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Spectral and transport properties of a half-filled Anderson impurity coupled to phase-biased
superconducting and metallic leads
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We derive and apply a general scheme for mapping a setup consisting of a half-filled single-level quantum
dot coupled to one normal metallic and two superconducting phase-biased leads onto an ordinary half-filled
single impurity Anderson model with single modified tunneling density of states. The theory allows for the
otherwise unfeasible application of the standard numerical renormalization group and enables us to obtain
phase-dependent local spectral properties as well as phase-dependent induced pairing and Josephson current. The
resulting transport properties match well with the numerically exact continuous-time hybridization-expansion
quantum Monte Carlo. For weakly coupled normal electrode, the spectral properties can be interpreted in
terms of normal-electrode-broadened Andreev bound states with phase-dependent position analogous to the
superconducting Anderson model, which coexist in the π -like phase with a Kondo peak whose phase-dependent
Kondo temperature is extracted.
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I. INTRODUCTION

Gradual advance in experimental techniques over the past
decades enables to study electronic transport in increasingly
sophisticated nanoscale systems with various, competing
correlations. A prototype experiment typically includes a
strongly interacting mesoscopic system attached to a reser-
voir with well-defined properties. In theory, the mesoscopic
system is frequently described in terms of one or multi-
ple quantum dots (QDs) in the Coulomb blockade regime
while the reservoir consists of normal metallic and/or su-
perconducting leads. Experimental realizations of such QDs
include, for example, carbon nanotubes [1–10] or semicon-
ductor nanowires [11–14].

The case of normal metallic electrodes attached to one
QD can be modeled microscopically by the single-impurity
Anderson model (SIAM) which is one of the most understood
models in the many-body physics [15]. Here, free conduction
electrons of the reservoir can completely or partially screen
the magnetic doublet of QD depending on the parameters
under the study. When the screening is effective, an emergent
Kondo singlet becomes the ground state of the system [15].
The Kondo singlet is a coherent many-body state with loga-
rithmic energy scaling that can only be fully understood by
applying renormalization group (RG) techniques [16–18] or
at least effective renormalization schemes [19,20].

Once superconducting correlations are considered in the
reservoir, the electron transport is altered by the Andreev scat-
tering on the interface between the leads and QD [21–25], but
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it is still well described theoretically in terms of the Anderson
impurity model with superconducting leads, denoted also as
SCIAM [26]. For purely superconducting reservoirs, both the
theoretical [27,28] and experimental [29] understanding is
fairly complete. In particular, a sufficiently large gap depopu-
lates electrons around the Fermi energy to such an extent that
the screening cloud around the impurity becomes disrupted.
The ground state of the system changes then from a singlet
(effective screening at small sized gaps) to a doublet, which
is an example of an impurity quantum phase transition (QPT).
This so-called 0-π transition is accompanied by the reversal of
the supercurrent, which is positive in the singlet and negative
in the doublet phase [5,11,30]. At the transition, one also
observes the crossing of the Andreev bound states (ABSs) at
the Fermi energy.

Hybrid systems incorporating simultaneously normal as
well as superconducting reservoirs, lead to even more in-
tricate interplay of quantum correlation effects, where the
understanding is limited both theoretically and experimen-
tally [27,31–39]. In a simplest realization, one metallic and
one superconducting lead have been studied experimentally
in N-QD-S heterostructures [33]. From the theoretical per-
spective, such a problem is of only two-channel nature and
thus well tractable by the numerical renormalization group
(NRG) [31] which offers unbiased insights and thus com-
plements the purely numerical quantum Monte Carlo (QMC)
simulations with reliable spectral properties [34]. However,
having just one superconducting lead does not allow super-
conducting phase difference across the QD. Consequently,
such systems lack any supercurrent flow and no interplay
of Kondo and Josephson effects takes place. Thus, the more
interesting scenario includes one normal and two phase-biased
superconducting leads. The resulting three-terminal structure
is, however, beyond the reach of standard NRG since the
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corresponding discretized reservoir corresponds to three spin
dependent and mutually interconnected hopping chains. The
standard NRG scheme has thus been so far employed only to
two channel problems [35,36].

