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Confinement and edge effects on atomic collapse in graphene nanoribbons
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Atomic collapse in graphene nanoribbons behaves in a fundamentally different way as compared to monolayer
graphene due to the presence of multiple energy bands and the effect of edges. For armchair nanoribbons we find
that bound states gradually transform into atomic collapse states with increasing impurity charge. This is very
different in zigzag nanoribbons where multiple quasi-one-dimensional bound states are found that originates
from the zero-energy zigzag edge states. They are a consequence of the flat band and the electron distribution of
these bound states exhibits two peaks. The lowest-energy edge state transforms from a bound state into an atomic
collapse resonance and shows a distinct relocalization from the edge to the impurity position with increasing
impurity charge.
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I. INTRODUCTION

Atomic collapse is a phenomenon where for sufficiently
large charge of the nuclei bound states can enter the lower
positron continuum and turn into quasibound states [1–4]. If
the bound state is empty this process of entering the neg-
ative continuum is accompanied with the production of an
electron-hole pair. Due to the very large nuclear charge (Ze)
needed in order to induce atomic collapse it was never conclu-
sively detected in experiments [5,6]. However, the discovery
of graphene enabled researchers to approach the atomic col-
lapse problem in a different way. It was shown that due to the
enhanced Coulomb interaction in graphene, atomic collapse
should occur at significantly smaller charge (i.e., Z ≈ 1) as
compared to the original predicted one of relativistic atomic
physics (i.e., Z > 137) [7,8]. Recently, atomic collapse was
detected in four distinct situations: (i) with charged dimers
placed on top of a graphene lattice [9], (ii) a vacancy charged
with a scanning tunneling microscope (STM) tip [10], (iii)
collapse induced by a sharp STM tip [11], and (iv) using an
array of subcritical charges [12].

The experimental observation of atomic collapse together
with its potential use for controlling charge carriers in
graphene is a major motivation to study atomic collapse
in more detail, e.g., by considering different arrangement
of charges and different sample sizes. For example, in
Refs. [13–17] atomic collapse was studied in the presence of
a dipolelike field. Atomic collapse in the presence of multiple
charges of equal strength was studied in Refs. [12,18,19].
Atomic collapse was also investigated in different sys-
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tems [20–25], e.g., in Refs. [24,25] gapped graphene was
considered. In the latter case, atomic collapse was found
to be more analogous to the one predicted for relativistic
atoms. Instead of the sudden appearance of atomic collapse
states as in the gapless case in gapped graphene bound states
gradually turn into atomic collapse states when entering the
hole continuum. Interestingly it was theoretized that atomic
collapse should also occur in gapped one-dimensional (1D)-
Dirac systems [26]. Such a strict 1D Hamiltonian is a rather
crude approximation for graphene nanoribbons demanding for
a more detailed study of the problem.

In this paper we will consider how atomic collapse mani-
fests itself in finite width graphene nanoribbons. It is known
that nanoribbons come in different forms. There are nanorib-
bons with armchair or zigzag edges and within these two types
there can be either a gap or no gap depending on the number
of atomic chains. On top of that the confinement in one of the
spatial directions leads to the appearance of multiple energy
bands. These properties are the reason that the atomic collapse
of bulk graphene will be different in graphene nanoribbons
as we will show in this paper. For example, we found that
the Coulomb potential results in bound states at zigzag edges.
This is unexpected in view of the Klein paradox that electrons
cannot be confined by electrostatic field in zero gap graphene.

