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The experimentally observed correlated insulating states and quantum anomalous Hall (QAH) effect in twisted
bilayer graphene (TBG) have drawn significant attention. However, up to date, the specific mechanisms of these
intriguing phenomena are still open questions. Using an all-band Hartree-Fock variational method, we have
explained the correlated insulating states and QAH effects at some integer fillings of the flat bands in TBG. Our
results indicate that states breaking flavor (valley and spin) symmetries are energetically favored at all integer
fillings. In particular, the correlated insulating states at ±1/2 filling and at the charge neutrality point are all
valley polarized states which break C2z and time-reversal (T ) symmetries but preserve C2zT symmetry. Such
valley polarized states exhibit “moiré orbital antiferromagnetic ordering” on an emergent honeycomb lattice
with compensating circulating current pattern in the moiré supercell. Within the same theoretical framework, our
calculations indicate that the C = ∓1 QAH states at ±3/4 fillings of the magic-angle TBG are spin and orbital
ferromagnetic states, which emerge when a staggered sublattice potential is present. We find that the nonlocalness
of the exchange interactions tends to enhance the bandwidth of the low-energy bands due to the exchange-
hole effect, which reduces the gaps of the correlated insulator phases. The nonlocal exchange interactions also
dramatically enhance the spin polarization of the system, which significantly stabilizes the orbital and spin
ferromagnetic QAH state at 3/4 filling of TBG aligned with hexagonal boron nitride (hBN). We also predict
that, by virtue of the orbital ferromagnetic nature, the QAH effects at electron and hole fillings of hBN-aligned
TBG would exhibit hysteresis loops with opposite chiralities.
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The moiré graphene system has been an exciting area
of condensed matter physics since the discoveries of the
correlated insulating states [1–7] and unconventional super-
conductivity [2,8–10] in twisted bilayer graphene (TBG). At
small twist angles, for each spin the low-energy states of TBG
can be characterized by four bands contributed by the two
nearly decoupled valleys K and K ′ [11–16]. Around the first
magic angle ∼1.05◦, the bandwidths of the four low-energy
bands become vanishingly small, and these nearly flat bands
are believed to be responsible for the intriguing correlation ef-
fects observed in TBG. These flat bands in magic-angle TBG
were also found to exhibit nontrivial topological properties
[17–20]. In particular, it has been proposed by the authors
that the two flat bands (per spin per valley) are just the two
zeroth pseudo-Landau levels (LLs) resulting from some oppo-
site pseudo magnetic fields generated by the moiré potential,
which naturally carry nonzero Chern numbers ±1 [20]. Re-
cently, different types of insulating states have been found
at different integer fillings [2], and some of these correlated
insulating states even exhibit QAH effects with Chern number
±1 (3/4 filling) [7,21] and ±2 (± 1/2 filling) [22]. Although
various theoretical models have been proposed already to
explain the different insulating states at each particular filling
[13,23–36], up to date there is still no unified theory which

can explain all the insulating and QAH phenomena at different
integer fillings.

On the other hand, for a TBG system, the most general
model to describe its electronic structure is a 2D interacting
Dirac Fermi gas with spin, valley, layer, and sublattice degrees
of freedom under the modulation of moiré potential. Similar
to the 3D inhomogeneous electron-gas problem being con-
sidered in density functional theory (DFT) [37] for ordinary
crystals, such a general model for TBG can be treated by
the DFT on the moiré length scale. In the present study, we
simply take the exchange-correlation energy functional as the
Hartree-Fock energy and our approach is reduced to the un-
restricted Hartree-Fock variational method. Such an approach
can be further improved if the Hartree-Fock energy is replaced
by more accurate functional extracted from quantum Monte-
Carlo simulation.

Using such a fully unrestricted Hartree-Fock (HF) varia-
tional method applied to all energy bands of TBG, we have
successfully explained the correlated insulating states at ±1/2
and 0 fillings [1,2,4,6], as well as the QAH effect at 3/4 filling
[7,21] when the hBN substrate is aligned with TBG. Our re-
sults indicate that states breaking the flavor symmetry, i.e., the
valley and/or spin polarized states, are energetically favored
at all integer fillings and would lead to diverse phenomena at
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different fillings. In particular, the valley polarized correlated
insulating states at ±1/2 filling and at the charge neutral-
ity point exhibit opposite circulating current loops, which
generate staggered orbital magnetic fluxes on an emergent
honeycomb lattice in the moiré supercell. To the best of our
knowledge, such “moiré orbital antiferromagnetic” states on
an emergent honeycomb lattice have never been proposed nor
discussed in literature. These states break both orbital time-
reversal (T ) and C2z symmetries which exhibit giant nonlinear
optical responses induced by the current-loop order. On the
other hand, such states still exhibit vanishing anomalous Hall
effect due to the combined C2zT symmetry.

When an hBN substrate is aligned with the TBG, the HF
ground states with local-exchange approximation at ±1/2 fill-
ing are valley polarized and spin degenerate states exhibiting
QAH effects with Chern number (C) ∓2. The C = ∓2 QAH
states can be stabilized by vertical magnetic fields due to the
orbital magnetic Zeeman effect but would be suppressed by
in-plane magnetic fields due to (interaction-enhanced) spin
Zeeman effect. On the other hand, the nonlocal exchange
interactions tend to enhance the spin polarization such that the
ground states at ±1/2 fillings of hBN-aligned TBG become
spin polarized insulators with zero Chern number.

Within the same theoretical framework, we have also stud-
ied the QAH states at ±3/4 filling of the flat bands in
hBN-aligned TBG at the magic angle. Our results indicate
that the C = ∓1 QAH state at ±3/4 filling is a state with
co-existing spin and orbital ferromagnetic orders, which can
be significantly stabilized by a nonzero staggered sublattice
potential, and also by nonlocal exchange interactions due to
the enhanced spin polarization. Moreover, for the same valley
polarization, the Chern numbers at the electron and hole fill-
ings are opposite in sign, but the orbital magnetizations have
the same sign, which implies that the hysteresis loops of the
QAH states at electron and hole fillings would have opposite
chiralities.

I. NONINTERACTING BAND STRUCTURES

Moiré pattern is formed when the two graphene mono-
layers are twisted with respect to each other by some
commensurate angle θ . The moiré lattice constant Ls =
a/(2 sin θ/2) is much greater than the monolayer graphene
lattice constant a at small twist angles, as shown in Fig. 1. The
low-energy states of TBG at small twist angles can be well
described by the continuum model proposed in Ref. [12]. The
states around either K or K ′ valleys of graphene can be sepa-
rately folded into the moiré BZ, leading to valley degeneracy
in additional to the spin degeneracy. Moreover, at small twist
angles, the coupling between the low-energy states around the
two valleys can be neglected at small twist angles [12,38],
and the charge is separately conserved for each valley, lead-
ing to an emergent valley U (1) symmetry [dubbed as Uv (1)
symmetry]. Moreover, as spin-orbit coupling is negligible in
graphene, there is separate spin SU (2) symmetry for each val-
ley, such that the entire system has a Uv (1) × SU (2) × SU (2)
symmetry. In addition to these continuous symmetries, for
each valley the continuum Hamiltonian [see Eq. (B1)] has
C3z, C2zT , and C2x symmetries, where T is the time-reversal
operation for spinless fermions (i.e., complex conjugation).

FIG. 1. (a) The lattice structure and Brillouin zone of the twisted
bilayer graphene (TBG). The band structure of TBG at the magic
angle θ = 1.05◦ are shown in (b) and (c): (b) without the hBN
substrate and (c) aligned with the hBN substrate. See text for more
details.

The two valleys can be transformed to each other by T , C2z,
and C2y operations.

The noninteracting band structures of TBG at the magic
angle are shown in Fig. 1(b), where the solid and dashed
lines represent those of the K and K ′ valleys, respectively.
The Fermi velocities at the magic angle are vanishing, and the
overall bandwidth is less than 10 meV. If the hBN substrate is
aligned with TBG, a staggered sublattice potential is exerted
on the bottom layer graphene, which breaks C2zT symmetry
and opens a gap ∼4 meV at the Ks and K ′

s points as shown
in Fig. 1(c). As a result, the valence and conduction band flat
bands acquire nonzero valley Chern numbers ±1.

