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Topological phases with higher winding numbers in nonreciprocal
one-dimensional topolectrical circuits
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We propose the realization of higher winding number topological states in a one-dimensional system by
means of a non-Hermitian, nonreciprocal topoelectrical (TE) circuit lattice. The crucial element of the circuit
is a directional intercell π -phase coupling which is realized by operational amplifiers (op-amps). The phase of
the coupling coefficients can be modulated by the choice of capacitive or inductive hoppings between the voltage
nodes. The resulting topological state has a winding number of 2 compared to its Hermitian counterpart, which
can have at most a winding number of one. Furthermore, in this system the nontrivial topological eigenmodes
are localized at the edges. This localization can coexist with the non-Hermitian skin effect, the latter of which
is induced by having different magnitudes of the left- and right-directional couplings. In practice, the higher
winding number topological state can be distinguished from the trivial phase by the much higher resonant
impedance values. Furthermore, by shunting the op-amps, we can recover the Hermiticity of the system and
the conventional topological phase. The experimental accessibility and unprecedented tunability of the model
parameters in our TE model provide a ready platform for the realization and detection of higher winding number
topological phases in one-dimensional systems.
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I. INTRODUCTION

Recently, higher-order topological phases [1–4] have at-
tracted much attention due to the existence of unconventional
bulk-boundary correspondence and edge states. Such higher-
order topological phases are characterized by topological
invariants such as the winding [5–7] and Chern numbers [8,9]
and are commonly implemented in lattice models [10]. The
couplings between lattice points play an important role in
determining the presence of topological characteristics such
as corner modes [11,12], zero modes [13,14], edge states
[15,16], and hinge states [17,18].

Another class of topological systems, i.e., non-Hermitian
topological systems, are also under increasing focus due to
their wider array of exotic properties compared to their Her-
mitian counterparts [19,20]. The removal of the symmetry
constraints on their couplings and the inclusion of lossy me-
dia and components [21,22] render an unprecedented degree
of flexibility and tunability to these non-Hermitian systems.
We consider a subset of non-Hermitian systems known as
nonreciprocal non-Hermitian systems that have asymmetric
couplings. The unconventional gapless edge states in non-
reciprocal systems have revolutionized our understanding of
condensed-matter physics, especially with regard to emerg-
ing properties such as super sensitivity [23,24], unidirectional
transparency [25,26], exceptional rings [27–29], and unidirec-
tional transport [30,31].
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Nonreciprocal systems have been investigated theoreti-
cally and realized experimentally in a variety of platforms
such as acoustic metamaterials [26,32], microwave resonators
[33,34], photonic crystals [35–37], cold atom systems [38],
and optical lattices [39]. However, all these platforms present
a number of experimental difficulties and limitations, es-
pecially in fine tuning the coupling strengths, thus making
them less than ideal for the study of topological phenomena.
Recently, electrical circuit networks (also known as topolec-
trical or TE circuits [40–45]) have emerged as an alternative
platform to study boundary states and other topological phe-
nomena related to non-Hermiticity. The Hamiltonians of these
circuits can be designed to mimic the lattice Hamiltonians
of condensed-matter systems. In contrast to material-based
platforms, TE networks offer unprecedented control and flexi-
bility in fine-tuning and modulating the coupling coefficients.
This is crucial because the nature and strength of these cou-
plings would ultimately determine the topological properties
of the whole system. Hence, such TE circuits have been
widely investigated both theoretically and experimentally for
various emerging fields such as Chern insulators [46], the skin
effect [47,48], Weyl semimetals [40,41,45], the quantum spin-
valley Hall effect [49–51], and hybrid topological insulators
[52].

In this paper, we combine the two concepts of non-
Hermiticity and higher-winding number phase in a one-
dimensional setting. The most well-known one-dimensional
system with nontrivial topology is the Su-Schrieffer-Heeger
(SSH) model [53,54]. It consists of a one-dimensional array of
lattice points with alternating off-diagonal coupling strengths
to mimic polyacetylene. The SSH model and its many vari-
ations have been extensively studied in various platforms,
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including ultracold atomic gases [55–57], magnetic lattices
[58,59], photonic simulators [60], metamaterials [61,62], op-
tical lattices [63,64] and TE systems [42]. However, the
nontrivial topological phases in these SSH models are char-
acterized by a winding number of one. Hence, we propose to
utilize the unprecedented flexibilities afforded by TE circuit
design, including the introduction of non-Hermiticity into the
circuit to achieve the realization of higher-winding number
phases (HWNPs) in a one-dimensional system.