II. MODEL

Here we use the tight-binding model which includes the
graphene lattice structure in contrast to the continuum model
used in, e.g., Ref. [26]. For graphene we use the following
tight-binding Hamiltonian:

Ĥ =
∑
〈i, j〉

(ti ja
†
i b j + H.c.)+

∑
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The first term represents the tight-binding Hamiltonian
without any external fields. The hopping parameter is given
by ti j , and for graphene we take the generally accepted value
−2.8 eV for nearest-neighbor hopping. The operators ai(a

†
i )

and bi(b
†
i ) create (annihilate) an electron on the ith site of

sublattices A and B, respectively. The last two terms include an
electrostatic potential which for our case is due to the presence
of a Coulomb charge Ze, which we model by a Coulomb po-

tential V (r) = −β h̄vF /

√
r2 + r2

0 with β = Ze2/κ h̄vF as the
dimensionless coupling constant, vF as the Fermi velocity, and
κ as the effective dielectric constant. We took r0 = 0.5 nm as
a regularization parameter which is a reasonable experimental
value as was shown in Ref. [10]. Without such a regularization
a study of atomic collapse is not possible for a point-size
impurity [27]. In order to solve the tight-binding Hamiltonian
we use the open source software PYBINDING [28]. In all the
calculations we use a broadening of 0.0030 eV, and the units
of the local density of states (LDOS) are [eV nm−2]. A 1000-
nm-long nanoribbon is used to simulate the infinitely long
nanoribbon. For an armchair (zigzag) nanoribbon of width
4.8 nm (5 nm) the system contains 1.8 × 106 (1.9 × 106)
atoms.

III. ATOMIC COLLAPSE IN GRAPHENE

For completeness and for comparison purposes we review
atomic collapse in graphene. In graphene the atomic collapse
effect manifests itself in a different way as compared to rela-
tivistic physics. In relativistic physics bound states inside the
gap region (� = 2m0c2 with m0 as the electron rest mass and
c as the velocity of light) decrease in energy with increasing
value of the nuclear charge. However, if the nuclear charge
is sufficiently large the bound state(s) enters the positron
continuum and hybridize with it. If this happens the bound
state acquires a finite width and turns into a quasibound state
which is called an atomic collapse state. However, in graphene
due to the gapless nature the situation is very different. This
is shown in Fig. 1 where the LDOS at the impurity site is
presented as function of the charge strength β and the energy.
It can be clearly seen that when β > 0.5 resonances appear
just below the Dirac point for which the LDOS exhibits peaks
at the impurity site. These resonances are embedded in the
hole continuum and are, therefore, a clear and distinct sig-
nature for atomic collapse since they represent an electron
state hybridized with the negative continuum. Note that with
increasing value of the charge the resonances move to lower
energies and their width increases.

In the case of graphene nanoribbons the spectrum is dif-
ferent in two fundamental ways: (i) The single conic bands
of graphene are replaced by an infinite number of bands, and
(ii) depending on the width of the ribbon a gap can appear in
the spectrum. In the next section we will discuss how these
changes in the spectrum affect the manifestation of the atomic
collapse effect in graphene nanoribbons.

IV. ATOMIC COLLAPSE IN ARMCHAIR NANORIBBONS

For armchair nanoribbons there are two major types of
ribbons depending on the width of the ribbon [29]: (i) A gap

FIG. 1. Density plot of the LDOS calculated at the impurity site
as a function of energy and impurity strength β for bulk graphene.

in the spectrum is found when the number of atomic chains is
N = 3p or N = 3p + 1 with p as a positive integer. This gap is
proportional to the inverse of the ribbon width. These nanorib-
bons are semiconducting; (ii) when N = 3p + 2 the spectrum
of the nanoribbon is gapless, and these nanoribbons are metal-
lic. However, it was shown in experiments that all the armchair
nanoribbons are semiconducting [30]. This discrepancy can
be explained by including third-nearest-neighbor hopping.
Since all armchair nanoribbons are gapped we will focus on
nanoribbons that are gapped within a nearest-neighbor hop-
ping tight-binding model. Including third-nearest-neighbor
hopping only leads to quantitative corrections making the
metallic nanoribbons very similar to the semiconducting ones.
In Fig. 2(a) an example of a typical LDOS of an armchair
nanoribbon is shown. We calculated the LDOS at the cen-
ter of the armchair nanoribbon with width 4.8 nm. The gap
(� = 0.25 eV) is shown in gray. The cusps in the LDOS are
typical for nanoribbons and a consequence of the 1D nature of
the spectrum and correspond to the onset of a new subband. In
Fig. 2(b) the LDOS is calculated a distance 0.18 nm from the
center of the same nanoribbon in the direction perpendicular
to the nanoribbon length. Figures 2(a) and 2(b) illustrate that
the electron probability corresponding to the different bands
can be zero at some of the carbon rows.