II. COULOMB INTERACTIONS AND THE
SPONTANEOUS SYMMETRY BREAKING

In order to understand the experimentally observed corre-
lated insulating states, we apply screened Coulomb interac-
tions to all energy bands of TBG. The Coulomb interactions
between the electrons in TBG can be expressed in momentum
space as

HC = 1

2Ns

∑
αα′

∑
kk′q

∑
σσ ′

V (q) ĉ†
k+q,ασ ĉ†

k′−q,α′σ ′ ĉk′,α′σ ′ ĉk,ασ ,

(1)

where k is the atomic wave vector expanded around the Dirac
point in the Brillouin zone of monolayer graphene, which can
be written as k = k̃ + G, where k̃ denotes the wave vector
with the moiré Brillouin zone and G is a moiré reciprocal
lattice vector. α is the combined layer and sublattice index,
and σ is the spin index. c†

k,ασ and ck,ασ represent the creation
and annihilation operators of the Dirac fermions. Ns is the
total number of moiré supercells in the entire system. V (q)
is Fourier transform of the Coulomb interaction

V (q) = 1

�M

∫
dr

e2 e−κ|r|

4πεε0|r|e−iq·r , (2)
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where �M is the area of the moiré supercell, κ is introduced as
the inverse screening length, and ε is the background dielec-
tric constant. κ and ε will be treated as two free parameters in
the following calculations. We will construct phase diagrams
in the parameter space spanned by (κ, ε).

We apply the Hartree-Fock variational method, in which
the following mean field Hamiltonian,

HMF = H0 +
∑

k,Q,γ

OH (Q) c†
k+Q,γ ck,γ

+
∑

k,γ ,γ ′
OF

γ γ ′ (k) c†
k,γ ck,γ ′ , (3)

has been proposed to determine the variational ground state
wave function |ψ{OHF}〉 (with OHF ≡ {OH (Q), OF

γ γ ′ }), where
H0 is the noninteracting Hamiltonian for TBG, and the matri-
ces OH (Q) and OF

γ γ ′ (k) denote the Hartree and Fock types of
terms, respectively, with Q being the moiré reciprocal lattice
vectors, and the indices γ and γ ′ denoting the combined
indices of valley, spin, and sublattice degrees of freedom.
These Hartree-Fock order parameters will be determined by
minimizing the total energy functional ET = 〈ψ{OHF}|H0 +
HC |ψ{OHF}〉, where HC denotes electrons’ Coulomb interac-
tions in TBG. More details about the Hartree-Fock variational
method are given in Appendix C. We make the approxima-
tion that the system preserves moiré superlattice translational
symmetry, which is supported by recent scanning tunneling
microscopy (STM) measurements [3–6].

With the moiré translational symmetry, all the HF order
parameters can be divided into two categories: the valley
polarized (VP) order and the intervalley coherent (IVC) order.
The VP order can be generically written as τzsiσ j and τ0siσ j

(i, j = 0, x, y, z), where τ , s, and σ are the Pauli matrices
representing the valley, spin, and sublattice degrees of free-
dom of the system. The VP-type order parameters preserve
the valley charge conservation but may break global spin
rotational symmetry, T , C2z, and/or C2zT symmetry. On the
other hand, the IVC order always breaks the valley charge-
conservation [Uv (1)] symmetry, which has the form τxsiσ j

and/or τysiσ j (i, j = 0, x, y, z). The IVC order may further
break the relative spin rotational symmetry between the two
valleys dubbed as SUv (2) and even the global SU (2) symme-
try [dubbed as SUg(2)]. Since the atomic spin-orbit coupling
in carbon is negligible, the T symmetry here refers to the
orbital time-reversal symmetry. The spin degrees of freedom
are not involved in the time-reversal operation. On the other
hand, since we assume the Fock order parameters are indepen-
dent of the layer degrees of freedom, we do not specifically
discuss the spontaneous breaking of C2x and C2y symmetries.
One should keep in mind that order parameters which induce
staggered sublattice potential, such as τis jσz, also break C2x

symmetry, since the A and B sublattices of opposite layers are
connected to each other by C2x operation; while order param-
eters which induce valley polarizations, such as τzsiσ j , also
break C2y symmetry, since the two valleys are transformed to
each other by C2y operation. It is worthwhile to note that states
breaking C3z symmetry have also been taken into account,
since some of the VP and/or IVC order parameters such as
τ0,zs0σx,y and τx,ys0σ0,z already break C3z symmetry. However,
our calculations indicate the C3z symmetry breaking is not

FIG. 2. The two paths of spontaneous symmetry breakings in
twist bilayer graphene: (a) without the alignment of hBN substrate
and (b) with the alignment of hBN substrate. See text for more
discussions.

necessary in opening a gap at any integer filling. In other
words, whether C3z is broken or not does not change the nature
of the correlated insulators at 0 and 1/2 fillings. Moire details
are to be discussed in Sec. III and Sec. IV.

There are two different paths of spontaneous symmetry
breakings in the TBG system: One is through the gener-
ation of the VP-type orders, and the other is through the
IVC-type orders, which are schematically shown in Fig. 2(a).
The full symmetry groups of TBG without hBN alignment
is C2z × T × Uv (1) × SUg(2) × SUv (2). As already explained
above, we do not discuss the spontaneous breaking of C3z,
C2x, and C2y symmetries. For VP-type α phase, the C2y, C2z,
and T are broken, but C2zT as a combined symmetry is still
preserved, so too other continuous symmetries. The SUg(2)
symmetry can be further broken based on the α phase, which
becomes the β phase. If the C2zT symmetry is further broken
in the β phase, the system becomes the ε phase as shown
in Fig. 2(a). On the other hand, there is another path of
spontaneous symmetry breaking (SSB) through the IVC-type
orders. The system can first break Uv (1) × SUv (2) symmetry,
with three Goldstone modes from the valley charge and spin
fluctuations, and such a phase is dubbed as “δ” phase in
Fig. 2(a). The SUg(2) symmetry can be further broken in the
δ phase, which becomes the “γ phase,” in which there are
five Goldstone modes from the global spin fluctuations, valley
spin fluctuations, and valley charge fluctuations. Either C2z or
T symmetry can be further broken starting from the γ phase,
leading to the λ or η phase as shown in Fig. 2(a). Similar
paths can be drawn for TBG aligned with hBN substrate as
shown in Fig. 2(b). The difference is that for hBN-aligned
TBG C2z (thus C2zT ) is already broken in the noninteracting
Hamiltonian. The corresponding SSB phases are denoted by
αM , βM , δM , and γM in Fig. 2(b). The symmetry-allowed Fock
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TABLE I. Different spontaneous-symmetry-breaking phases of
the TBG system. Ngst denotes the number of Goldstone modes.

T C2z C2zT Uv (1) SUg(2) SUv (2) Ngst

α ✗ ✗ � � � � 0
β ✗ ✗ � � ✗ � 2
γ � � � ✗ ✗ ✗ 5
δ � � � ✗ � ✗ 3
η ✗ � ✗ ✗ ✗ ✗ 5
λ � ✗ ✗ ✗ ✗ ✗ 5
ε ✗ ✗ ✗ � ✗ � 2
αM ✗ � � � 0
βM ✗ � ✗ � 2
γM � ✗ ✗ ✗ 5
δM � ✗ � ✗ 3

order parameters in the valley-spin-sublattice space in all the
different phases are enumerated in Table II.