We consider a TE network consisting of electrical com-
ponents such as operational amplifiers (op-amps), capacitors,
and inductors. The capacitors (inductors) connect electrical
nodes with reciprocal positive (negative) coupling coef-
ficients, while op-amps are used to obtain nonreciprocal
directional coupling between the nodes. Here, a nonreciprocal
coupling between two lattice nodes a and b is such that the
coupling coefficient of the hopping from a to b differs from
the complex conjugate of the reverse hopping from b to a.
These nonreciprocal couplings break the Hermiticity of the
circuit Hamiltonian. A higher winding number of 2 with an ac-
companying pair of gapless edge states appear in the circuit’s
admittance band dispersion when the nonreciprocal hopping
between pairs of nodes has equal strength but a relative phase
difference of π between the two directions. The edge states in
our nonreciprocal TE system exhibit what we refer to as the
higher-winding number topological surface states (HWTSSs).
This differs from the conventional skin effect in two key
aspects: (i) the system carries a higher winding number of 2
rather than the winding number of 1 in non-Hermitian systems
with the conventional skin effect and (ii) in HWTSSs, bound-
ary localization is exhibited by a limited number (two pairs)
of topological eigenmodes and this number is independent
of system size. However, an imbalance in the magnitude of
the nonreciprocal couplings in the circuit model will result in
the emergence of the conventional non-Hermitian skin effect
(NHSE), which coexists with the HWTSS. In the conventional
NHSE, the modes in the bulk bands are also localized at the
boundaries and thus the number of localized modes increases
with system size. In practical measurements, the HWNP can
be distinguished from the trivial phase by the much higher
values of the impedance readout taken between two boundary
nodes. Its impedance spectrum attains its peak value at the
exceptional points which mark the degeneracy points of the
eigenenergies. By replacing the op-amps in the circuit with
capacitors or inductors, one can restore the reciprocal TE
model with its corresponding topological edge states with a
winding number of one similar to that of the SSH model.
In summary, we propose a general TE setup where gapless
topological phases with a winding number of 2 (one) can
be achieved in nonreciprocal (reciprocal) circuit frameworks
simply by enabling (shunting) the op-amp components which
afford directional phase-dependent couplings between the cir-
cuit nodes.

II. MODEL AND RESULTS

We begin by describing a TE circuit which can be regarded
as an analog to a condensed-matter tight-binding (TB) lattice
system. The analogy between the two is as follows (for de-
tails, see Ref. [41]): Each electrical node in a TE circuit is

analogous to a TB lattice site and the node voltage in the
former is analogous to the wave function at a lattice site in
the latter. The inductive, capacitive, and nonreciprocal cou-
plings due to inductors, capacitors, and op-amps connecting
the voltage nodes in a TE circuit play the role of the intersite
hopping coefficients of the TB lattice. The electrical Kirch-
hoff’s laws governing the voltage distribution across the nodes
in terms of the internode electrical connections can be written
in analogous form to the quantum mechanical TB Schrödinger
equation Hψ = Eψ . In TE circuits, the role of the eigenen-
ergy is played by a common admittance coupling of all the
nodes to the ground. The admittance of a capacitor C and an
inductor L at a given ac frequency ω are iωC and −i/(ωL),
respectively. From the perspective of admittance, an inductor
effectively acts as a negative capacitance. Thus, in what fol-
lows, we may refer to inductances as negative capacitances
for simplicity. With the above analogies, the TE model can
be mapped to any lattice Hamiltonian of a condensed-matter
system.

We consider a one-dimensional TE circuit composed of
capacitors and inductors, with a unit cell consisting of four
electrical nodes labeled P, Q, R, and S, as indicated by the
dashed boxes in Fig. 1(a). The nodes in our TE model are con-
nected by two different types of coupling, namely, reciprocal
and nonreciprocal, which are indicated by orange and purple
lines, respectively, in the same figure. All electrical nodes
within a unit cell are connected to their nearest neighbors by
reciprocal couplings, i.e., Ci, j = Cj,i with i, j ∈ {P, Q, R, S}
where Ci, j is the coupling associated with the hopping from
nodes i to j. The reciprocal couplings may have positive or
negative signs, which are realized by capacitors or inductors,
respectively. However, the intercell couplings are nonrecipro-
cal, i.e., Ci, j �= Cj,i (with nodes i and j belonging to adjacent
unit cells), thus breaking the Hermiticity of the Hamiltonian.
In our particular TE circuit, the nonreciprocal couplings in
the two hopping directions have the same magnitude but a
phase difference of π between them (they are in antiphase),
i.e., Ci, j = −Cj,i. This can be readily implemented by using
op-amp-based negative impedance converter (NIC) with cur-
rent inversion [see Fig. 1(c)]. Because the input terminals of
an ideal op-amp are connected via a very high impedance,
virtually no current will flow between its two input terminals,
v+ and v− [see Fig. 1(c)]. This basic nonreciprocal circuit
unit reverses the current flow direction once the acting node
(i.e., where the ac current or voltage source is connected)
switches, hence introducing a directional phase shift of π