The gap region will allow for impurity bound states. This
is in contrast with gapless pristine graphene where only qua-
sibound states are possible. The effect of such a gap is clearly
shown in Fig. 3(a) for −0.125 < E < 0.125 eV where the
LDOS is measured at the impurity site as a function of the
impurity strength β for an impurity placed at the center of
the nanoribbon. The width of the ribbon taken along the x
direction is chosen to be 4.8 nm, and using the value of
the intercarbon distance acc = 0.142 nm this gives N = 39
atomic chains. When the strength of the charge is gradually
increased a clear and distinct state sinks into the gap region
corresponding to a bound state. The LDOS of this state in-
creases when the charge increases which is due to the fact
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FIG. 2. (a) LDOS measured at the center of an armchair nanorib-
bon of width 4.8 nm. The gray region indicates the gap region where
the LDOS is zero and, consequently, no states are found. (b) The
same, but the LDOS is calculated a distance of 0.18 nm from the
center of the nanoribbon. β = 0 in both cases.

that the state gets localized closer to the impurity. The lowest
bound state inside the gap keeps its bound state character until
the charge reaches β ≈ 1.25. After this the bound state gets
redistributed over the negative continuum states and acquires
a finite width and turns into a resonant state. Note that for
larger β’s more bound states appear in the gap region. All
these bound states turn into resonances when they enter the
negative continuum region.

In Fig. 3(b) we show the LDOS at a distance 0.18 nm away
from the center of the nanoribbon. Interestingly, more states
and bands appear as compared to measuring the LDOS at the
center of the nanoribbon. This behavior can be explained from
the fact that in armchair nanoribbons some states show zero
LDOS for certain rows of atoms as discussed in Ref. [31]. The
symmetric position of the charge in the middle of the ribbon
implies that some states maintain zero LDOS at the center of
the nanoribbon and, consequently, do not show up when cal-
culating the LDOS at the center. This behavior is very similar
to the effect of defects studied in Ref. [31]. In Fig. 3(b) we
note the appearance of an extra band (around E ≈ 0.25 eV)
with a diving series of states which qualitatively behave very
similar to the states inside the gap discussed earlier: They
show a similar dependence on β and turn into quasibound
states when entering the lower continuum.

So far we only studied the energy dependence of the LDOS
at a single atomic position. In Fig. 4 we plot the spatial distri-
bution of the LDOS for the first five electronic states observed
in Fig. 3(a) at β = 1. Figures 4(a)–4(d) correspond to states

FIG. 3. LDOS measured at the impurity position as function of
the charge for a graphene nanoribbon of width 4.8 nm, and this
corresponds to a nanoribbon with N = 39 atomic chains. In (a) the
LDOS is shown for a charge placed in the center of the nanoribbon,
and the LDOS is measured at the impurity site whereas in (b) the
LDOS is measured a distance 0.18 nm away from the impurity in the
direction perpendicular to the nanoribbon.

inside the gap whereas Fig. 4(e) corresponds to the first state
outside the gap and belongs to the next subband. In contrast
to Schrödinger physics with symmetric potentials, here we
do not have even and odd solutions and, therefore, no clear
nodes in the wave functions (or LDOS) are found. The LDOS
exhibits rather a dumbbell character which is made more clear
in Figs. 5(a)–5(d) where we show cuts through the LDOS of
Figs. 4(a)–4(d). The discrete nature of the LDOS reflects the
discrete graphene lattice. These states have some similarity to
the ones found for a strict 1D-Dirac Hamiltonian [26].