III. PHASE DIAGRAMS WITH LOCAL EXCHANGE
APPROXIMATIONS

We first consider the limit of local exchange interac-
tions. The real-space locality implies that the Fock order
parameters OF

γ γ ′ (k) = ∫
dr e−ik·r OF

γ γ ′ (r)δ(r) = OF
γ γ ′ (0) are

independent of the wave-vector k and are only dependent
on the valley, spin. and sublattice degrees of freedom de-
noted by indices γ and γ ′. The interaction-driven spontaneous
symmetry breaking in the valley-spin-sublattice space can be
well captured within the local-exchange approximation. In-
cluding the nonlocalness of the Fock term would induce the
“exchange-hole” effects, i.e., two electrons with the same fla-
vor degrees of freedom tend to avoid each other in real space
due to Pauli exclusion principle, which effectively amplify
the kinetic energy of electrons thus enhances the bandwidth.
Moreover, in TBG system it turns out that the nonlocalness of
the exchange interactions tends to increase the spin splittings
of the flat bands, which significantly stabilizes the QAH states
at 3/4 filling for hBN-aligned TBG. In this section we first dis-

TABLE II. Symmetry-allowed order parameters for different phases

α τ0s0σ0, τ0s0σx , τ0s0σy, τzs0σ0, τzs0σx , τzs0σy

β τ0s0σ0, τ0s0σx , τ0s0σy, τzs0σ0, τzs0σx , τzs0σy
a

τ0sn̂σ0, τ0sn̂σx , τ0sn̂σy, τzsn̂σ0, τzsn̂σx , τzsn̂σy

ε τ0s0σ j , τ0sn̂σ j , τzs0σ j , τzsn̂σ j , ( j = 0, x, y, z)
δ, γ τxs0σ0, τxsn̂σ0, τxs0σx , τxsn̂σx , τys0σz, τysn̂σz

b

η τxs0σ0, τxsn̂σ0, τxs0σx , τxsn̂σx ,
τys0σy, τysn̂σy, τys0σz, τysn̂σz

λ τxs0σ0, τxs0σx , τxs0σz, τys0σ0, τys0σx , τys0σz

τxsn̂σ0, τxsn̂σx , τxsn̂σz, τysn̂σ0, τysn̂σx , τysn̂σz

αM τ0s0σ j , τzs0σ j , ( j = 0, x, y, z)
βM τ0s0σ j , τ0sn̂σ j , τzs0σ j , τzsn̂σ j , ( j = 0, x, y, z)
δM , γM τxs0σ0, τxs0σx , τxs0σz, τys0σ0, τys0σx , τys0σz

τxsn̂σ0, τxsn̂σx , τxsn̂σz, τysn̂σ0, τysn̂σx , τysn̂σz

asn̂ represents a spin operator pointing along an arbitrary axis n̂.
bThe τx/ys0-type and τx/ysn̂-type IVC order parameters can coexist in
the γ (γM ) phase, but they cannot coexist in the δ (δM ) phase.

FIG. 3. The indirect gaps (in units of eV) of the Hartree-Fock
ground states (with local-exchange approximation) of magic-angle
TBG (without hBN alignment) at different fillings: (a) at 1/2 filling,
(b) at 0 filling, (c) at 1/4 filling, (d) at 3/4 filling.

cuss the correlated insulating states and quantum anomalous
Hall phenomena with such local-exchange approximation. Ef-
fects of nonlocal exchange will be discussed in Sec. IV.

A. Correlated insulators at zero and half fillings
in TBG without hBN alignment

The phase diagrams of the magic-angle TBG at 1/2 and
0 fillings with local-exchange approximations are shown in
Figs. 3(a) and 3(b), where the color coding indicates the
indirect gaps of the HF ground states. We first consider
the situation that the TBG system is not aligned with an
hBN substrate such that the noninteracting Hamiltonian pre-
serves C2z symmetry (see Sec. B). As shown in Fig. 3(a), the
phase diagram at 1/2 filling consists of five different phases
marked by α, β, γ , δ, and ε and their combinations. These
phases break different symmetries as listed in Table I, and
the corresponding symmetry-allowed order parameters in the
valley-spin-sublattice space are given in Table II. There are a
few regions in the (κ, ε) parameter space in which the ground
states are insulating at 1/2 filling. The insulating states can
be the β, δ, γ , and ε phases. To be specific, the insulating
states in the β phase take the largest area in the phase diagram.
Such states are valley-polarized states with dominant order
parameters τzs0,zσ0, τzs0,zσx, which break C2z, T , and C3z

symmetries, but preserves the combined symmetry operation
C2zT , thus prohibits anomalous Hall effect. By virtue of the
valley polarization, the insulating state in the β phase exhibits
a remarkable real-space current pattern as shown by the black
arrows in Fig. 4(a). If there are only τzs0,zσ0 order parameters
in the β phase, the system would preserve both C2zT and C3z

symmetries on the moiré length scale, which give rise to six
circulating current loops in the moiré supercell surrounding
the AA region: Three of them are clockwise and the other
three are counterclockwise. These compensating current loops
generate staggered magnetic fluxes and orbital magnetizations
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FIG. 4. The real-space distributions of current densities and mag-
netic fields for the correlated insulating states in magic-angle TBG
at 1/2 filling, with ε = 3.5, κ = 0.005 Å−1: (a) in the β phase [see
Fig. 3(a)] with the staggered sublattice potential � = 0 and (b) in the
αM phase [see Fig. 6(c)] with staggered sublattice potential (induced
by the aligned hBN substrate) � = 15 meV exerted on the bottom
graphene layer. The color coding indicates the strength of magnetic
field in units of Gauss. The directions and amplitudes of the black ar-
rows represent the directions and amplitudes of the current densities.

on an emergent honeycomb lattice in the moiré supercell. The
τzs0,zσx order in the β phase further breaks C3z symmetry; as
a result, the magnitudes of current densities flowing along
the x direction are slightly different from those along the
120◦ direction (with 5–10% difference). However, we would
like to emphasize that the breaking of C3z symmetry is not a
necessary condition to open a gap at 1/2 filling and does not
change the nature of the correlated insulator state. Our calcu-
lations indicate that the maximal current density ∼1 nA/Å2,
and the maximal magnetic field generated by the current loops
∼0.15 Gauss as shown by the color coding in Fig. 4(a).

Such compensating current-loop order, or moiré orbital
antiferromagnetic order, can be interpreted as follows. Since
the two flat bands for each valley of magic-angle TBG are
equivalent to two degenerate zeroth pseudo-Landau levels
with opposite Chern numbers ±1 [20], the electrons in the two
pseudo-LLs would perform cyclotron motions along oppo-
site directions driven by the opposite pseudomagnetic fields,

forming current loops in the moiré supercell flowing towards
opposite directions. As discussed above, if there is only
τzs0,zσ0 order, the current-density distribution for each valley
has to obey C2zT and C3z symmetries, which gives rise to
the threefold compensating current-loop pattern. The τzs0,zσx

order further breaks C3z symmetry which slightly distorts the
threefold current pattern. To the best of our knowledge, such
moiré orbital antiferromagnetic states with compensating real-
space current-loop pattern have never been experimentally
observed nor theoretically discussed in any other systems.

Since the moiré orbital antiferromagnetic states break C2z

symmetry, they may exhibit giant nonlinear optical responses
induced by the moiré antiferromagnetic order or compen-
sating current-loop order. Generally speaking, the nonlinear
photocurrent jc(ωc) is related to the time-dependent elec-
tric fields of light via the second-order photoconductivity:
jc(ωc) = ∑

ab σ c
ab(ωc) Ea(ωa) Eb(ωb), where a, b denotes the

spatial directions in Cartesian coordinates, and ωa and ωb are
the two incident light frequencies with ωa + ωb = ωc [39].
For monochromatic light, the frequency is fixed as ±ω, thus
there could be two distinct second-order optical processes
with ωc = 0 or ωc = 2ω, corresponding to the shift-current
and the second harmonic generation processes, respectively
[39]. In a valley degenerate state, the nonlinear optical re-
sponse is forbidden due to the presence of C2z symmetry. In
a valley polarized state, however, the moiré orbital antifer-
romagnetic order (denoted by Nz) can induce nonvanishing
nonlinear optical responses. Therefore, the photoconductivity
tensor in a valley-polarized state can be written as σ c

ab =
σ c

ab,zNz. The C3z and C2x symmetries of each valley further
enforce that the only nonvanishing component of the photo-
conductivity tensor is σ x

xx [40]. In the nematic phase, however,
C3z and C2x symmetries are also broken, then other compo-
nents would be allowed.

Moreover, although the spin rotational symmetry is also
broken in the β phase, the spin character of the valence-
band maximum (conduction-band minimum) of the resulted
Hartree-Fock band structures is opposite the majority (minor-
ity) spin of the system [see Fig. 5(a)]. As a result, despite the
nonvanishing spin splittings, the energy gaps in the β phase
should still decrease in response to external magnetic field
along any direction due to the spin Zeeman effect. Such “spin-
paramagnetic-like” behavior is consistent with experimental
observations [1].