between voltage and current. Thus, this NIC would realize a
directional anti-phase (π phase difference) coupling between
the two nodes. This nonreciprocal coupling results in non-
Hermitian terms in the TE model that would lead to interesting
consequences such as the HWNP (as we shall see later).
Finally, the grounding mechanism for each electrical node is
shown in Fig. 1(b), where all nodes are connected to ground
by a common inductance L and a common capacitance C. In
parallel to C and L, the Q and S nodes are also connected to
ground by another capacitance C1, while nodes P and R have
the same coupling strength to ground but with opposite signs,
i.e., −C1 (achieved with the appropriate inductive coupling).
The voltages at the nodes in an electrical network are related
by Kirchoff’s current law, which states that the net current
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(a)

(b) (c)

FIG. 1. (a) Schematic one-dimensional nonreciprocal TE circuit consisting of op-amps, inductors, and capacitors, which is designed to
host a higher-order topological phase. The dashed boxes indicate the elementary unit cells with reciprocal hopping within nodes of same cell
and nonreciprocal π -phase coupling between nodes of neighboring cells. (b) Grounding mechanism of electrical nodes. The common inductor
L determines the diagonal elements of the Hamiltonian matrix and thus modulates the resonant frequency. The common capacitance C plays
the role of the TB eigenenergy in the TE equivalent of the Hamiltonian. (c) The elementary unit consisting of op-amp that gives rise to the
π -phase difference directional coupling via negative impedance converter with current inversion. The op-amp has a unity gain factor with
virtually shorted positive (v+) and negative (v−) input terminals. No current flows between v+ and v−, so Cp,q = −Cq,p.

flowing in or out of a node is zero. At the ith node, we have

0 =
∑

j

Ci j
d

dt
(Vi − Vj ) + 1

L

∫
Vidt + (C + C̃i )

d

dt
Vi, (1)

where C̃i is −C1 at a P/Q node and C1 at an R/S node, Vi is the
potential at the ith node, and L and C are the common ground-
ing inductance and capacitance. Assuming an ac current flow
with an exp(iωt ) time dependence, Eq. (1) can be cast into the
form of

CVi =
∑

j

Ci j (Vj − Vi ) + 1

ω2
L − C̃iVi. (2)

Applying Eq. (2) at all the voltage nodes, the resulting set of
equations can be written in the form of

Cv = Hv, (3)

where v is the vector of the node voltages and H is the matrix
constructed from the right-hand side of Eq. (2). Equation (3)
is the TE equivalent of the Schrödinger equation Hψ = Eψ ,
where C and v play the roles of the energy eigenvalue E and
eigenfunction ψ , respectively. We shall refer to matrix H in
Eq. (3) as the Hamiltonian of the TE circuit (we will drop
the boldface notation for simplicity) and, by reference to the
Schrödinger equation, we would write the eigenvalue C as E .
In a periodic TE circuit, the values of E which satisfy Eq. (3)
form a continuum and the Bloch theorem can be invoked to

express the position dependence of the voltage profile, which
takes the form of exp(ikxn), where kx and n are dimensionless
quantities representing the wave vector and unit cell index, re-
spectively. The E -kx dispersion relation then relates the value
of the common grounding capacitance C (= E ) to the spatial
wavelengths (related to kx) of the allowed TE voltage profiles,
i.e., those that are consistent with Kirchhoff’s current law.