In Fig. 3, next to the states located inside the gap region
quasibound states appear that are attached to higher-energy
bands. Those states can be seen in the LDOS as peaks already
at small charge right below the band edge. They hybridize
almost immediately with the underlying continuum acquir-
ing a finite width. Such resonances for positive energy are
not atomic collapse states. An atomic collapse state is a
conduction-band state redistributed over valence-band states
that are located in the negative continuum. The resonances
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FIG. 4. Spatial LDOS for β = 1 of the first five states [see
Fig. 3(a)] with energy: (a) E ≈ −0.12 eV, (b) E = 0.037 eV,
(c) E = 0.086 eV, (d) E = 0.105 eV, and (e) E = 0.272 eV. Red
(white) represents high (zero) LDOS.

observed for positive energy are, therefore, resonant states
but are not related to atomic collapse. These hybridized states
were investigated in Ref. [32] for small β within a continuum
model. Our tight-binding results show that these states should
appear as a clear signature in LDOS measurements with,
e.g., a STM tip. Note that this is related to some states that
were recently predicted for bilayer graphene with a Coulomb
impurity [33]. In Figs. 5(e) and 5(f) the spatial LDOS for
the first quasibound state observed in the positive continuum

FIG. 5. Cut through x = 0 in the y direction for the spatial LDOS
calculations shown in Fig. 4. In (f) also a cut along the x direction for
y = 0 is shown for the state corresponding to (e).

FIG. 6. Cut of the LDOS presented in Fig. 3(a). In (a) the LDOS
is shown for β = 0.5 and in (b) for β = 1.5. As in Fig. 2 the gap is
indicated by the gray region.

in Fig. 3(a) is shown. This state shows no dumbbell-like
distribution but a more 1S-like atomic orbital shape which is
confirmed by a cut of the spatial LDOS shown in Fig. 5(e) for
x = 0. Also a cut for y = 0 is shown next to the latter which
indicates that the state is not confined along the nanoribbon.
Note that in Fig. 3(b) the states below the second energy band
do not hybridize immediately with the underlying continuum.
This behavior is a consequence of the symmetric placement
of the charge. Further in the paper the effect of an asymmetri-
cally placed charge on these states will be investigated.

In Fig. 6 a cut of the LDOS of Fig. 3(a) is shown for two
values of β: (a) β = 0.5 and (b) β = 1.5. For β = 0.5 the gap
region can be clearly seen (denoted by the gray region). Two
bound states are visible inside the gap. At the edge of the gap
region a small peak can be observed which corresponds to
the second bound state. When the charge is further increased
to β = 1.5 the first bound state of β = 0.5 has now entered
the negative continuum turning into a quasibound state with
a sizable width. Inside the gap region an additional number
of bound states appear due to the increased value of the
charge. For energy E > 0.125 eV two resonant states origi-
nating from the first energy band can be observed.

In order to clearly show the bound state to quasibound
state transition seen in Fig. 3(a) we plotted the broadening
of the first and second bound states as a function of the
strength of the charge in Fig. 7. For 0 < β < 1.2 the width
of the first bound state remains clearly constant and small
(≈0.003 eV which is the broadening used in the calculation of
the LDOS) which is representative for a bound state. However,
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FIG. 7. Width of first (blue) and second (red) bound state turning
into a resonant state shown in Fig. 3(a) as a function of the impurity
strength β. The width is defined as the energy range over which the
peak loses 30% of its intensity.

after β ≈ 1.2 the width starts to increase drastically signifying
the transition from a bound state to a quasibound state. The
second bound state (red curve in Fig. 7) turns into an atomic
collapse state at β ≈ 1.8. After the bound state has entered the
continuum its width increases with decreasing energy similar
as in the case of bulk graphene shown in Fig. 1. The results
in Fig. 7, thus, show a distinct bound state to atomic collapse
state transition.