In the standard, computationally intractable approach to
NRG [40], one would first discretize the bath of the three
terminals. The resulting semi-infinite hopping chain would
be then transformed via the Bogolyubov-Valatin transforma-
tion at each chain site. Subsequently, in the second step,
particle-hole transformations on odd and even sites separately
need to be carried out [35,36]. The resulting Wilson chain
would, however, consist of three mutually interconnected
spin-polarized chains which is beyond the present compu-
tational power [34]. To circumvent the problem, one may
apply a general procedure of Ref. [41] or introduce suitable
unitary transformations to diagonalize the problem [37–39].
The second approach has already been successfully applied
to the hybrid normal-superconductor reservoir problem in the
limit of infinite superconducting gap. Although the authors of
Refs. [37–39] make explicit reference to the Wilson chains
corresponding to discretized versions of the model under the
study, as shown in the present paper, it is possible to limit
the transformations in the case of half-filling [42] to just the
local electrons of QD and map the infinite-gap model onto an
ordinary asymmetric SIAM directly.

Generalizing the approach of Refs. [37–39], we are able
to treat the present general three-terminal problem at the
half-filling with finite superconducting gap and map it onto a
single impurity Anderson model of fermions with tunneling
density of states (TDOS) in the reservoir that corresponds
to the standard one-channel-lead case tractable by NRG in
the scheme of Ref. [43]. Since it is believed that such an
approach is not feasible [44], we present the details of the
transformation in Sec. II where also a detailed microscopic
formulation of the problem is stated. In Sec. III, we proceed
to the � → ∞ case treated previously in Refs. [37–39] and
show that their approach is completely equivalent with ours
when the half-filled case is considered. However, as opposed
to Refs. [37–39], no reference to NRG discretization is re-
quired. Finally, in Sec. IV, the general three-terminal problem
with finite superconducting gap is solved at the half-filling.
To this end, the mapping of the finite-gap problem onto a
single-channel SIAM with altered TDOS is performed. Sub-
sequently, standard NRG approach of Ref. [43] is employed
utilizing the NRG Ljubljana code [45]. Using the backwards
transformations, all spectral and transport properties of the
original three-terminal setup are then determined. The most
important conclusions are summarized in Sec. V. Technical
calculations regarding the transformation of the interaction
term in Sec. II and the effect of the finite band width are
discussed in the Appendices A and B, respectively. The com-
parison with QMC is shown in the Appendix C.

II. MAPPING ONTO SIAM-LIKE MODELS

A. Microscopic formulation

The hybrid three-terminal setup consists of a mesoscopic
system modeled as a usual Anderson magnetic impurity
connected to one normal metallic and two superconduct-

ing electrodes. The superconducting electrodes follow the
Bardeen-Cooper-Schrieffer (BCS) theory with one lead re-
ferred to as the left (L) and the other one as the right (R), see
Fig. 1. The total Hamiltonian of the system is then the sum of
the dot Hamiltonian Hd , the Hamiltonian of the normal lead
HN , two BCS Hamiltonians for superconducting leads HL and
HR, and three tunneling Hamiltonians HT,α with α ∈ {N, L, R}
which connect each lead separately to the dot. The constituent
Hamiltonians read as

Hd =
∑

σ

εd d†
σ dσ + Ud†

↑d↑d†
↓d↓, (1)

Hα =
∑
kσ

εkαc†
αkσ cαkσ

−�α

∑
k

(eiϕα c†
αk↑c†

α−k↓ + H.c.), (2)

HT,α =
∑
kσ

(V ∗
αkc†

αkσ dσ + Vαkd†
σ c

αkσ
), (3)

where c†
αkσ creates an electron of spin σ ∈ {↑,↓} and quasi-

momentum k in the lead α while cαkσ
annihilates it. In

analogy, d†
σ creates a dot electron of spin σ while dσ anni-

hilates it. The QD is characterized by the Coulomb repulsion
U and the level energy εd which in the most general case is
arbitrary but we will later concentrate only at εd = −U/2. The
QD hybridizes with the leads via Vαk and the gap parameter
vanishes in the normal lead, thus �N = 0.