Explicitly, the four-band Hamiltonian for the TE circuit in
Fig. 1(a) can be written as

H (kx ) =
((

1
ω2L − C1 − C2

)
σ0 h(kx )

h(−kx )
(

1
ω2L − C1 − C2

)
σ0

)
, (4)

where h(kx ) = C1σ0 + C2σx − iC1e−ikx σy and σi is the ith
Pauli matrix. The common inductor L therefore acts as a
global offset to the eigenvalues of H (kx ). L is introduced
so the diagonal elements of Eq. (4) can be set to zero
for convenience by setting the frequency of the TE circuit
to the resonant frequency of ωr = 1/

√
L(C1 + C2). At the

resonant frequency, the Hamiltonian possesses chiral sym-
metry as expressed by the relation ChH (kx )C−1

h = −H (kx ),
where the chiral reversal operator Ch = I ⊗ σz. The chi-
ral symmetry guarantees a symmetric admittance spectrum
about E = 0 where every state at a given kx with eigen-
value E has a counterpart at the same kx with eigenvalue
−E . The chiral symmetry is broken at off-resonant frequency,
i.e., ω �= ωr . The Hamiltonian is also PT symmetric, i.e.,
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(a) (b) (c)

(d) (e) (f)

FIG. 2. (a)–(c) Admittance spectrum of the nonreciprocal TE circuit under consideration. We consider a finite circuit with p = 20 unit
cells and apply open boundary conditions. The spectrum is plotted as a function of coupling capacitance C2 with C1 = 1 mF for (a) real parts,
(b) imaginary parts, and (c) absolute values of the admittance spectrum. The bold lines in (a) indicate the edge states. (d) Topological index or
winding number W as a function of C2. W takes the discrete values of two for |C2/C1| <

√
2 and zero for |C2/C1| >

√
2. (e) Voltage profile of

one of the nearly zero-admittance eigenstates at C2 = 0.9 mF, indicated with a cross in panel (a), as a function of the transverse position. All
the nearly-zero admittance states are localized in the vicinity of one of the boundaries, indicating that these are edge states. (f) The spectrum of
the impedance taken between the terminal nodes of the TE circuit. The impedance peaks (marked by red dots) occur at the exceptional points
located at C2 = ±C1. The HWNP is characterized by high impedance readout. The impedance falls drastically by orders of magnitude beyond
|C2/C1| >

√
2 corresponding to the trivial phase.

PT H (kx )P−1T −1 = H (kx ), where the parity inversion oper-
ator P = I ⊗ σx and the time-reversal operator T is complex
conjugation. Moreover, the Hamiltonian in Eq. (4) preserves
mirror rotational symmetry at resonant frequency with MR =
σx ⊗ σ0 that satisfies MRH (kx ) = H (−kx )MR. Interest-
ingly, MR commutes with both the chiral and time-reversal
symmetry operators. The eigenvalues of the Hamiltonian in
Eq. (4) at the resonant frequency are given by

E± = ±
√

C2
2 ± 2

√
C2

1

(
C2

2 − C2
1

)
cos2 kx. (5)

The admittance spectra (note that admittance is the TE ana-
log of eigenenergy) of the nonreciprocal Hamiltonian is, in
general, complex but becomes real at |C2| > |C1|. Figure 2
shows the complex admittance spectra corresponding to the
finite TE system under consideration with open boundary con-
ditions (OBCs). The directional π -phase couplings support
edge states when |C2| <

√
2|C1| [the range being demarcated

by vertical dashed lines in Fig. 2(a)]. In a typical (first-order)
topological insulator (e.g., the surface state of Bi2Se3), there
are, at a given wave vector �k, only two topological surface

states, one of which is holelike and the other particlelike.
Interestingly, our TE system can harbor more than two topo-
logical edge states at each value of kx, where such states
exist. (The eigenvalues of H are actually twofold degener-
ate, so each visible line in the figure represents two states.
The twofold degeneracy is due to the PT symmetry of the
Hamiltonian.) This is a manifestation of the HWNP, which
will be further confirmed by explicit calculation of its wind-
ing number. Another interesting feature occurs at |C1| = |C2|,
where the imaginary part of the admittance spectra vanishes
[see Fig. 2(b)] while the real part of the spectra coalesces
into three distinct points [see Fig. 2(a)]. One of these points
occurs at zero admittance and is known as an exceptional point
while the other two occur at nonzero admittance E = ±C1

and are called phenomenal points [65]. When |C2| > |C1|, the
admittance dispersion becomes purely real [see Fig. 2(b)],
indicating that the eigenvectors respect PT symmetry. In the
vicinity of |C2| �

√
2|C1|, the real part of lowest absolute

admittance bands split prominently into two distinct bands
which then diverge with the further increase of |C2|. Inter-
estingly, in the vicinity of C2 ≈ 0, the Hamiltonian becomes
topologically trivial and does not host any edge modes. One
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(a) (b)