In all the above discussions, the charge was considered to
set at the center of the nanoribbon. The LDOS measured at
the impurity shows less peaks than it was measured 0.18 nm
away from the impurity in Fig. 3. This phenomenon triggers
us to study the effect of the position of the charge on the
spectrum. The corresponding LDOS is shown in Fig. 8 for
the same nanoribbon as the one in Fig. 3 but now for a charge
placed 0.5 nm from the center of the nanoribbon in Fig. 8(a)
and 2 nm from the center of the nanoribbon in Fig. 8(b). For a
small asymmetric placement of the charge the spectrum looks
very similar to the one shown in Fig. 3(b) for a symmet-
ric placement but where the LDOS is measured away from
the charge position. However, the bound states originating
from the second energy band at E ≈ 0.22 eV in Fig. 8(b)
start to show hybridization with the underlying continuum
acquiring a finite width. This confirms our theory that the
special nonhybridizing behavior of these states discussed in
connection with Fig. 3(b) is due to the symmetric placement
of the charge. Increasing the asymmetry even further as shown
in Fig. 8(b) we note that these states show an even stronger
hybridization making our point even stronger. Qualitatively
similar features in the spectrum are seen when placing the
charge asymmetrically. All the general features discussed for
the symmetric case remain: (i) States inside the gap show a
transition from bound to atomic collapse state with increasing
charge β, (ii) multiple energy bands appear, and (iii) below
these higher-energy bands states appear that almost immedi-
ately hybridize with the underlying positive continuum. This
shows that the physics presented in this paper should be robust
in experiments almost independent of the exact position of the

FIG. 8. LDOS measured at the impurity position as function of
the charge for a graphene nanoribbon of width 4.8 nm. In (a) the
charge is placed a distance 0.5 nm from the center of the ribbon
whereas in (b) the charge is placed a distance 2 nm away from the
center.

charge, paving the way for the first experimental observation
of a bound state to atomic collapse state transition.

V. ZIGZAG NANORIBBONS

In the case of zigzag nanoribbons there is an extra ele-
ment that is different from armchair nanoribbons, namely, the
presence of zero-energy edge states which have a flat band
character. It is expected that these edge states will be strongly
influenced by the presence of the impurity. In Fig. 9 we show
the LDOS calculated at the center of a zigzag nanoribbon
(blue) of width 5 nm without an impurity. The cusps signi-
fying the multiple energy bands can be clearly seen. Note that
compared to the LDOS of the armchair nanoribbon discussed
in the previous section the LDOS does not show a gap around
E = 0 eV. When the LDOS is calculated 2 nm away from the
center of the nanoribbon (red) an extra peak at E = 0 emerges
due to the edge states.

In Fig. 10 the energy dependence of the LDOS is shown
as function of the impurity strength for a zigzag nanoribbon
of width 5 nm for an impurity placed at the center of the
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FIG. 9. LDOS measured at the center (dashed blue) and at 2 nm
from the center (solid red) of a zigzag nanoribbon of width 5 nm
without an impurity. The inset is the band structure of the zigzag
ribbon.

nanoribbon. A number of states originating from E = 0 eV
at β = 0 can be clearly observed. These states are pulled
towards lower energy with increasing impurity charge. Since
they originate from E = 0 eV this band of discrete states
can be attributed to the edge states. They are bound states
which we confirmed by the fact that their width increases
linearly with the imposed numerical broadening and their
position and width did not change when we increase the
length of the graphene nanoribbon. The lowest state shows
interesting behavior with increasing impurity charge. It starts
as a bound state which can be seen from the narrow width
of the LDOS. However, when the impurity charge increases

FIG. 10. LDOS measured at the impurity site as function of the
charge strength β and energy for a graphene nanoribbon with zigzag
edges of width 5 nm. The impurity is located at the center of the
nanoribbon. The dashed line is the value of the Coulomb potential at
the edge.

FIG. 11. Cut of the spatial LDOS shown in Fig. 10 for (a) β =
1.45 and (b) β = 2.25.

the state comes in contact with the lower continuum band
(starting at E ≈ −0.50 eV) and gradually turns into an atomic
collapse resonance. The width of this resonance increases with
increasing charge. The reason that the band of edge states can
support bound states lies in the fact that this band consists
of a mixture of conduction and valence states. Consequently,
the conduction-band nature leads to the appearance of the
previously discussed bound states. The behavior of the states
in the positive energy range of Fig. 10 is similar to the ones
shown for an armchair nanoribbon in Fig. 3 and, therefore,
will not need any further discussion. Just below E ≈ 0.5 eV
the bound states do not hybridize with the continuum below.
However, when the charge of the impurity increases these
bound states come into contact with the band of edge states
gradually turning into a resonance which is modulated by the
appearance of the edge states. This behavior can be most pro-
foundly seen for the first state originating from E ≈ 0.5 eV.
After being modulated by the edge state the quasibound nature
of the state becomes clear around β ≈ 2.5.