On the other hand, the insulating states in the δ + α phase
in the lower left corner of Fig. 3(a) include both the IVC order
(δ) and VP order (α). In particular, the δ phase breaks the
Uv (1) and SUv (2) symmetry, while the α phase is a valley
polarized phase which breaks C2z and T symmetries. In the
γ + α phase, the system further breaks global spin rotational
symmetry based on the δ + α phase. The insulating states
in the ε phase are spin antiferromagnetic states with oppo-
site spin magnetizations on the A and B sublattices. All the
symmetry-allowed order parameters in the β, γ , δ, and ε

phases are listed in Table II. When both ε and κ are large,
the Coulomb interaction is not strong enough to open a global
gap, and the system stays in a valley polarized metallic state
labeled by α phase in Fig. 3(a), which breaks both C2z and T
but preserves the combined symmetry C2zT . Given that the in-
sulating states in the β phase take the largest area of the phase
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FIG. 5. The band structures of the Hartree-Fock ground states of
magic-angle TBG at different fillings: (a) 1/2 filling, ε = 3.5, κ =
0.005 Å−1, (b) 0 filling, ε = 5, κ = 0.01 Å−1, (c) 1/4 filling, ε =
3.5, κ = 0.005 Å−1, (d) 3/4 filling, ε = 5, κ = 0.01 Å−1. The blue
and red lines in (a) and (c) represent the majority and minority spins.
The gray dashed lines mark the chemical potentials.

diagram and that the properties of such states are consistent
with experimental observations, we propose that the experi-
mentally observed correlated insulating states at ±1/2 fillings
are the valley-polarized, spin-splitted states exhibiting such
moiré orbital antiferromagnetic order (compensating current-
loop order). Such a valley-polarized correlated insulator state
in the β phase becomes even more robust after including the
effects of nonlocal exchange interactions as will be discussed
in detail in Sec. IV.

At the charge neutrality point (0 filling) with local-
exchange approximation the system stays in a valley-
polarized and spin paramagnetic insulating state for most of
the interaction parameters (ε, κ) [α phase in Fig. 3(b)], in
which the gap varies from 1 meV to 13 meV for different (ε,
κ) parameters. In particular, for physically reasonable dielec-
tric constant ε ∼ 3–5, and κ ∼ 0.005 Å−1, the calculated gap
in the α phase ∼1–5 meV, which is in qualitative agreement
with the measured transport gap ∼0.86 meV [2]. As shown in
Table I, the α phase breaks both C2z and T symmetries but pre-
serves the combined C2zT symmetry, which prohibits anoma-
lous Hall effect but may exhibit nonlinear optical responses
as discussed above. The insulating states in the α phase are
also orbital antiferromagnetic states with opposite circulating
currents and staggered magnetic fluxes on the moiré length
scale. The current-density pattern and the distributions of the
magnetic fields are similar to that at 1/2 filling as shown in
Fig. 4(a). The dominant order parameters for the correlated in-
sulator in the α phase at the charge neutrality point are τzs0σ0

and τzs0σx. At 1/4 filling, the system mostly stays in a metallic
β phase as shown in Fig. 3(c), which breaks global spin SU (2)
and preserves C2zT symmetry. At 3/4 filling, without the
alignment of the hBN substrate, the system remains as a valley
polarized metal (α phase) preserving C2zT symmetry for most
of the interaction parameters as shown in Fig. 3(d).

The band structures of the HF ground states with local-
exchange approximations at different integer fillings are
shown in Fig. 5. In Fig. 5(a), as discussed above, we show the
HF band structure at 1/2 filling with ε = 3.5, κ = 0.005 Å−1,
where the blue and red lines denote the majority and minority

spin spices. As discussed above, although there are nonvan-
ishing spin splittings, the spin character of the valence-band
maximum (conduction-band minimum) of the Hartree-Fock
band structure is opposite the majority (minority) spin of the
system. As a result, the gap still decreases in response to
external magnetic field due to spin Zeeman effect as shown
in the inset of Fig. 3(a). The HF band structure at 0 fill-
ing with ε = 5, κ = 0.01 Å−1 is shown in Fig. 5(b). The
valley-polarized order parameters τzs0σ0 and τzs0σx open a
gap at the charge neutrality point, leading to an insulating
state ∼10 meV, which breaks both C2z and T symmetries but
preserves the C2zT symmetry. In Fig. 5(c) we show the spin-
resolved HF band structure at 1/4 filling with ε = 3.5, κ =
0.005 Å−1. The system is in a valley and spin-split metallic
state. In Fig. 5(d) we show the HF band structure at 3/4 filling
with ε = 5, κ = 0.01 Å−1, in which the bands are valley split
but the spin degeneracy is preserved.

B. Quantum anomalous Hall effects in hBN-aligned TBG

We continue to study the magic-angle TBG system aligned
with hBN substrate at different integer fillings in the local-
exchange approximation. When hBN is aligned with TBG,
the boron (nitrogen) atom is below the A(B) sublattice of the
bottom-layer graphene, which imposes a staggered sublattice
potential � ≈ 15 meV on the bottom layer graphene. As a
consequence, each valley of TBG no longer preserves the
C2zT symmetry, and the anomalous Hall effect and orbital
ferromagnetism are expected to show up once the system
becomes valley polarized. Once such a staggered sublattice
potential (also known as the “Dirac mass term”) is included
(see Appendix B), our calculations indicate that the valley-
polarized states are energetically favored over the IVC states
for most of the (κ, ε) parameters at all integer fillings.

Quantum anomalous Hall effects with the Chern number
±1 have been experimentally observed at 3/4 filling of the
flat bands in hBN-aligned TBG around the magic angle [7]. In
order to understand such intriguing QAH effect at 3/4 filling
and the crucial role of the alignment of the hBN substrate
[7,21], we have calculated the HF ground states at ±3/4 filling
of the flat bands in magic-angle TBG with local-exchange ap-
proximation. When the staggered sublattice potential � = 0,
the HF ground states at 3/4 filling are mostly the valley-
polarized and spin degenerate metallic states in the α phase
[see Fig. 3(d)] with vanishing AHC, which is prohibited by
C2zT symmetry. The situations are drastically different when
an hBN substrate is aligned with the TBG system. When the
staggered sublattice potential on the bottom layer graphene
� = 15 meV, the calculated AHC of the HF ground states
(with local-exchange approximation) at 3/4 and −3/4 fillings
are presented in Figs. 6(a) and 6(b), respectively. In addition
to the valley-split metallic phase (αM phase), for some inter-
mediate interaction parameters (κ , ε) the ground state can be
a QAH insulator with the Chern number ∓1 as marked by
“C = −1 QAH” and “C = 1 QAH” in Figs. 6(a) and 6(b).
Such QAH states emerge in the βM phase when both T and
global spin SU (2) symmetry are spontaneously broken, i.e.,
when the system exhibits both orbital and spin ferromagnetic
ordering. It is interesting to note that given the same valley
polarization, the orbital magnetizations in the C = −1 and
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FIG. 6. The calculated anomalous Hall conductivities (in units
of e2/h) of the Hartree-Fock ground states for TBG aligned with
hBN substrate with local-exchange approximation: (a) at 3/4 filling,
(b) at −3/4 filling, (c) at 1/2 filling, and (d) at −1/2 filling. The
insets schematically show the hysteresis loops of the QAH effects at
different fillings.

C = 1 QAH insulating states at 3/4 and −3/4 fillings have
the same sign (both ∼5–10 μB per moiré supercell). It fol-
lows that if the orbital magnetizations at ±3/4 fillings are
both polarized along +z direction by external magnetic fields,
the AHCs at the opposite fillings would be opposite in sign,
thus the system would exhibit hysteresis loops with exactly
opposite chiralities at −3/4 and 3/4 fillings as schematically
illustrated in the insets of Figs. 6(a) and 6(b). The opposite
hysteresis loops at electron and hole fillings would be an
important experimental signature for the QAH phenomena
in TBG. Including the nonlocalness of the exchange interac-
tions would significantly enhance the spin polarization, which
greatly enlarges the area of the C = ∓1 QAH phase in the (κ ,
ε) parameter space, which will be discussed in detail in the
following section.