FIG. 3. Two representations of the node voltage density distribution of the nonreciprocal TE circuit given by Eq. (4) with open boundary
condition in the x direction. (a) depicts the density plot in the 2D plane as a function of the mode index and the position of the voltage nodes.
(b) shows the surface plot of the same information as in (a) to emphasize that only the non-Hermitian nontrivial states are localized at the
edges. The parameters used are C1 = 1 mF and C2 = 0.5 mF.

may be curious to know about the localization of the eigen-
states of our π -phase nonreciprocal TE system. We find that
for C2 <

√
2C1, the eigenmodes with the largest magnitudes

of real admittance and the nearly zero-admittance modes are
highly localized at the edges [see Fig. 2(e)]. (The apparently
flat dispersion relation in Figs. 2(a) and 2(b) for the range
|C2/C1| <

√
2 is not exactly a flat line but has a small finite

separation between the hole and particle states not visible in
the scale of the figure, except at the two exceptional points
where the bands touch.) At C2 >

√
2C1, no nearly zero-

admittance edge states exist.

A. Topological invariant

We next consider the topological invariant associated with
our system in order to characterize and confirm its topologi-
cal phases. The topological characteristics of a nonreciprocal
system can be characterized by the winding number [66]. The
non-Hermitian winding number associated with the Hamilto-
nian of Eq. (4) is given by

χ± = i

2π

∫
GBZ

〈λ±|∂kφ±〉
〈λ±|φ±〉 dkx. (6)

Note that the integration is, in general, performed over a
complex kx contour when the NHSE occurs in the system.
GBZ denotes the generalized complex Brillouin zone and χ±
denotes the winding number for h(+kx ) and h(−kx ) in Eq. (4),
respectively. 〈λ±| and |φ±〉 are the left and right admittance
eigenstates of h(±kx ), respectively. This yields the total wind-
ing number of the TE circuit as

W = χ+ − χ−
2

. (7)

One can regard the topological index W in one dimension as
characterizing the number of multiples of 2π the phase of
the eigenstate changes as kx is varied from one edge of the
one-dimensional Brillouin zone to the other [5]. The variation
of W with C2 is shown in Fig. 2(d). The plot shows that in
the presence of the π -phase nonreciprocal coupling, our TE
circuit exhibits a winding number W = 2 when 0 < |C2| <√

2|C1|, and zero winding number (W = 0), indicating a triv-
ial phase for |C2| >

√
2|C1| and C2 = 0. The variation of W

with C2 is consistent with the presence (W = 2) and absence
(W = 0) of nearly zero-admittance edge states evident in the
admittance spectra presented in the previous section.

B. Higher-winding number topological surface states

Our system with equal magnitude of nonreciprocal cou-
pling strength but having a π phase difference [i.e., Eq. (4)]
does not exhibit the conventional NHSE (i.e., complete local-
ization of both the bulk and edge modes; we will show the
emergence of NHSE in the presence of unequal nonreciprocal
couplings in the next section).

We prove the presence of the HWTSSs in our system by
evaluating the TE analogs of the particle densities directly.
Figure 3 shows the spatial distributions of the voltage (i.e., the
TE equivalent of the particle density) for all of the eigenmodes
for a finite system with 20 repeating units and setting the
coupling capacitance to an exemplary value of C2 = 0.5 mF.
Figure 3 shows that except for the four topologically nontrivial
states (modes 1, 2, 79 and 80 above), none of the other states
are localized at the edges (see Supplemental Material Note 4
[67] for more details).

In the conventional skin effect exhibited by the non-
Hermitian SSH model, all the eigenstates exhibit boundary
localization. Furthermore, both the non-Hermitian SSH model
and its Hermitian counterparts carry the same winding num-
ber of unity. By contrast, in our higher-order non-Hermitian
system, boundary localization is exhibited by only two pairs
of eigenstates, while the rest remain delocalized and form
bulk bands. Furthermore, the non-Hermitian system exhibits
a higher topological index of two [68] compared to the
corresponding topological index of unity of its Hermitian
counterpart [69]. Furthermore, the admittance variations in
the complex plane for the OBC and periodic boundary condi-
tion (PBC) look similar yet are not completely identical (see
Supplemental Material Note 2 and Supplemental Material
Fig. 3). More explicitly, for the topologically nontrivial states
the admittance spectra shows pronounced differences while
for the trivial states, the admittance distribution look similar
and almost identical. The nontrivial states constitute the afore-
mentioned HWTSSs and occur in a non-Hermitian system
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with a higher topological index and in which only some of
the eigenstates exhibit boundary localization. The origin of
this HWTSS stems from the additional circuit symmetries
(i.e., rotational and PT symmetries in our model) as well
as the system’s non-Hermiticity induced by the nonreciprocal
couplings. On the other hand, the conventional skin effect, de-
scribed hitherto, owes its origin to the intrinsic non-Hermitian
topology of the corresponding systems [70,71].