In Figs. 11(a) and 11(b) two cuts of the LDOS of Fig. 10
are shown for β = 1.45 and β = 2.25 showing the situation
before and after the first bound state that started at E ≈ 0.5 eV
crosses the edge states. In Fig. 11(a) the series of edge states
can be clearly seen as a distinct number of peaks between
E ≈ −0.1 and E ≈ −0.4 eV. At E ≈ −0.1 eV a very sharp
peak can be observed corresponding to the lowest bound state
originating from E ≈ 0.5 eV in Fig. 10. When the charge is
increased to β = 2.25 as shown in Fig. 10 the low-energy
bound state of Fig. 11(a) has turned into a resonant state
which is being modulated by the edge states. This behavior
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FIG. 12. Contour plot of spatial LDOS of the lowest
state in Fig. 10 for three values of the charge: (a) β =
0.781(E = −0.189 eV), (b) β = 1.607 (E = −0.432 eV) and
(c) β = 2.59 (E = −0.871 eV).

is seen in Fig. 11(b) around E ≈ −0.5 eV where the resonant
peak shows subpeaks corresponding to the edge states. The
interesting behavior of the edge states modulating the resonant
states should be a clear signature to look for in experiments.

Now we look into the evolution of the edge states as
function of the impurity charge β. In Fig. 12 we plot the
spatial LDOS for the lowest edge state for three values of
the impurity charge β. For small value of the impurity charge
[see Fig. 12(a)] the spatial LDOS is localized at the edges
confirming its edge state nature. Interestingly, the edge state
turns into an impurity bulk state with increasing charge β [see
Figs. 12(b) and 12(c)]. This transition from edge to impurity
state explains the change in β dependence (linear versus non-
linear) observed in Fig. 10 and is a clear signature to look for
in future experiments.

In Fig. 13 the energy of the fan of bound edge states
as function of the impurity charge β as derived from
the LDOS is shown for the first eight impurity edge
states. The lowest state which shows a clear edge to
impurity state transition discussed earlier is shown in
red. The energy levels could be fitted (for the region
0 < β < 1) to E = −(aβ + bβ2) with {a, b}, respectively,
{0.161, 0.0698}, {0.216, 0.012}, {0.184, 0.019}, {0.154,

0.019}, {0.13, 0.018}, {0.112, 0.015}, {0.098, 0.013}, and
{0.085, 0.011} eV. It is evident that for small β the energy
is linear in β. This is in contrast with the states of the
two-dimensional (2D) hydrogen atom which exhibits a
quadratic dependence E ≈ β2 [34] whereas the lowest atomic
collapse states in bulk graphene (see Fig. 1) behaves as

FIG. 13. First eight states originating from the band of edge
states as a function of the charge strength β. The lowest state clearly
visible in Fig. 10 is shown in red. The dashed line is the values of the
Coulomb potential at the edge. For small β the energy states behave
as E = −aβ. In the inset the value of the fitting parameter a (in units
of eV) is shown for the different curves. The straight line is given by
a = 0.263 − 0.026n.

E = (−β h̄vF /r0) exp(−π/
√

β2 − 0.25) [8]. Using first-order
perturbation theory with respect to the Coulomb potential
explains the linear β dependence of the bound edge states.
The quadratic term gives a very small correction to the linear
behavior. The drop in b from the first to the second state is a
consequence of the fact that the lowest state is turning into a
bulk impurity state for large β.

In the inset of Fig. 13 we show the fitting parameter a
as function of the number of the edge state which shows a
linear dependence a (eV) = 0.263 − 0.026n for 1 < n < 7.
This behavior can be understood from the fact that for small β

the edge states remain confined at the edge, feeling a broader
almost quadraticlike potential for low energy and distances.
Consequently, these edge states feel a softer potential, ex-
plaining the weaker β dependence as a function of the edge
state number.