In all our calculations we use dimensionless units with h̄ =
1 and e = 1. Moreover, we focus on a generic case with a
constant TDOS with a finite half-bandwidth B

�α (ω) = π
∑

k

|Vαk|2δ(ω − εkα ) = �α�(B2 − ω2), (4)

which also defines the tunneling rates �α . We concentrate
on the case with symmetric coupling to the superconducting
leads �L = �R ≡ �S/2 as any asymmetric case �L 	= �R can
be obtained from the symmetric one using the procedure de-
scribed in Ref. [46].

We also restrict to situations with the same gap parame-
ters in both superconducting leads �L = �R ≡ � as this is a
typical situation in an experiment. Concerning the BCS phase
parameters ϕL and ϕR, as in any Josephson junction physical
observables can only depend on the phase difference ϕ =
ϕL − ϕR and not on their individual values, i.e. they must be
invariant with respect to a global phase shift ϕL,R → ϕL,R + ϕs

which is a manifestation of the gauge invariance [28]. There-
fore, we are free to choose a convenient symmetric phase-drop
setup with ϕL = −ϕR = ϕ/2 in what follows.

The Hamiltonians of all three leads are quadratic due to
the standard noninteracting assumption. Consequently, the
lead electrons can be integrated out to obtain a genuine one
channel impurity problem. To this end, it is advantageous to
reformulate Eqs. (1)–(3) using the Nambu formalism.

B. Hamiltonian in the Nambu basis

Nambu formalism represents a convenient way of rearrang-
ing Hamiltonians involving BCS superconductivity in a way
where all the lead electrons are treated on an equal footing. To
this end, let us combine the spin up and spin down component
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FIG. 1. (a) Scheme of Y-shaped three-terminal junction where a QD (black disk) couples via the hybridization strength �N to one normal
electrode (red pointed teardrop) and the left (L) and right (R) superconducting electrodes (blue pointed teardrops) which are phase-biased by
ϕ = ϕL − ϕR. The BCS leads hybridize with quantum dot with strengths �L and �R, respectively, and are considered here as having the same
BCS gap parameter �L = �R ≡ �. (b) Equivalent scheme consisting of one-terminal reservoir containing Bogolyubov-like quasiparticles
(purple pointed teardrop) which are hybridized with the QD via a structured hybridization function �W (ω). In Sec. II C we show that by
employing �W (ω) according to Eq. (41) the schemes (a) and (b) may be in terms of spectral properties mapped onto each other at the
half-filling. To obtain transport properties corresponding to the Y-shaped geometry of panel (a) transformations according to Sec. IV C are
required.

of the corresponding fields describing the c electrons into
spinors

C†
α k = (c†

α k↑, c
α −k↓), (5)

with α ∈ {N, L, R}, while the spinor D of the dot electrons d
is constructed in complete analogy as

D† = (d†
↑, d↓). (6)

Under the standard BCS assumption εkα = ε−kα and with a
convenient choice of real tunnel couplings Vαk = V ∗

αk = Vα−k,
the Hamiltonians (2) and (3) apart from possible unimportant
constant energy shifts then become

Hα =
∑

k

C†
α kEα kC

α k, (7)

HT,α =
∑

k

(D†V
α kC

αk + C†
αkVα kD), (8)

with

Eαk = −�αCασx + �αSασy + εkασz, (9)

Vαk = Vαk σz, (10)

where σi, i ∈ {x, y, z}, are the Pauli matrices while Cα ≡
cos ϕα , Sα ≡ sin ϕα . The blackboard bold font is from now
on used to distinguish matrices from scalars.

Before applying the Nambu formalism to the Hamilto-
nian (1), let us first separate it into a quadratic part,

Hd,0 =
∑

σ

εd d†
σ dσ + U

2
D†(σx + σz )D

= D†Ed D, (11)

with

Ed = U

2
σx +

(U

2
+ εd

)
σz, (12)

and a mixed quadratic and quartic interaction part

HU = Ud†
↑d↑d†

↓d↓ − U

2
D†(σx + σz )D. (13)

The advantage of this nonstandard partitioning will be dis-
cussed in Sec. II C.