C. Impedance spectrum—a signature of higher-winding
number topological phase

Experimentally, the topological character of our TE circuit
can be characterized by the impedance between its terminal
nodes. The impedance between two arbitrary nodes denoted as
α and β can be obtained by measuring the voltage difference
between these when a unit current is flowing from one node
to the other. Consider our nonreciprocal TE circuit with a
finite number p of unit cells (i.e., total number of nodes is
N = 4p). The circuit Hamiltonian would have N eigenvalues
and we denote the jth eigenvalue as κ j and its corresponding
left and right eigenvectors as 〈λ j |† 
 (λ j1, λ j2, ...., λ jN ) and
|φ j〉 
 (φ j1, φ j2, ...., φ jN )T, respectively. |λi〉 and |χ j〉 are not
mutually orthogonal when i �= j. Therefore, the impedance
the α and β nodes is given by [72]

Zαβ =
N∑

j=1

λ∗
jαφ jα − φ jαλ∗

jβ + λ∗
jβφ jβ − φ jβλ∗

jα

κ j〈λ j |φ j〉 . (8)

An important characteristic of Eq. (8) is that the impedance
would be extremely large if any of the admittance eigenval-
ues are infinitesimally small. The impedance can thus serve
as an experimental signature for the topologically nontrivial
zero-admittance edge states. We show the impedance distri-
bution for the our nonreciprocal one-dimensional TE circuit
in Fig. 2(f), in which high impedances states coincide with
the nontrivial topological phase (for 0 < |C2| <

√
2|C1|) and

much lower impedance states for the trivial phase (for |C2| >√
2|C1|) [cf. Fig. 2(d)]. Note that the winding number reaches

zero at C2 = 0 [see Fig. 2(d)], indicating a phase transition at

this particular point, and this is correspondingly marked by a
sharp decrease in the impedance at that point [see Fig. 2(f)]. In
addition, we can also identify the exceptional points by peaks
in the impedance spectrum in Fig. 2(f).

D. Conventional non-Hermitian skin effect

In the following section, we will show that our model can
be made to exhibit the NHSE by modifying the circuit model
such that the left- and right-going coupling strengths are of op-
posite signs and have different magnitudes. We will also show
in detail the different signatures of NHSE in the modified
circuit (voltage distribution for the nontrivial and trivial bulk
modes, loci of eigenvalues in complex plane for OBCs and
PBCs, as well as analytical derivation of the prerequisites for
the onset of NHSE). This circuit modification neither affects
the higher winding number of 2 nor the appearance of two
pairs of topological edge states in the circuit that were present
in the original circuit.

Explicitly, to realize the NHSE in our circuit model, we
modify the circuit connections shown in Fig. 1 in such a way
that the left and right directional couplings in the nonrecipro-
cal segments are not equal (i.e., |Cleft| �= |Cright|). The modified
circuit with nonequal directional couplings is shown in Fig. 1
of the Supplemental section.

The Laplacian of the modified circuit can be obtained
by replacing the usual Bloch factor of eikx in the original
circuit (where |Cleft| = −|Cright| = C1) with β = αeikx , where

the non-Bloch attenuation factor α =
√

|Cleft|
|Cright| . The modified

circuit Laplacian at the resonant frequency condition can be
rewritten as

Hmod(kx ) = iω

(
0 hm(kx )

hp(kx ) 0

)
, (9)

where hm(kx ) = C1σ0 + C2σx + iCleftα
−1e−ikx σy and hm(kx ) =

C1σ0 + C2σx + iCrightαeikx σy. The admittance eigenvalues of
the Laplacian of Eq. (9) at resonant frequency are given by

E± = ±
√(

C2
1 + C2

2 − CleftCright
) ± 2

√
C2

2 (Clefte−ik − Crighteik )2 − C2
1 (Clefte−ik + Crighteik )2 + 4C2

1C2
2 . (10)

We plot the complex admittance dispersion for the modi-
fied circuit model described by Eq. (9) for a finite system
with OBCs. Figures 4(a) and 4(b) show the real and
imaginary admittance eigenvalues, respectively. We find
well-defined nontrivial edge states for Cλ− < C2 < Cγ−
and Cγ+ < C2 < Cλ−, where Cγ± = ±

√
C2

1 − CleftCright and

Cλ± = ±
√

C2
1 + CleftCright. We also calculate the generalized

(non-Bloch) winding number (W ) as a function of coupling
capacitance C2, as shown in Fig. 4(c). The winding number
of the modified circuit takes the discrete values of two and
zero for the nontrivial and trivial regions, respectively. The
modified circuit thus exhibits a higher winding number just
like the original circuit.

