γ SP and γ MP in Figs. 5(a) and 5(b) are
more dispersive than that of γ IS in Fig. 4. The reason is that
the single-phonon relaxation can only occur between a state
and those states with energies below it yet not too far away
(within the phonon energy h̄ωk). Therefore an electron in a
given electronic state may have many strongly coupled states
available for the single-phonon relaxation and thus exhibit a
large γ SP. On the hand, it may only have one or two weakly
coupled states and thus present a small γ SP. This means that
γ SP is essentially a local quantity in terms of energy and is
dependent upon the case being studied. This explains why the
pattern of γ SP is so dispersive and even two states with close
excitation energies |Ei − EF | may have quite different γ SP.

Note that although the multiple-phonon relaxation can oc-
cur in principle between a state and any states with energies
far below it, in practice there is still an upper limit for the
energy gaps, as γ MP decreases exponentially with increasing
energy gap. It means that γ SP is a semilocal quantity in terms
of energy and is also dependent upon the case being studied.
Therefore the same interpretation applies to γ MP.

The local and semilocal properties of single-phonon and
multiple-phonon relaxation processes distinguish notably
from the inelastic scattering relaxation, where an electron in
an electronic state can transit to those states with energies
far below the initial state, namely no upper limit for energy
gaps. Therefore, the higher the energy of the initial state, the
larger the inelastic scattering rate is. In this case, the absolute
excitation energy |Ei − EF | does matter.

The ratios γ IS/γ SP+MP (γ SP+MP = γ SP + γ MP) are plotted
in Fig. 6 for the comparison of the inelastic scattering rates
and the nonradiative relaxation rates of electronic states in
Si46. The patterns for γ IS/γ SP+MP are even more dispersive
than that of γ MP, with some data points above unity and others
below. This implies that it is highly possible for inelastic scat-
tering to occur for some electronic states, while nonradiative
relaxation will dominate the other electronic states. However,
the data in Fig. 6 suggest that the inelastic scattering relaxation
is a more significant effect, since the logarithmic mean of
data in Fig. 6 are larger than unity. In addition, nonradiative
relaxation progresses in a cascade manner. Consequently, it
is highly possible that an electronic state with high excitation
energy passes through several intermediate electronic states
during its nonradiative relaxation. The inelastic scattering
decay will occur sooner or later, as long as one of these inter-
mediate states favors inelastic scattering more. Therefore one
can conclude that inelastic scattering (or reverse Auger/impact
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FIG. 6. Log-log plot of the ratios γ IS/γ SP+MP for electrons (hol-
low circles) and holes (solid diamonds) in Si46 at 0 K, where
γ SP+MP = γ SP + γ MP.

ionization) can always occur for electronic states with high
excitation energy.

The temperature effect is studied by recalculating γ SP,
γ MP, and γ IS/γ SP+MP at 300 K. The results are illustrated
in Figs. 7 and 8. Here we assume that the electronic scat-
tering rates are temperature independent. As the temperature
changes from 0 to 300 K, all γ SP and γ MP are enhanced with a
factor ranging from 1 to 3. Usually the temperature enhance-
ment of γ MP is larger than the corresponding enhancement
of γ SP, since the increased temperature not only elevates the
average quantum number nk of each normal mode for both
γ SP and γ MP, but also increases the thermal broadening factor
Dk

i j in Eq. (30) solely for γ MP. Results in Fig. 8 show that
the ratios of γ IS/γ SP+MP are reduced at 300 K compared to

FIG. 7. Log-log plots of (a) Single-phonon nonradiative relax-
ation rates γ SP and (b) multiple-phonon nonradiative relaxation rates
γ MP of electrons (hollow circles) and holes (solid diamonds) in Si46

at 300 K.

FIG. 8. Log-log plot of the ratios γ IS/γ SP+MP for electrons (hol-
low circles) and holes (solid diamonds) in Si46 at 300 K, where
γ SP+MP = γ SP + γ MP.

the ratios of γ IS/γ SP+MP at 0 K as shown in Fig. 6. Yet it is
still essential to include the multiple-phonon mechanism for
calculations of γ IS/γ SP+MP, γ IS , and γ SP+MP.