In Fig. 14 we plot the spatial LDOS for β = 0.8 for the
three lowest states shown in Fig. 13. All these three states are
in the region where they show almost perfect linear behavior
as function of the charge β. We observe that with increasing
energy the spatial LDOS localization shifts further away from
the center of the nanoribbon (where the Coulomb charge is
placed). As a consequence these states feel a weaker shift due
to the decay of the Coulomb potential, explaining why they
are higher in energy. In Fig. 15 a cut of the spatial LDOS
along one of the nanoribbon edges are plotted for the first four
states seen in Fig. 13. The cut is taken along the edge of the
nanoribbon. The lowest state consists of one peak whereas
the excited states consist of two peaks which move further
away from each other for higher-energy states. These figures
are somewhat similar but not the same to the electron prob-
ability of states found in Ref. [26] for the Coulomb problem
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FIG. 14. Contour plot of spatial LDOS calculated for β = 0.8
for the three lowest states seen in Fig. 13: (a) E = −0.193 eV,
(b) E = −0.182 eV, and (c) E = −0.172 eV. The solid dot shows
the position of the charged impurity, and the dashed circle indicates
the radius (i) of the Coulomb potential at this energy.

in gapped Dirac materials. The two-peak structure in LDOS
symmetric around x = 0 can be understood as follows. Let us
consider the 1D edge states and take the extreme limit of a flat
band. The kinetic energy is quenched, and the Dirac equation
is reduced to

V (x, y0)ψ (x, y0) = Eψ (x, y0), (2)

where y0 is the position of the edge. This equation has
as solution ψ (x, y0) ≈ δ(x − xi ) where xi is determined by
V (xi, y0) = E as shown by the dashed circles in Fig. 14.
Because the Coulomb potential V (x, y) is symmetric around
x = 0 this gives two solutions xi = ±|xi| and, thus, the wave
function becomes

ψ (x, y0) = c[δ(x − |xi|) + δ(x + |xi|)]. (3)

The separation between those δ functions increase with energy
which agrees with Fig. 15. Those δ peaks are broadened in our
numerical results because the edge states exhibit some small
dispersion and the edge states penetrate into the bulk of the
nanoribbon exponential decreasing away from the edge.

From Fig. 10 and the previous discussion it is clear that
the states originating from the edge states are narrow and,
consequently, represent bound states. However, at first sight
this seems strange because looking at Fig. 9 reveals that the
LDOS is not zero below these edge states. Consequently,
one may expect that these edge states will hybridize with the
underlying continuum turning into resonant states (similar
to the upper band states previously discussed for armchair
nanoribbons). However, this seems not the case. From

FIG. 15. Cut of the spatial LDOS along the edge, calculated
for β = 0.8 for the four lowest states seen in Fig. 13: (a) E =
−0.193 eV, (b) E = −0.182 eV, (c) E = −0.172 eV, and (d) E =
−0.160 eV.

our previous results for armchair nanoribbons one may
expect that this behavior can be related to the symmetric
placement of the charge. In order to confirm whether or
not this suspicion is correct we calculated the LDOS at the
impurity for a charge placed 2 nm from the center of the
nanoribbon in Fig. 16. We limited the figure to the edge
states since they are here of interest. Because the states
are more clearly separated it is now even more clear how
these states originate from E = 0 eV. We checked that the
width of those peaks in the LDOS scales with the numerical
broadening confirming that they are bound states. For β < 1
the energy of these states is linear the charge β similar to
the states shown in Fig. 10. This time the states can be
almost perfectly fitted to E = −aβ with {a}, respectively,
{0.77}, {0.53}, {0.33}, {0.21}, {0.17}, {0.13}, {0.17},
{0.12}, and {0.10} eV for the eight lowest states seen in
Fig. 16. In the inset of Fig. 16 the fitting parameter a is
shown as function of the number of the edge state. In contrast
with the results for a symmetrically placed charge shown in
the inset of Fig. 13 no linear dependence is observed, and the
states depend more strongly on the impurity charge β. The
reason is that the Coulomb charge is placed much closer to
the edge, consequently, the edge states feel a much deeper
Coulomb potential instead of the broader potential felt by the
edge states discussed earlier. Therefore, the edge states are
more strongly influenced by the charge explaining their more
profound dependence on the charge β.
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FIG. 16. LDOS calculation for the same nanoribbon as in Fig. 10
but now with a charge which is placed 2 nm from the center of the
nanoribbon. The dashed line is the value of the Coulomb potential
at the closest edge. In the inset we show the fitting parameter a (in
units of eV) as a function of the number of the edge state for the five
lowest states.