The introduction of a factor of α �= 1 in Eq. (9) can be in-
terpreted as the replacement of the allowed values of kx whose
linear superpositions would satisfy the OBCs in a finite-sized
system in the original TE system by kx − i ln α in the modified
TE circuit. As a result, for |Cleft| < |Cright|, the non-Bloch
multiplication factor (α) takes a value less than one, which
implies that the square of the node voltages are localized at
the vicinity of the leftmost node of our modified nonreciprocal
circuit (see Supplemental Material Note 3 for details). We find
that the topologically trivial modes decay exponentially away
from the leftmost node, as shown in Fig. 4(d), which shows the
spatial distribution of the node voltages for the eigenmodes
of a finite system with 20 repeating units and having the
same parameters as that in Fig. 4(a), and C2 = 1.1 mF. As
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(a) (b)

(c) (d)

FIG. 4. (a), (b) Admittance dispersion of the modified nonreciprocal TE circuit described in Eq. (9), where the directional couplings are
not equal (i.e., |Cleft| �= |Cright|). We consider a finite circuit with 20 unit cells and apply open boundary conditions. The spectrum is plotted as a
function of coupling capacitance C2 with C1 = 1 mF, Cleft = 0.5 mF and Cright = 1 mF for (a) real parts and (b) imaginary parts. (c) Topological
index or non-Hermitian winding number W as a function of C2. W takes the discrete values of two for nontrivial and zero for trivial regions.
(d) Node voltages as a function of the eigenmode index and the position of the index nodes for a 20 repeating unit-wide system with OBC and
C1 = 1 mF, C2 = 1.1 mF, Cleft = 0.5 mF and Cright = 1 mF, exhibiting the coexistence of the NHSE and the HWTSS.

expected from the winding number of 2, there are two pairs of
topologically nontrivial modes, namely, modes 1, 2, 79, and
80, which can be distinguished from the other states by their
being localized to a larger extent. In particular, modes 2 and 80
are localized at the opposite edges from the remaining states.
This is not unexpected because the topologically nontrivial
states are robust to small perturbations, such as the breaking
of the equality between the magnitudes of the left and right
directional states, which give rise to the NHSE. The HWTSS
hence coexists with the NHSE.

For another confirmation of the presence of NHSE in
the modified circuit model, we plot and compare the loci
spanned by the admittance eigenvalues in the complex
plane for both the OBC and the PBC [see Supplemental
Figs. 2(a)–2(c) corresponding to three different sets of circuit
parameter values]. Interestingly, the admittance loci are com-
pletely different when the boundary conditions are changed
from OBC to PBC. The nonidentical eigenvalue distributions
under the different boundary conditions indicate the pres-
ence of the NHSE (see Supplemental Material Note 2 for
details).

E. Reciprocal TE model and recovery
of first-order topological phase

In this section, we show that the replacement of the di-
rectional π -phase couplings by reciprocal ones would recover
the conventional topological insulating phase with a winding
number of 1 in the TE circuit. Without the directional π -phase
coupling, the circuit Hamiltonian in Eq. (4) is modified to

L2(kx ) = iω

((
1

ω2L − C1 − C2
)
σ0 h2(kx )

h2(−kx )
(

1
ω2L − C1 − C2

)
σ0

)
,

(11)
where h2(kx ) = C1σ0 + (C2 + C1e−ikx )σx. Equation (11) cor-
responds to the replacement of the two op-amps in Fig. 1 by
a single capacitor C1. Thus, the intercell coupling becomes
reciprocal and the Hamiltonian recovers its Hermiticity.