Taking together, in the Nambu formalism the noninteract-
ing quadratic part of the present problem spanned by the D
and C spinors reads as

H0 = Hd,0 +
∑

α

(Hα + HT,α ), (14)

while the modified interaction part HU is given by Eq. (13).

C. Bogolyubov-Valatin transformations in the space of local
electrons

Let us now study the effect of unitary transformations T
and T̃α onto the spinors D and Cα , respectively. We introduce
the spinors W and C̃ via

TD ≡ W, D†T† ≡ W †, (15)

T̃αCαk ≡ C̃αk, C†
αkT̃

†
α ≡ C̃†

αk. (16)

At this point, we consider no other constraints on the trans-
formations T, T̃α except of unitarity so that the many-body
energy spectra of the problem remain invariant. On the other
hand, such transformations may crucially affect the form of
the one-particle operators in the corresponding noninteracting
Hamiltonians thus allowing for computationally more suitable
noninteracting Green functions and/or self-energy contribu-
tions from the integrable degrees of freedom for the problem
under the study.

The effect of the transformations T and T̃α on the quadratic
part Hd,0 reads as

Hd,0 = W †(TEdT
†)W , (17)

while the tunneling Hamiltonians change as

HT,α =
∑

k

W †(TV
αkT̃

†
α )C̃

αk +
∑

k

C̃†
αk(T̃αV

αkT
†)W. (18)

The kinetic Hamiltonians are affected only by the transfor-
mations T̃α as they involve no operators of the local electrons:

Hα =
∑

k

C̃†
α k(T̃αEαkT̃

†
α )C̃α k. (19)

Since the noninteracting (U = 0) Hamiltonian is quadratic
we can easily obtain the retarded Green function GW

0 (ω+) [47]
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which corresponds to the W spinors. Employing the equation
of motion technique for the Green functions in an exact anal-
ogy to Ref. [48], we introduce an infinite-dimensional vector

�† = (W †, C̃†
Nk, C̃†

Lk, C̃†
Rk ), (20)

where � is its Hermitian conjugate and the spinors C̃†
αk are un-

derstood to be repeated in �† for all possible quasimomenta of
lead electrons. This allows us to rearrange the noninteracting
Hamiltonian as

H0 = �†EW �, (21)

with

EW =

⎛
⎜⎜⎜⎜⎜⎝

TEdT† TVN kT̃
†
N TVL kT̃

†
L TVR kT̃

†
R

T̃NVL kT
† T̃NEN kT̃

†
N 0 0

T̃LVL kT
† 0 T̃LEL kT̃

†
L 0

T̃RVR kT
† 0 0 T̃RER kT̃

†
R

⎞
⎟⎟⎟⎟⎟⎠,

(22)

where the upper index W was introduced to clearly distinguish
the underlying spinor basis W for the formulation of the
infinite-dimensional matrix EW .

In general, the noninteracting problem can be solved by
finding the retarded Green function G0(ω+) where ω+ ≡ ω +
iη while ω is a real frequency and η is an infinitesimally small
positive number. To this end, standard equation of motion
technique formulated in the matrix form requires one to solve
the resolvent equation G0(ω+) = (ω+1 − H0)−1 with 1 being
the unit matrix. However, for the present problem we only
need to obtain the solution for the local Green function of the
dot electrons which corresponds the left upper 2 × 2 block
of expression (22). Employing the partitioning scheme of
Ref. [48], we obtain the local retarded Green function GW

0 (ω+)
in the spinor basis W directly as

GW
0 (ω+) = (ω+1 − TEdT

† − TΣDT†)−1, (23)

with

ΣD(ω+) =
∑
αk

VαkT̃
†
α (ω+ 1 − T̃αEαkT̃

†
α )−1T̃αVαk

=
∑
αk

Vαk(ω+ 1 − Eαk )−1Vαk, (24)

which thus represents the self-energy contribution from the
leads expressed with respect to the spinor basis D (as denoted
by the upper index D). Moreover, one may also obtain the
self-energy contribution ΣW as

ΣW (ω+) = TΣD(ω+)T†, (25)

which not only defines ΣW (ω+), but also gives us the trans-
formation rule to easily interchange the spinor bases D and W
when required. By exploiting the unitarity of T, we may also
extract an analogous transformation rule for the noninteract-
ing retarded Green functions

GW
0 (ω+) = T(ω+1 − Ed − ΣD)−1T† = TGD

0 (ω+)T†, (26)

which yields also the definition of the noninteracting (U = 0)
retarded Green function with respect to the spinor basis D.