FIG. 17. Contour plot of spatial LDOS calculated for β = 0.54
for three lowest states seen in Fig. 16: (a) E = −0.414 eV, (b) E =
−0.284 eV, and (c) E = −0.177 eV. The solid dot shows the po-
sition of the charged impurity, and the dashed circle indicates the
radius (i) of the Coulomb potential at this energy.

In Fig. 17 the spatial LDOS is shown for β = 0.54 for
the three lowest edge states seen in Fig. 16. The behavior of
these states is very similar to the ones shown in Fig. 14 for
the symmetrically placed charge with the difference that the
state is now entirely localized at only one edge, i.e., the edge
closest to the potential center.

VI. CONCLUSION

We investigated how the finite width of graphene nanorib-
bons influences the atomic collapse phenomenon and found
very different physical behaviors depending on the type of
edges.

We showed with tight-binding calculations that the man-
ifestation of the atomic collapse in graphene nanoribbons
is fundamentally different from its manifestation in pristine
graphene. In both armchair and zigzag nanoribbons bound
states turn into atomic collapse states when entering the lower
continuum. This kind of behavior mimics closely the pre-
dicted atomic collapse in relativistic physics: Bound states
in the mass gap turn into quasibound states when entering
the negative continuum. Therefore, the experimental study of
atomic collapse in graphene nanoribbons could pave the way
to the first observation of the true analog of the relativistic
atomic collapse effect.

We showed that in the case of zigzag nanoribbons the well-
known edge states lead to a modulation of the quasibound
states when they cross the band of edge states. This modula-
tion should be measurable in experiments when probing with
an STM tip.

Furthermore, we showed that the atomic collapse in
graphene nanoribbons differs from the manifestation in pris-
tine graphene in the following ways: (i) Instead of the sudden
appearance of quasibound states in pristine graphene a grad-
ual bound state to quasibound state transition is predicted in
nanoribbons providing a very close analog of atomic collapse
in relativistic physics. (ii) The appearance of multiple energy
bands leads to a richer spectrum as compared to pristine
graphene with the appearance of multiple quasibound electron
states below each energy band. (iii) In the case of zigzag
nanoribbons an extra band of bound states appears, which
is predominantly localized at the edge of the nanoribbon.
The flat band character of those edge states is the origin of
these quasi-1D bound states, and its LDOS consists of two
identical peaks whose separation increases with energy. The
bound character of these states is also a consequence of the
fact that scattering on a zigzag edge does not allow intervalley
scattering.

Last we would like to give a remark about the experimental
feasibility of observing the effects predicted in this paper. The
production of different types of nanoribbons have been real-
ized over the past few years [35–39]. Recently [40], perfect
edges in 2D materials was realized by using a combination
of top-down lithography with a near anisotropic wet etching
process. Placing the charges on the nanoribbons should be
possible using a STM tip as realized in Ref. [9] for bulk
graphene. Such a STM tip can also be used to measure the
LDOS. Alternatively, it may be possible to mimic the poten-
tials created by charged dimers using a STM tip [11] or a
charged vacancy [10] producing similar effects. We hope that,

035426-9



JING WANG et al. PHYSICAL REVIEW B 103, 035426 (2021)

given the number of recent experiments, it should be possible
to test our predictions in the near future.
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