It is known that there are different possible ways to excite
a multielectron system. One possible way is to add an elec-
tron to the system, or remove an electron from it to excite a
hole. These excitations exactly correspond to the electronic
states discussed here. It should be pointed out that these elec-
tronic states are essentially charge-nonconserved one-particle
excitations, which are not directly involved in most opti-
cal applications of semiconductor nanoclusters. Actually in
photovoltaic systems based on semiconductor nanoclusters,
most incident photons just induce charge-conserved excitonic
(electron-hole) excitations. Therefore the relaxation dynamics
of excitons is of greater importance, which will be addressed
in the next section.

B. Excitonic relaxation dynamics in Si clusters

The inelastic scattering rates �IS (capital letter stands for
excitons) of excitons in Si46 are plotted vs the excitation
energy � in log-log style in Fig. 9, where the solid line is

FIG. 9. Log-log plot of the inelastic scattering rates �IS of exci-
tons in Si46 vs exciton energy. The solid line is the curve fitting.
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FIG. 10. (a) Single-phonon nonradiative relaxation rates �SP and
(b) multiple-phonon nonradiative relaxation rates �MP of excitons in
Si46 at 0 K. Solid lines are curve fitting based on Eq. (40).

the curve fitting of �IS by a simple rational function (Padé
function P2

1 ),

yIS = 2x + a + b

(x + c)
, (40)

where x and y represent ln(�/eV) and ln(�IS/eV), respec-
tively. The fitting coefficients a, b, and c are −5.00, −0.22,
and −0.40, respectively. The factor of the linear term in x is
fixed to be 2, since it is easy to prove that the quadratic relation
between the excitonic decay rate and the excitonic energy will
be approached at the high-energy limit (large x), provided that
the quadratic relation between the QP decay rate and the QP
energy is approached at the high-energy regime.

The single-phonon nonradiative relaxation rates �SP of
excitons in Si46 at 0 K obtained by Eq. (27) are plotted vs
the excitation energy �s in Fig. 10(a), where the �SP points
are found to be energy dependent in the low-energy regime.
Unlike �IS shown in Fig. 9, such an energy dependence di-
minishes in the high-energy regime and the pattern of �SP

becomes flat, although the data distribution is still wide. This
is attributed to the large excitonic density of state (DOS) that
quickly saturates the exciton-phonon interaction. According
to the pattern shown in Fig. 10(a), we fit the data with an
exponential function,

ySP = ySP
0 + ASPe−(�−�SP

0 )/tSP
, (41a)

where ySP represents log(�SPeV); � is the excitonic energy;
and ySP

0 , ASP, �SP
0 , and tSP are fitting parameters. The fitting

curve is plotted in Fig. 10(a) as a solid line. Here ySP
0 =

−0.826, which leads to the converged �SP that is estimated
to be 0.149 eV.

The multiple-phonon nonradiative relaxation rates �MP of
excitons in Si46 at 0 K obtained by Eq. (30) are presented in
Fig. 10(b). It can be seen that the pattern of �MP is similar

FIG. 11. The ratios �IS/�SP+MP for excitons in Si46 at 0 K, where
�SP+MP = �SP + �MP.

to that of �SP as shown in Fig. 10(a). Thus the data are fitted
with the same equation,

yMP = yMP
0 + AMPe−(�−�MP

0 )/tMP
. (41b)

Here yMP
0 = −0.767, which yields the converged �MP to

be 0.170 eV. Note that �MP are always comparable to �SP in
the full energy range studied. This again demonstrates the ne-
cessity to include the multiple-phonon decay mechanism for
the simulation of nonradiative relaxation rates. Furthermore,
in the cluster both �SP and �MP are in the range from 0.1 to
1000 meV, which corresponds to nonradiative relaxation
lifetimes ranging from several picoseconds to about a fem-
tosecond. Such a fast nonradiative relaxation process implies
that the phonon bottleneck does not apply in the present
structure Si46. Some previous researchers have predicted mul-
tiphonon emissions in CdSe and PbSe NCs [57]. Reference [7]
reported a phonon relaxation time between 10 and 500 fs for
3.9-nm PbSe NCs (see Fig. 5 therein). According to Ref. [58],
nonradiative interband transition in colloidal PbSe NCs was
due to multiphonon emission. Though the NCs in the studies
are different from our NC studied (Si46), it is still useful to
qualitatively compare these results with our modeling: first,
our computation proves that multiphonon emission is indeed
important in NCs; second, our computed �SP and �MP (1–
1000 fs) for Si NC is the range of these results.