In Figs. 6(c) and 6(d) we show the calculated AHC (in
units of e2/h) of the HF ground states at 1/2 and −1/2
fillings of the hBN-aligned TBG with local-exchange approx-
imation. The ground states are C = ∓2 QAH insulating states
at ±1/2 filling for intermediate interaction strengths. When
the interaction is weak, i.e., with large ε and large κ , the
system becomes a valley-splitted “Chern metal” characterized
by large but nonquantized AHC, as shown in the upper-right
corner of Fig. 6(b). Both the C = ±2 QAH states and the
Chern-metal states are in the αM phase, which spontaneously
breaks T symmetry. Moreover, since C2z is already broken in
the noninteracting Hamiltonian of hBN-aligned TBG, C2zT
symmetry is also broken, giving rise to the QAH effects in
the valley polarized states. On the other hand, the αM phase
preserves all the continuous symmetries including the spin
SU (2) symmetry (see Table I). It follows that the C = ±2
QAH states in the αM phase are orbital ferromagnetic and
spin paramagnetic states. Such states exhibit large orbital

magnetization ∼5–10 μB per moiré supercell, which can be
stabilized by out-of-plane magnetic fields by virtue of the or-
bital magnetic Zeeman effect but could be strongly suppressed
by in-plane magnetic field due to the (interaction-enhanced)
spin Zeeman effect [41]. The C = ∓2 QAH states at ±1/2
fillings also exhibit hysteresis loops with opposite chiralities
as discussed above. The orbital ferromagnetic states exhibit
chiral current loops circulating in the AA region as shown in
Fig. 4(b), which generate magnetic fields peaked in the AA
region, with the maximal amplitude ∼0.6 Gauss. It should be
noted again that the results presented in Fig. 6(b) are based on
local-exchange approximation. Including the nonlocalness of
the exchange interaction would significantly enhance the spin
polarization of the system, such that a topologically trivial
insulating state with both valley and spin polarizations would
dominate over the C = ±2 QAH state at 1/2 filling. More
details will be discussed in Sec. IV.

IV. PHASE DIAGRAMS WITH NONLOCAL EXCHANGE
INTERACTIONS

Having established the phase diagrams at various fillings
with local-exchange approximations, we continue to study the
effects of nonlocal exchange interactions. Since the nonlocal
Fock operator OF

γ γ ′ (r) correlates two electrons separated by a
finite displacement vector r, its Fourier transform OF

γ γ ′ (k) =∫
dr eik·r OF

γ γ ′ (r) acquires nontrivial k dependence. There-
fore, in principle, the Fock order parameters at each k point
has to be treated as independent variational parameters, which
eventually yields more than ten thousands independent vari-
ational parameters for each calculation. This is beyond our
computational capability. In order to resolve this problem, we
assume the Fock order parameters OF

γ γ ′ (k) have some simple
analytic dependence on k. In particular, we assume OF

γ γ ′ (k)
decays in a Gaussian form with respect to |k|, i.e.,

OF
γ γ ′ (k) = OF,(0)

γ γ ′ e−κF |k|2L2
s , (4)

where OF,(0)
γ γ ′ represents the k independent Fock order parame-

ters in the valley, spin, sublattice space, Ls is the moiré lattice
constant, and κF is a dimensionless parameter characterizing
the spread of the Fock order parameters in k space. κF will
be treated as an extra free parameter in the nonlocal-exchange
Hartree-Fock calculations to be determined variationally.

A. Correlated insulators at zero and half fillings
in TBG without hBN alignment

We first consider the correlated insulator phases in TBG
without hBN alignment. In Fig. 7 we show the indirect gaps of
the HF ground states including nonlocal exchange interactions
at (a) 1/2, (b) 0, (c) 1/4, and (d) 3/4 fillings, respectively.
Comparing Fig. 7 with Fig. 3, we see that the phase diagrams
with nonlocal and local exchange interactions are qualitatively
consistent with each other. A minor difference is that the
valley polarized correlated insulators in the β phase at 1/2
filling and in the α phase at 0 filling occupy larger areas
in the (κ , ε) parameter space in the nonlocal HF calcula-
tions. Therefore, the conclusions drawn in Sec. III that the
nature of the correlated insulators at 0 and 1/2 fillings are
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FIG. 7. The indirect gaps (in units of eV) of the Hartree-Fock
ground states with nonlocal exchange interactions for magic-angle
TBG (without hBN alignment): (a) at 1/2 filling, (b) at 0 filling, (c) at
1/4 filling, (d) at 3/4 filling.

valley polarized states with compensating moiré current-loop
order are reinforced by the HF calculations including nonlocal
exchange interactions. The other minor difference between the
local and nonlocal exchange calculations is that the nonlocal
exchange tends to enhance the bandwidth of the low-energy
bands due to the exchange-hole effect: Two electrons with
the same flavor degrees of freedom have to avoid meeting
with each other in real space due to Pauli exclusion principle,
which effectively amplifies the kinetic energy. As a result,
the calculated indirect gaps of the correlated insulator phases
including nonlocal exchange are smaller than those obtained
from local-exchange calculations.

The correlated insulator phase at 1/2 filling (β phase)
exhibits both valley and spin polarizations. However, by virtue
of the exchange-hole effects, the low-energy flat bands be-
come more dispersive such that the spin character of the VBM
near �s are opposite to the majority spin. As a result, despite
the nonzero spin polarization, the energy gap of the HF ground
state still decreases linearly in response to external magnetic
field due to spin Zeeman effect, which is consistent with ex-
perimental observations [1]. On the other hand, the correlated
insulator at the CNP in the α phase is valley polarized and spin
degenerate states. The correlated insulators at both 1/2 filling
and the CNP exhibit the compensating current-loop pattern
and staggered orbital magnetic fluxes in the moiré supercell
as shown in Fig. 4(a), which are expected to exhibit nonlinear
optical responses as discussed in Sec. III A.

At 1/4 and 3/4 fillings, the HF ground states with non-
local exchange interactions shown in Figs. 7(c) and 7(d) are
also metallic β and α phases for most of the interaction
parameters (κ , ε), which are consistent with those calculated
by local-exchange approximation as shown in Figs. 3(c) and
3(d). For strong Coulomb interactions, at 1/4 filling the C2zT
symmetry can be broken spontaneously, leading to a C = ±1
QAH insulating state with co-existing VP-type and IVC-type
order parameters, with the VP-type order being dominant.

This is marked asthe ε + Y phase as shown in the lower-left
corner of Fig. 7(c) [51]. At 3/4 filling, without the staggered
sublattice potential, the C2zT -broken C = ±1 QAH phase is
a metastable phase for strong Coulomb interactions, but its
energy is typically higher than that of the other phase with
coexisting IVC-type and VP-type order parameters dubbed
as “γ + ε” phase in the lower-left corner of Fig. 8(d). The
co-existing γ + ε phase turns out to be either metallic or in-
sulating with zero Chern number, thus the C = ±1 QAH state
is unstable for TBG at 3/4 filling without hBN alignment.
This is consistent with the fact that the C = ±1 QAH effect
can be observed at 3/4 filling only when the hBN substrate
becomes aligned with the TBG sample [7,21]. It is worth-
while to note that although resistivity peak (which decreases
with temperature) has been observed at 3/4 fillings in trans-
port measurements [2], it is not necessarily associated with
a correlated insulator. Instead, a resistivity peak can also be
contributed by van Hove singularity due to the large density of
states and reduced Fermi velocity. Detailed Hall density anal-
ysis reveals that the resistivity peak at 3/4 filling is actually
contributed by van Hove singularity without gap opening [42].

B. Quantum anomalous Hall states in hBN-aligned TBG

We continue to study the correlated insulator phases and
quantum anomalous Hall effects in hBN-aligned TBG. In
Figs. 8(a) and 8(b) we show the AHC of the Hartree-Fock
ground states including nonlocal exchange effects at 3/4 and
1/4 fillings, respectively. At 3/4 filling, the area of the QAH
phase with Chern number −1 is significantly extended com-
pared with that from local-exchange calculations [compare
Fig. 6(a) with Fig. 8(a) ]. It turns out that the spin polarization
has been significantly enhanced by the nonlocal exchange
interactions, which is essential in opening a topologically
nontrivial gap at 3/4 filling in hBN-aligned TBG. The QAH
state at 3/4 filling is a orbital and spin ferromagnetic state with
dominant order parameters τ0s0σ j , τ0szσ j , τzs0σ j , and τzszσ j

( j = 0, x, z). At 1/4 filling, surprisingly, we find that for
relatively strong Coulomb interactions [lower left corner of
Fig. 8(b)], the ground state is also a C = −1 QAH state with
co-existing γM and βM phases. Such a state is different from
that at 3/4 filling in the sense that it is a state with co-existing
VP-type and IVC-type order parameters. Both types of order
parameters are crucial in opening a topologically nontrivial
gap. This implies that QAH effect with Chern number ±1
could be observed at 1/4 filling of hBN aligned as well.