For the nonreciprocal TE system, we found that the admit-
tance spectrum could serve as an experimental marker for the
topological state of a TE system. The same can be said for the
admittance dispersion for the reciprocal TE system, which is
plotted as a function of C2 in Fig. 5(a). The Hermiticity of the
Hamiltonian results in a real dispersion relation [see Fig. 5(a)].
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(a) (b) (c)

FIG. 5. (a) Admittance spectrum of a reciprocal one-dimensional TE circuit. We consider a finite TE circuit of p = 20 unit cells under
open boundary conditions. The spectrum is plotted as a function of C2, with C1 = 1 mF. The bold lines in (a) represent the edge states. In the
absence of directional π -phase coupling, the Hamiltonian of the TE circuit reverts to having a real energy spectrum with the trivial phase and
a phase with a winding number of 1 (WN1P). (b) Winding number for the reciprocal TE circuit showing the WN1P for 0 < |C2| < 2C1 with
W = 1 and a trivial phase with W = 0 elsewhere. (c) Impedance spectrum as a function of C2. In contrast to the nonreciprocal TE circuit, there
are broader peaks centered at C2 = ±C1, with no exceptional points in the vicinity. The WN1P and trivial phases are distinguished by high and
low impedance readouts, respectively.

There exist nearly zero-admittance edge states for |C2/C1| <

2, marked by the dark horizontal lines at E = 0 in the disper-
sion plot. These edge states correspond to a topological phase
with a winding number of unity [WN1P, see Fig. 5(b)]. There
are only two topological edge states, one holelike and the
other particlelike, at each value of kx where these edge states
exist. By contrast, in the second-order non-Hermitian system
in Figs. 2(a) and 2(c), four such edge states occur at each value
of kx. At |C2/C1| > 2, the system switches to the topologically
trivial phase with a winding number of 0 [see Fig. 5(b)]. Thus,
there are topological phase transitions at |C2/C1| = 2 between
the trivial and topological insulating phases. This recalls the
standard SSH model [42,56] where topological phase tran-
sition occurs when the intracell and intercell couplings are
equal (i.e., |C2/C1| = 1). In Fig. 5(c), we plot the impedance
between two terminal nodes of the reciprocal TE circuit at
the resonant frequency as a function of C2. There are several
main differences compared to the corresponding spectrum of
the HWNP shown in Fig. 2(f). First, the impedance spectrum
of the first-order topological phase of the reciprocal TE cir-
cuit exhibits two broad peaks centered at C2 = ±C1, which
extends up to |C2/C1| = 2 that marks the boundaries with the
trivial phase. Thereafter, the impedance readout falls sharply
when the system enters the trivial phase [see Fig. 5(c)]. In
contrast, the impedance spectrum of the second-order topo-
logical phase of the nonreciprocal TE system shows two much
sharper peaks at |C2/C1| = √

2. In addition, although the peak
impedance values for both TE systems are of comparable
magnitude, the ratio of impedance values for the topological
and trivial phases is much larger for the nonreciprocal HWNP
TE system compared to the reciprocal system [cf. Figs. 2(f)
and 5(c)].

III. CONCLUSIONS

In summary, we have demonstrated the emergence of
a HWNP in a one-dimensional nonreciprocal TE circuit.
The nonreciprocity arises from directional π -phase coupling
realized by means of op-amps. The HWNP is confirmed ana-
lytically by its winding number of 2 and is also characterized

by several distinct characteristics: (i) features of its admittance
spectrum, such as exceptional and phenomenal points and
edge states; (ii) heightened impedance readout between ter-
minal points for the higher-order zero-admittance edge states,
which are orders of magnitude higher than that of the trivial
phase; and (iii) it exhibits what we term as HWTSSs, in which
there is more than one pair of topological edge states localized
at the boundaries. The HWTSS can coexist with the NHSE,
which can be restored simply by taking nonequal directional
couplings. The HWTSSs in this case exhibit a higher degree
of localization than the trivial states and two of them are
localized at the opposite edge from all the other states. Inter-
estingly, the TE system can be readily switched from a HWNP
to the conventional WN1P, the latter akin to the topological
state in the standard SSH model. This is accomplished by
replacing the directional coupling through the op-amps with
the reciprocal coupling of a conventional capacitor, which
restores the Hermiticity of the Hamiltonian and ensures a
real admittance spectrum. The resulting WN1P phase has a
winding number of unity and exhibits lower impedance ratios
compared to its HWNP in the nonreciprocal TE circuit. Our
work demonstrates the flexibility and utility of the TE circuit
platform in realizing transitions between various topological
phases from the trivial order to the HWNP, all achievable
by controlling the type and strength of couplings afforded
by standard circuit elements. In addition, it was recently
noted that a non-Hermitian multiband Hamiltonian may be
interpreted as a collection of distinct subgeneralized Brillouin
zones for each band [73]. Our system may, after suitable
modifications, serve as a platform for exploring the physics
induced by these multiple subgeneralized Brillouin zones.
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