Clearly, in both bases the effect of the leads is fully integrated
out and only enters the GW

0 (ω+) and GD
0 (ω+) via the cor-

responding self-energy contributions ΣW (ω+) and ΣD(ω+),
respectively. Green function as well as the self-energy contri-
butions in different bases relate to each other via the local dot
transformation T since the transformations T̃α are canceled
out in Eqs. (25) and (26).

It is now our aim to construct a suitable transformation T,
so that the self-energy contribution ΣW is diagonal. To this
end, we first perform all summations in Eq. (24), which is
quite straightforward with details given in the Appendix B.
The resulting expression for ΣD(ω+) has the following matrix
structure:

ΣD(ω+) = �D
n (ω+)1 + �D

a (ω+)σx, (27)

where �D
n (ω) and �D

a (ω) are functions of frequency with for
now unimportant form given in the Appendix B. We insert
now ΣD(ω+) back into Eq. (26) to obtain the matrix structure
of (GD

0 )−1. We first concentrate exclusively on the half-filled
case where (GD

0 )−1 has a much simpler structure. Afterwards,
the more general εd 	= −U/2 case is inspected.

At the half-filling the diagonal part of (GD
0 )−1 is only pro-

portional to the unit matrix 1 which remains unaltered under
unitary transformation. On the other hand, the off-diagonal
parts of ΣD and Ed are both proportional to σx and may thus
be simultaneously diagonalized by enforcing the condition
TσxT† = ±σz onto the transformation T. The resulting nonin-
teracting Green function GW

0 is then also diagonal as intended.
Each sign option of the condition TσxT† = ±σz, is solved by
two linearly independent transformations which we denote T±

1
and T±

2 with the given superscript indicating the sign of σz in
the condition. Explicitly, we obtain

T±
1 = 1√

2
(σx ± σz ), T±

2 = 1√
2

(1 ± iσy). (28)

All transformations fulfill T† = T−1 = T and are of
Bogolyubov-Valatin type but without momentum or
frequency dependence.

Notably, trying to generalize the previous approach to εd 	=
−U/2 changes the matrix structure of (GD

0 )−1 considerably by
adding an extra diagonal term proportional to (εd + U/2)σz.
Diagonalizing (GD

0 )−1 by T would now require to simulta-
neously fulfill not only TσxT† = ±σz but also TσzT† = ±σz

or TσzT† = ±1. Neither of the two combined conditions is,
however, solvable. Consequently, outside of the half-filled
case there exists no unitary transformation to diagonalize
(GD

0 )−1. For example, applying T in the form of Eq. (28) away
from the half-filling rotates the superconducting terms onto
the diagonal elements of (GW

0 )−1 which is, however, traded
off for rotating the originally diagonal terms proportional to
(εd + U/2)σz into off-diagonal terms proportional to (εd +
U/2)σx. From now on, we therefore concentrate exclusively
on the half-filled case.

Although, for the noninteracting (U = 0) half-filled case
the corresponding Green function can be diagonalized by
transformations (28), in the end, in the full interacting case
the action of transformations (28) on the interaction part HU

needs to be considered. As shown in the Appendix A, using
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the interaction term mixed of quadratic and quartic terms ac-
cording to Eq. (13) allows us to obtain the Hubbard interaction
term when the transformation T−

1 is used. Explicitly:

HU = Uw
†
↑w↑w

†
↓w↓. (29)

The remaining options for T produce all an extra quadratic
term in HU which is proportional to σx, thus spoiling the
diagonal form of GW

0 (ω+). We thus select the transformation
T−

1 in what follows and denote it as T ≡ T−
1 . Nevertheless,

we stress that the remaining choices would also be possible
when different partitionings of the full Hamiltonian are con-
sidered. Moreover, the transformation T+

2 fully corresponds
to the transformation used in the standard NRG treatments
of magnetic impurities coupled to superconducting reservoirs
(see Refs. [35,36] for more detail) while T+

1 relates to the
transformations applied in the Refs. [37–39] to solve the
� → ∞ limit of the present model. However, in all of the
aforementioned references, even at the half-filling the lead
transformations corresponding to T̃α are explicitly performed
within the applied NRG algorithms.