At 1/2 filling, the HF ground states with nonlocal exchange
interactions are drastically different from those obtained with
local-exchange approximation. In Fig. 8(c) we show the in-
direct gaps of the HF ground states with nonlocal exchange
interactions at 1/2 filling of hBN-aligned TBG. For interme-
diate and/or strong Coulomb interactions, the system stays
in correlated insulating states in the βM phase with zero
Chern number. The C = −2 QAH states obtained from local-
exchange approximation [Fig. 6(b)] are suppressed by the
large spin polarizations induced by the nonlocal exchange in-
teractions. In other words, at 1/2 filling the system undergoes
a transition from a valley polarized and spin degenerate QAH
insulator to a valley and spin polarized trivial insulator due
to the inclusion of nonlocal exchange effects. Experimentally
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FIG. 8. The anomalous Hall conductivities (in units of e2/h) and indirect gap (in units of eV) of the Hartree-Fock ground states with
nonlocal exchange interactions for hBN-aligned TBG at the magic angle: (a) AHC at 3/4 filling, (b) AHC at 1/4 filling, and (c) indirect gap at
1/2 filling.

QAH effect with Chern number −1 has been observed at 3/4
filling in hBN-aligned TBG around the magic angle, but no
anomalous Hall signal has been observed at 1/2 filling [7,21].
This is fully consistent with our Hartree-Fock calculations
including nonlocal exchange interactions. By virtue of an
approximate particle-hole symmetry for the low-energy bands
of TBG, we have only calculated the phase diagrams including
nonlocal exchange interactions at electron fillings. The phase
diagrams at the hole fillings are similar to those at the elec-
tron fillings with opposite anomalous Hall conductivities and
Chern numbers (if any).

V. DISCUSSIONS

In the actual TBG system encapsulated by hBN, the ef-
fective dielectric constant is induced by the surrounding hBN
with ε ∼ 4–5. It is difficult to determine the actual screening
length, but according to our nonlocal-exchange HF calcu-
lations it seems that a reasonable value which successfully
reproduces the experimental phenomena at most of the integer
fillings is κ ∼ 0.004–0.005 Å−1. In Table III we identify the
correlated phases at each integer filling for TBG without hBN
alignment. We find that with ε = 4.5 and κ = 0.005 Å−1, the
correlated insulator states at most fillings can be explained
very well. Recently, a cascade of phase transitions have been
observed at all integer fillings of TBG at the magic angle
[43,44]. STM and compressibility measurements show that at
integer fillings of the flat bands, the electrons tend to fully
occupy one of the fourfold degenerate flat bands, lifting the
flavor (valley and spin) degeneracy. These observations are
fully consistent with our calculations presented above.

The correlating insulating states and the quantum anoma-
lous Hall phenomena presented in this paper are all at the
magic angle θ = 1.05◦. Indeed these phenomena are very
sensitive to the twist angle. Our calculations indicate that

TABLE III. Correlated phases for TBG without hBN alignment
with ε = 4.5 and κ = 0.005 Å−1.

filling −3/4 −1/2 −1/4 0 1/4 1/2 3/4

phase α β α α α β α

I/M M I M I M I Ma

a“I” for insulator, “M” for metal.

both the correlated insulating states and the QAH effects
discussed above appear only at the magic angle. If the twist
angle deviates from the magic angle, the bandwidth would be
significantly enhanced. As a result, for the same interaction
parameters ε and κ , the Coulomb interactions are no longer
strong enough to open a global gap, and the system becomes
metallic. We refer the readers to Supplemental Material for
more details about the twist-angle dependence of the corre-
lated insulating states and the QAH effects.

To conclude, using a generic unrestricted moiré Hartree-
Fock variational method, we have successfully explained the
correlated insulating states and the QAH phenomena at most
integer fillings in the TBG system. We propose that the cor-
related insulating states observed at ±1/2 fillings and at the
charge neutrality point are the valley polarized insulating
states which break both C2z and T symmetries but preserve
C2zT symmetry. Such correlated insulating states are moiré
orbital antiferromagnetic states exhibiting opposite circulating
current loops on an emergent honeycomb lattice in the moiré
supercell. Within the same theoretical framework, we have
also successfully explained the C = ±1 QAH effects at 3/4
fillings. The QAH states at electron and hole fillings exhibit
hysteresis loops with opposite chiralities, which is a unique
feature for the QAH effects in TBG. We also predict the
possible C = ∓1 QAH state at ±1/4 fillings and C = ∓2
QAH states at ±1/2 fillings in hBN-aligned TBG. Our work
is a significant step forward in understanding the correlation
effects and band topology in twisted bilayer graphene and
may provide useful guidelines for future experimental and
theoretical studies.
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APPENDIX A: THE MOIRÉ SUPERLATTICE STRUCTURE

As discussed in the main text, the commensurate moiré
pattern is formed when the top-layer graphene is rotated with
respect to the bottom layer by the angle θ (m), where m is
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an integer obeying the condition cos θ (m) = (3m2 + 3m +
1/2)/(3m2 + 3m + 1) [38]. There are periodic modulations
of the AA, AB, and BA regions in the moiré pattern. In the
AA region, the A (B) sublattice of the top layer is roughly
on top of the same sublattice of the bottom layer, while in
the AB (BA) regions, the B(A) sublattice of the top layer is
roughly on top of the A(B) sublattice of the bottom layer.
The lattice vectors of the moire superlattice can be chosen as
t1 = [

√
3Ls/2, Ls/2] and t2 = [

√
3Ls/2,−Ls/2], where Ls =

|t1| = a/(2 sin θ/2) is the superlattice constant of the moire
supercell, and a = 2.46 Å is the lattice constant of monolayer
graphene. The corresponding moiré reciprocal lattice vectors
g1 = [2π/(

√
3Ls), 2π/Ls] and g1 = [2π/(

√
3Ls),−2π/Ls].

After the twist, the K (K ′) points of the two monolayers K1

(K ′
2) and K2 (K ′

1) are mapped to the Ks and K ′
s points of the

moiré supercell Brillouin zone (BZ), as shown in Fig. 1(a).
It is worth noting that the interlayer distance in TBG varies
in real space [45]. As schematically shown in Fig. 1(a), in the
AB(BA) region the interlayer distance dAB ≈ 3.35 Å, while the
interlayer distance dAA ≈ 3.6 Å [46] in the AA-stacked region.
Such atomic corrugations can be modeled as [15]

dz(r) = d0 + 2d1

3∑
j=1

cos ( b j · δ(r) ) , (A1)

where d0 = 3.433 Å and d1 = 0.0278 Å. b1 =
(2π/a, 2π/(

√
3a)), b2 = (−2π/a, 2π/(

√
3a)), and

b3 = b1 + b2 are the three reciprocal lattice vectors of
monolayer graphene. δ(r) is a 2D vector indicating the
local in-plane shift between the carbon atoms in the two
layers around position r in the moiré supercell. In the AA
region δ ≈ (0, 0) while in the AB region δ ≈ (0, a/

√
3). The

corrugations would increase the intersublattice component
of the interlayer coupling and decrease the intrasublattice
component of the interlayer coupling.