The ratios �IS/�SP+MP (�SP+MP = �SP + �MP) are plotted
in Fig. 11 for the comparison of the inelastic scattering rates
and the nonradiative relaxation rates of excitonic states in
Si46. The ratio �IS/�SP+MP in Fig. 11 increases steadily with
increasing excitonic energy. It is consistent with the fact that
�IS increases almost quadratically with increasing excitonic
energy (Fig. 9), while �SP and �MP approach a constant in
the high-energy regime (Fig. 10). It should be emphasized
here that most ratios �IS/�SP+MP for excitons are smaller than
unity, which notably differs from γ IS/γ SP+MP for electronic
states (Fig. 6). This again can be attributed to large excitonic
DOS and will be addressed in the next section.

The temperature effect is investigated by recalculating �SP,
�MP, and �IS/�SP+MP at various temperatures. In this way, the
influence of the temperature on the nonradiative relaxation of
excitons can be tracked in a way that is more quantitative,
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FIG. 12. The ratios exp (ySP
0 )T /exp (ySP

0 )T =0 and
exp (yMP

0 )T /exp (yMP
0 )T =0 vs temperature for Si46 (a) over the

full temperature range and (b) over the low-temperature range.

since now we can characterize �SP and �MP with fitting coef-
ficients based on Eq. (41). In most cases we are interested in
exp(ySP

0 ) and exp(yMP
0 ), namely, the converged relaxation rates

of single-phonon and multiple-phonon processes. The ra-
tios of exp (ySP

0 )T /exp (ySP
0 )T =0 and exp (yMP

0 )T /exp (yMP
0 )T =0

over the full temperature range and the low-temperature range
are plotted vs temperature in Figs. 12(a) and 12(b), respec-
tively. Here exp (ySP

0 )T =0 and exp (yMP
0 )T =0 have been used as

the units for the two data sets, respectively.
Assume that all phonon frequencies can be represented by

a characteristic phonon frequency ω̄SP for the single-phonon
relaxation process. According to Eq. (27), we can obtain

exp
(
ySP

0

)
T

exp
(
ySP

0

)
T =0

≈ 2n̄SP + 1

= 2

exp
(

h̄ω̄SP

kBT

) − 1
+1

≈ 2kBT

h̄ω̄SP
+ CSP, (42a)

where n̄SP is the average quantum number of the character-
istic phonon frequency ω̄SP. The last approximate equality in

FIG. 13. The phonon density of state (DOS) of Si46; the locations
of ω̄SP and ω̄MP are indicated as dashed lines.

Eq. (42a) is valid only in the high-temperature limit. A similar
equation can be written to define the characteristic phonon
frequency ω̄MP for the multiple-phonon relaxation process,

exp
(
yMP

0

)
T

exp
(
yMP

0

)
T =0

≈ 2n̄MP + 1

= 2

exp
(

h̄ω̄MP

kBT

) − 1
+ 1

≈ 2kBT

h̄ω̄MP
+ CMP. (42b)

Note that Eq. (41b) is an approximation rougher than
Eq. (42a), since the temperature effect on Dk

i j in Eq. (30) has
been neglected.

The two data sets as shown in Fig. 12(a) differ from
the shape of the function f = 2

exp(h̄ωk/kBT )−1 + 1 for a single
phonon with the frequency ωk . Nevertheless, we can still
perform the linear fitting in the temperature range of interest,
as shown in Fig. 12(b). According to the slopes of the two
fitting lines in Fig. 12(b), two characteristic phonon frequen-
cies ω̄SP and ω̄MP for single-phonon and multiple-phonon
relaxation processes can be solved based on Eqs. (41a) and
(41b). Numerically, ω̄SP and ω̄MP are just the inverse of the
weighted average of the inverse phonon frequencies, and thus
have some important physical information over the selected
temperature range for the cluster investigated.