APPENDIX B: THE NONINTERACTING CONTINUUM
HAMILTONIAN

The low-energy states of TBG can be well described by
the continuum Hamiltonian proposed in Ref. [12], which is
expressed as:

H0
μ =

(−h̄vF
(
k − Kμ

1

) · σμ U †
μ

Uμ −h̄vF
(
k − Kμ

2

) · σμ

)
, (B1)

where the upper and lower diagonal blocks denote the Dirac
fermions in the first and second graphene layers, where Kμ

1
and Kμ

2 are the Dirac points in the first and second graphene
layers. σμ = [μσx, σy], μ = ± is the valley index, with K− =
K and K+ = K ′. Uμ(r) denotes the interlayer coupling for the
μ valley:

Uμ(r) =
(

u0gμ(r) u′
0gμ(r + μrAB)

u′
0gμ(r − μrAB) u0gμ(r)

)
e−iμ�K·r ,

(B2)
where rAB = (

√
3Ls/3, 0). u′

0 and u0 denote the intersub-
lattice and intrasublattice interlayer coupling parameters,
and u0 < u′

0 if the effects of atomic corrugations are taken
into account [15]. In particular, in our calculations u0 =
0.0797 eV, u′

0 = 0.0975 eV. The phase factor g(r) is defined

as gμ(r) = ∑3
j=1 e−iμq j ·r, with q1 = (0,−4π/3Ls), q2 =

(−2π/
√

3Ls,−2π/3Ls), and q3 = (2π/
√

3Ls,−2π/3Ls).
�K = K2 − K1 = [0, 4π/(3Ls)]. In addition to the Uv (1) ×
SU (2) × SU (2) symmetry as discussed in the main text, the
continuum model of each valley has the symmetry generators
C3z, C2zT , and C2x, where T is the time-reversal operation for
spinless fermions (i.e., complex conjugation). The two valleys
can be mapped to each other by T , C2z, or C2y operations.

We also consider the situation that TBG is placed on top of
an hBN substrate, which is aligned with the bottom graphene
layer. This is actually the device used in Refs. [21] and [7],
in which (quantum) anomalous Hall effect has been observed
at 3/4 filling of the conduction flat band around the magic
angle. The aligned hBN substrate imposes two effects on the
electronic structures of TBG. First, the alignment of the hBN
substrate with the bottom graphene layer would impose a
staggered sublattice potential on the bottom layer graphene
and break the C2z symmetry, which opens a gap at the Dirac
points of the flat bands of TBG. Actually the two flat bands
per spin for the K valley acquires nonzero Chern numbers ±1
(∓1 for the K ′ valley) once a gap is opened up at the Dirac
points. Second, the hBN substrate would generate a new
moiré pattern, which approximately has the same period as
the one generated by the twist of the two graphene layers, but
they are orthogonal to each other [47]. However, the moiré
potential generated by the hBN substrate is one order of
magnitude weaker than that generated by the twist of the two
graphene layers [47,48], which only generate some additional
subbands below and above the flat bands of TBG [7,21].
Therefore, it is a good approximation to neglect the moiré
potential generated by the hBN substrate. This is actually
the approximation widely adopted in previous theoretical
studies [31,32]. With such an approximation, the effective
Hamiltonian for the hBN-aligned TBG system is simplified as

Hμ = H0
μ + Hmass, (B3)

where Hmass is the “Dirac mass” term at the bottom layer
graphene generated by the hBN substrate, which is expressed
as

Hmass =
(

�σz 0
0 0

)
. (B4)

� = 15 meV is the staggered sublattice potential exerted on
the bottom graphene layer. The Hmass term would break the
C2zT symmetry associated with each valley, which we will
show is crucial in generating the anomalous Hall effect and
orbital ferromagnetism.

APPENDIX C: THE MOIRÉ HARTREE-FOCK
FORMALISM

The Coulomb interactions between the electrons in TBG
can be expressed in momentum space as

HC = 1

2Ns

∑
αα′

∑
kk′q

∑
σσ ′

V (q) ĉ†
k+qασ ĉ†

k′−qα′σ ′ ĉk′α′σ ′ ĉkασ ,

(C1)

where k is the atomic wave vector expanded around the
Dirac point in monolayer graphene, which can be written as

035427-10



THEORIES FOR THE CORRELATED INSULATING STATES … PHYSICAL REVIEW B 103, 035427 (2021)

k = k̃ + G, where k̃ denotes the wave vector with the moiré
Brillouin zone and G is a moiré reciprocal lattice vector. α

is the combined layer and sublattice index, and σ is the spin
index. c†

kασ and ckασ represent the creation and annihilation
operators of the Dirac fermions. Ns is the total number of
moiré supercells in the entire system. V (q) is the Fourier
transform of the Coulomb interaction

V (q) = 1

�M

∫
dr

e2 e−κ|r|

4πεε0|r|e−iq·r, (C2)

where �M is the area of the moiré supercell, κ is introduced as
the inverse screening length, and ε is the background dielec-
tric constant. κ and ε will be treated as two free parameters in
the calculations presented in the main text.

If we are interested in the low-energy states around the
Dirac points K and K ′ in graphene, the Dirac fermions can
be assigned with the valley index μ = ±1. One can redefine
the wave vectors k and k′ as those expanded around the Dirac
point Kμ, then the Coulomb interactions in Eq. (C1) can be
divided into the intravalley term H intra

C and the intervalley term
H inter

C ,

H intra
C = 1

2Ns

∑
αα′

∑
μμ′,σσ ′

∑
kk′q

V (q)

× c†
k+q,μσαc†

k′−q,μ′σ ′α′ck′,μ′σ ′α′ck,μσα (C3)

and

H inter
C = 1

2Ns

∑
αα′

∑
μ,σσ ′

∑
kk′q

V (|K − K′|)

× c†
k+q,μσαc†

k′−q,−μσ ′α′ck′μσ ′α′ck,−μσα. (C4)

Equation (C3) represents the Coulomb scatterings of two elec-
trons which are created and annihilated in the same valley,
while Eq. (C3) represents some kind of “pair-hopping” pro-
cess in momentum space in which two electrons are created
in μ and −μ and get annihilated in −μ and μ valleys. The
characteristic interaction strength of H intra

C is V (q = |g1|) ≈
100/ε meV, while the characteristic interaction strength of
the intervalley term is V (|K − K′|) ≈ 1.7/ε meV at the magic
angle, where ε is the dielectric constant. We thus expect the
intravalley interaction would dominate over the intervalley
term. The intravalley term H intra

C preserves the valley charge
conservation and the separate spin rotational symmetry of
each valley, i.e., the Uv (1) × SU (2) × SU (2) symmetry; but
the H inter

C term only preserves the valley charge conservation
and a global SU (2) symmetry, i.e., the Uv (1) × SUg(2) sym-
metry.

Now we make Hartree-Fock approximations to Eq. (C3)
and Eq. (C4). The Hartree term of H intra

C reads

H intra
H = 1

Ns

∑
μσ

∑
kα

∑
Q

OH (Q) c†
k+Q,μσαck,μσα, (C5)

where the Hartree order parameter OH (Q) associated with the
moiré reciprocal lattice vector Q is:

OH (Q) =
∑

k′μ′σ ′α′
V (Q)〈c†

k′−Q,μ′σ ′α′ck′,μ′σ ′α′ 〉. (C6)

The Hartree potential OH (0) represents a spatially homoge-
neous constant electrostatic potential, which is expected to be

FIG. 9. The dependence of the Fock order parameters
OF,zz

0 (k, Q) and OF,xy
0 (k, Q) on atomic wave vector k and

moiré reciprocal lattice vector Q. (a) and (b): The k dependence
of the |Q| = 0 Fock order parameters OF,zz

0 (k, |Q| = 0) and
OF,xy

0 (k, |Q| = 0), in units of eV. kx and ky are in units of the
moire reciprocal lattice constant qM = 4π/(

√
3Ls ). (c) and (d):

OF,zz
0 (k, |Q| = 0) and OF,xy

0 (k, |Q| = 0) plotted along the vertical
dashed line passing through the Ms point shown in (a) and (b). The
blue circles in (c) and (d) represent the actual calculated data, and
the blue lines represent Gaussian fittings to the actual data. (e) and
(f): The |Q| dependence of OF,zz

0 (k, Q) and OF,xy
0 (k, Q) at k = Ms

[OF,zz
0 (Ms, Q) and OF,xy

0 (Ms, Q)], in units of eV.

canceled by some positive charge background in the system,
thus is dropped in our calculations. Then the leading-order
Hartree terms are the six first-neighbor OH (Q) terms with
|Q| = 4π/(

√
3Ls).

The Fock term of Eq. (C3) is expressed as

H intra
F = − 1

Ns

∑
μσα,μ′σ ′α′

∑
k,Q

OF,intra
μ′σ ′α′,μσα (k, Q)

× c†
k+Q,μσαck,μ′σ ′α′ , (C7)

where the Fock order parameter

OF,intra
μ′σ ′α′,μσα (k, Q) =

∑
k′

V (|k + Q − k′)〈c†
k′−Q,μ′σ ′α′ck′,μσα〉.