From the slopes of the two linear lines in Fig. 12(b), ω̄SP

and ω̄MP are estimated to be 280 and 165 cm−1. The phonon
density of state (DOS) of Si46 is plotted vs wave number in
Fig. 13, where the locations of ω̄SP and ω̄MP are also given
as dashed lines. It is found that ω̄SP is located at the middle
of the phonon DOS spectrum. This implies that both the low-
and high-frequency phonons contribute almost equally to the
single-phonon relaxation process. On the other hand, ω̄MP

emerges at the low-frequency regime. We thus speculate that
the low-frequency phonons make more contribution to the
multiple-phonon relaxation than the high-frequency phonons.
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C. Speculations on nonradiative relaxations in semiconductor
nanostructures: Comparison between the electronic and

excitonic nonradiative relaxation dynamics

The nonradiative relaxation dynamics of electronic states
and excitonic states discussed in the two previous sections
have demonstrated notable differences as can be seen by com-
paring Figs. 5 and 6 with Figs. 10 and 11, respectively. The
observations are mainly attributed to the difference between
the electronic DOS and the excitonic DOS. The excitonic
DOS can be sampled in calculation and broadened with
phonon energy. Yet to compare the difference of electronic
and excitonic DOS, we only need an order-of-magnitude es-
timation for excitonic DOS. Further, the simplified estimation
can provide a clear qualitative relation with respect to energy.
Thus a very simplified approximation to qualitatively account
the DOS is presented herein.

The DOS of electrons is gc(E ), and the DOS of holes is
gv (E ). The DOS of excitons gexc(E ) is expressed approxi-
mately as a convolution of gc(E ) and gv (E ),

gexc(E ) ≈
∫

dE ′gc(E ′ + E )gv (E ′). (43)

This approximation essentially implies a noninteracting
electron-hole pair. Yet Eq. (43) should be on the order of
magnitude of the DOS with interacting electron-hole pairs.
Equation (43) shows gexc(E ) is a function that is one order of
magnitude higher than gc(E ) and gv (E ), since the former is
generated through the product of the latter two. It can be seen
from Fig. 14 that the electronic DOS is on the order of tens
per eV, while the excitonic DOS is around several hundred per
eV, namely, one order of magnitude larger than the electronic
DOS, and the excitonic DOS increases almost linearly with
increasing exciton energy.

As long as gc(E ) and gv (E ) do not vary too dramatically in
the energy range studied, we may further simplify them as

gc(E ) =
{

C1 (E > 0)
0 (E < 0), (44a)

gv (E ) =
{

0 (E > 0)
C2 (E < 0). (44b)

Thus the convolution of gc(E ) and gv (E ) becomes a linear
function C1C2E , which also explains the quasilinear relation
between gexc(E ) and E shown in Fig. 14(b).

With the understanding of the difference between the elec-
tronic DOS and excitonic DOS, we revisit Figs. 5 and 10.
In the case of nonradiative relaxation of electrons and holes
(Fig. 5), the electronic DOS is not large enough to saturate
every electronic state. (Here “saturate” means to provide all
possible final states for the nonradiative decay of a given ini-
tial state.) Therefore, some states may present relatively low
single-phonon or multiple-phonon relaxation rates due to lack
of decay pathways, which may occur even for those states with
large excitation energies. In the case of nonradiative relaxation
of excitons, however, the excitonic DOS increases quickly
with increasing excitation energy and saturates those high-
energy excitons very effectively. In summary, the calculation
and analysis in the study uncover an important discovery:
The nonradiative relaxation of excitons should always be in-
vestigated within the two-particle framework; otherwise the

FIG. 14. (a) Electronic density of state (DOS) vs energy defer-
ence from the Fermi level and (b) excitonic DOS of Si46 vs exciton
energy.

underlying physics will be missed and suspicious or plausible
computational results will be presented.