(C8)
Before proceeding, we first check how the Fock self-energy

depends on the atomic wave vector k and the moiré reciprocal
lattice vector Q. In Figs. 9(a)–9(c), we show two calculated
“one-step” Fock order parameters:

OF,i j
0 (k, Q) = 1

NM

∑
k′

∑
μ,μ′,s,s′,l

V (|k + Q − k′)

× 〈
c†

k′−Q,μlsτ
i
μμ′σ

j
ss′ck′,μ′ls′

〉
0 , (C9)
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where c†
k′−Q,μls and ck′,μ′ls′ represent creation and annihilation

operators of electrons, with μ, l , and s being the valley, layer,
and sublattice indices. 〈...〉0 stands for the expectation value
calculated using the Bloch states of the continuum model with
a constant (k independent) Fock self-energy �0τ

iσ j (�0 is
chosen as 10 meV) being applied, and the chemical potential
is fixed at zero filling. τ i and σ j are the Pauli matrices in the
valley and sublattice space (i, j = 0, x, y, z). In other words,
OF,i j

0 (k, Q) represents the “one-step” Fock order parameter
(without self consistency), which is calculated exactly without
any assumption using Eq. (C9). In Figs. 9(a) and 9(b) we
show the magnitudes of OF,zz

0 (k, Q = 0) and OF,xy
0 (k, Q = 0)

in the 2D plane of the atomic wave vector k = centered at
the untwisted graphene Dirac point K , which is folded to
the moire Ms point as marked by the red dot in Figs. 9(a)
and 9(b). OF,zz

0 (k, Q) is a valley-sublattice polarized order,
while OF,xy

0 (k, Q) is the “Kramers intervalley coherent order”
proposed in Ref. [36]. We see that both of the “one-step”
Fock order parameters are exponentially localized near the
untwisted Dirac point K (Ms). This is because OF,zz

0 (k, Q = 0)
and OF,xy

0 (k, Q = 0) are calculated using the Hamiltonians
with constant (k independent) Fock order parameters �0τ

zσ 0

and �0τ
xσ y (�0 = 10 meV) applied to the noninteracting

continuum model, which open gaps at the charge neutrality
point. The Fock self-energy of such gapped states thus decays
exponentially in k space. We expect such a behavior is generic
for all gapped states, therefore we fit the k dependence of the
Fock order parameter using a Gaussian function as given by
Eq. (4) in the main text.

In Figs. 9(c) and 9(d), we plot the magnitudes of
OF,zz

0 (k, Q = 0) and OF,xy
0 (k, Q = 0) as a function of ky at

kx = qM/2 [along the gray dashed line passing through Ms

in Figs. 9(a) and 9(b)], where qM = 4π/(
√

(3)Ls). The blue
circles in Figs. 9(c) and 9(d) are the actual data calculated
using Eq. (C9), while the blue lines represent Gaussian fit-
tings to the calculated data. We see that the Gaussian fitting
works well for both type of orders, thus it is legitimate to
assume that OF,μ

0 (k, Q = 0) decays with |k| in a Gaussian
form especially for gapped states. In Figs. 9(e) and 9(f) we
show the |Q| dependence of OF,zz

0 (k, Q) and OF,xy
0 (k, Q) at

k = Ms. It is clearly shown that magnitudes of OF,zz
0 (Ms, Q)

and OF,xy
0 (Ms, Q) decay rapidly with the increase of |Q|: It

drops from 47 meV (16 meV) to 2.7 meV (0.5 meV) when
|Q| is increased from zero to qM for OF,zz

0 (OF,xy
0 ).

It follows from Figs. 9(e) and 9(f) that the |Q| �= 0 Fock
terms are negligible compared with the |Q| = 0 term. There-
fore, it is an excellent approximation to keep only the |Q| = 0
term of OF,intra

μ′σ ′α′,μσα (k, Q), i.e.,

H intra
F ≈ − 1

Ns

∑
μσα,μ′σ ′α′

∑
k

OF,intra
μ′σ ′α′,μσα (k, Q = 0)

× c†
k,μσαck,μ′σ ′α′ . (C10)

Moreover, according to the Gaussian-like decay behavior
shown in Figs. 9(c) and 9(d), we further assume that the k
dependence of the Fock order parameter OF,intra

μ′σ ′α′,μσα (k) can be
described by a simple Gaussian function as shown in Eq. (4)
in the main text. As already discussed in the main text, we also

assume that the Fock order parameters are independent of the
layer index, since the two layers have already been equally
mixed by the moiré potential to give rise to the noninteracting
flat bands at the magic angle [20]. Therefore, in the end, the
intravalley Fock terms are dependent on the valley, spin, and
sublattice indices, which have 64 independent order parame-
ters. The spread of the Fock order parameters in k space is
considered as an extra variational parameter.

Next we consider the Fock term of H inter
C , which can be

expressed as

H inter
F = − 1

Ns

∑
k

∑
μσσ ′αα′

∑
k

OF,inter
μσα,μσ ′α′ c†

k,−μσ ′α′ck,−μσα,

(C11)
where

OF,inter
μσα,μσ ′α′ =

∑
k′

V (|K − K′|)〈c†
k′,μσα

ck′,μσ ′α′ 〉. (C12)

Note that Eq. (C12) is vanishing for intervalley coherent
(IVC) types of orders which break the valley charge conserva-
tion. Therefore, neglecting the Hartree term of the intervalley
interaction, only the intravalley interaction would give rise to
the IVC states, which break the valley charge conservation
[Uv (1) symmetry] and the relative spin rotational symmetry
of the two valleys [SUv (2) symmetry].

We define the Hartree-Fock operator as VHF = H intra
H +

H intra
F + H inter

F , and the total mean-field Hartree-Fock Hamil-
tonian HMF = ∑

μ,σ Hμ + VHF, which is just Eq. (3) in the
main text. In particular, in Eq. (3), H0 = ∑

μ,σ Hμ is the
noninteracting Hamiltonian for TBG, Hμ is just the spin-
independent continuum Hamiltonian for valley μ given by
Eqs. (B1)–(B3); the Fock operator OF in Eq. (3) includes
both OF,intra and OF,inter. Then we determine the ground-
state wave function |ψ〉 using the mean-field Hamiltonian of
Eq. (3) and treat the Hartree-Fock order parameters OHF =
{OH (Q), OF

μσα,μ′σ ′α′ (k)} discussed above as variational pa-
rameters, which are determined by minimizing the total
energy functional:

ET (OHF) = 〈ψ (OHF)|H0 + HC |ψ (OHF)〉. (C13)

Again, |ψ (OHF)〉 is the ground state of the effec-
tive mean-field Hamiltonian HMF, which are dependent
on the variational Hartree-Fock order parameters OHF =
{OH (Q), OF

μσα,μ′σ ′α′ (k)}. HC is the physical Coulomb inter-
action term given in Eq. (C1). It is worthwhile to note that
k (or k′) in the above equations are wave vectors defined
in the monolayer graphene BZ, which can be rewritten as
k = k̃ + G, where k̃ is the wave vector in the moiré BZ, and G
is a moiré reciprocal lattice vector. Then the above formalism
can be implemented in the plane-wave basis.

To be specific, for each integer filling and each (ε, κ ) pa-
rameter, we perform two self-consistent calculations starting
from different initial wave functions: One starts from a generic
valley-polarized state including all the τ0s jσk and τzs jσk or-
der parameters ( j, k = 0, x, y, z), and the other starts from a
generic intervalley-coherent state including all the τxs jσk and
τys jσk order parameters. We compare the energies starting
from the two different categories of trial states and determine
the ground state. The minimization of energy with respect
to multiple variational parameters is performed by the opti-
mize.minimize function in SciPy using quasi-Newton method.
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Partial derivatives of the total energy with respect to the vari-
ational parameters are expressed in terms of the eigenenergies
and density matrices at each HF iteration and are provided
to the optimize.minimize function. This guarantees that the
iteration process flows along the descending direction of the
total energy and that one would reach a genuine energy mini-

mum at convergence. The massive calculations are performed
on a 3 × 3 k̃ mesh in the moiré Brillouin zone. We have re-
performed calculations for a few representative (ε, κ) points
at each integer filing on a 6 × 6 k̃ mesh and find that the
conclusions are unchanged. The convergence threshold for the
total energy is set to 10−7 eV.
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