1. Multiple-phonon processes

It is interesting to notice that the multiple-phonon pro-
cesses are present in both electronic relaxation and excitonic
relaxation in the nanocrystal investigated. The multiple-
phonon emission occurs only when there are modifications in
the normal frequencies and normal coordinates between the
two states [40]. It is postulated that multiple-phonon emission
is an efficient relaxation channel for strongly localized states,
such as in ultrasmall nanocrystals [58], where there are mod-
ifications in the normal frequencies and normal coordinates
between the two states.

2. Computation for MEG

Aside from phonon emission, another important cooling
channel for hot carriers in semiconductor nanocrystals is the
nonradiative Auger process. In the Auger process the energy
of a recombination electron-hole pair is transferred to another
carrier, which then loses the energy in the form of heat. The
Auger recombination (AR) in semiconductor nanocrystals is
greatly enhanced because of the increased Coulomb interac-
tion between charges confined in nanocrystals. A number of
researchers have reported their results about Auger process in
semiconductor nanocrystals [8,9,59–62].

Although we have focused in the paper on singlet decay
due to electron-electron, electron-hole, and electron-phonon
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interactions, we must point out that other channels such as AR
can contribute to the effective decay rate and can be computed
using the same approach developed in the paper. We can begin
with singlet and doublet exciton eigenstates computed from
GW BSE calculations (Secs. II and III) [35], and then evaluate
the exciton-biexciton coupling in the Coulomb interaction,
where an initial biexcitonic state (|B〉) is coupled to a final
excitonic state (|S〉) via Coulomb interaction. The AR life-
time can then be calculated [20,23]. The computation shall be
presented in the future.

V. CONCLUSION

We have established the computational methodology for
electron-phonon and exciton-phonon interaction in nanoclus-
ters with the two-particle representation. By applying the
method, we investigated the dynamics of electrons and exci-
tons in a silicon cluster of Si46. The nonradiative relaxation
rates of electrons and excitons are calculated. It is found
that the single-phonon and multiple-phonon relaxation mech-
anisms are distinctive and correspond to two types of physical
processes having totally different spectral line shapes. The
single-phonon relaxation mechanism shall correspond to a
Lorentzian function, which can be accounted for by the
imaginary part of an electron-phonon self-energy term. The
multiple-phonon relaxation mechanism, on the other hand,
shall be related to a Gaussian function, which corresponds
to the thermal process and involves the anharmonic effect
(displacement of the potential energy surface in finite sys-
tems). It is also demonstrated that the formulas derived for
the two relaxation mechanisms share a general form at the
delta-function limit.

An energy criterion distinguishing the single-phonon re-
laxation and multiple-phonon relaxation has been proposed
for practical implementation of the computation. Our numer-
ical results show that the multiple-phonon relaxation always
exists and its rates are comparable to the corresponding single-
phonon relaxation rates for both electrons and excitons in

the system studied (Si46). It is thus essential to include the
multiple-phonon relaxation mechanism when studying the
nonradiative relaxation in small systems such as semiconduc-
tor nanoclusters.

The large differences between the nonradiative electronic
relaxation rate and the nonradiative excitonic relaxation states
are speculatively attributed to the large difference between
the DOS of excitons and electrons. Electronic states, even
those with high excitation energy, may present relatively slow
nonradiative relaxation rates due to the lack of final states
available for the decay transitions. For excitonic states, how-
ever, the nonradiative relaxation rate increases and converges
quickly with increasing exciton energy, due to the large exci-
tonic DOS.

The temperature effect of the nonradiative relaxation of
excitons in Si46 has been investigated quantitatively. Accord-
ing to the average phonon frequencies derived from the data
in the high-temperature regime, we speculate that both high-
and low-frequency phonons contribute almost equally to the
single-phonon relaxation pathway of excitons in Si46, while
low-frequency phonons are the major sources for the multiple-
phonon relaxation mechanism.

The inelastic scattering rates of electrons and excitons
are calculated based on many-body Green’s function theory.
These results are also compared with the corresponding non-
radiative relaxation rates. For the electronic states in Si46, the
inelastic scattering decay is predicted to be a major decay
mechanism, and nonradiative relaxation rates are larger than
inelastic scattering rates for most excitonic states in Si46.
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