Since the resulting GW
0 (ω+) is proportional to ωσzg1(ω) +

g2(ω)1 with g1(ω) and g2(ω) being even functions of ω we
may actually drop the matrix Nambu formalism and employ
directly the w

†
↑ and w

†
↓ fields which constitute the W spinor.

We stress out in this regard, that such a transition requires us to
change the hole propagator GW

0 (ω+) to an electron propagator
which involves simultaneous change of the frequency sign as
well as one extra minus sign for normal ordering of the cre-
ation and annihilation operators to obtain the corresponding
spin-down electron propagator of the constituent field w

†
↓. In

detail, ωg1(ω)σz → ωg1(ω)1 and g2(ω)1 → g2(ω)1. Thus,
one obtains

GW
0↑(ω+) = GW

0↓(ω+) = 1

ω + U/2 − �W (ω+)
(30)

and the independence of Green functions of the spin index of
the field w becomes explicit. The calculation of �W (ω+) =
�D

n (ω+) − �D
a (ω+) can be performed for arbitrary bandwidth

as shown in the Appendix B. In the limit of infinitely wide
band B → ∞, it takes the following form:

�W (ω+) = −i�N − �S

[
i sgn(ω)√
ω2 − �2

�(ω2 − �2)

+ �(�2 − ω2)√
�2 − ω2

](
ω − � cos

ϕ

2

)
, (31)

where � is the Heaviside step function. The imaginary part
of Eq. (31) is traditionally referred to as the hybridization
function, see also Sec. IV A, while the real part is connected
to the imaginary one via the Kramers-Kronig relations.

Taking together, the unitary transformation T allows us to
map the original nondiagonal model expressed via D spinor
onto a model described in terms of Bogolyubov-type quasipar-
ticles wσ coupled to a single normal lead which has an altered
TDOS due to the frequency-dependent self-energy �W (ω+).
Moreover, the Bogolyubov quasiparticles wσ interact locally
via the ordinary Hubbard interaction term. This allows us to
redefine the three-terminal setup as one-channel-lead problem
similar to the ordinary SIAM and apply NRG in a straight-

forward way as described in Ref. [43]. This way, all spectral
properties in the spinor basis W can be obtained.

In the Nambu formalism of spinors D spin symmetry is
manifestly present and the corresponding Nambu Green func-
tion has thus a normal component GD

n (ω+) and an anomalous
GD

a (ω+). Because of Eqs. (29) and (30), spin symmetry is also
preserved in the w basis and the resulting Green functions are
thus spin independent, i.e. GW

↑ (ω+) = GW
↓ (ω+) ≡ GW

n (ω+).
Even-though they can be directly calculated by means of
NRG, in the end, we need to transform back to the original
basis of the d electrons. Therefore, one needs to relate the
Green functions and their corresponding spectral functions
between both bases. Since the unitary transformation T mixes
the original dσ and d†

σ fields only in a linear way, we obtain

GD
n (ω+) = 1

2

[
GW

n (ω+) − GW
n (−ω+)

]
, (32)

GD
a (ω+) = − 1

2

[
GW

n (ω+) + GW
n (−ω+)

]
, (33)

where −ω+ = −ω − iη. Recall that GW
n (ω+) = GW ∗

n (ω−)
with ω− ≡ ω − iη and the imaginary part of the Green func-
tion equals the spectral function up to a multiplicative factor
−1/π . Therefore, we can directly construct the normal spec-
tral function AD

n (ω) and the anomalous spectral function
AD

a (ω) in the d basis using

AD
n (ω) = 1

2

[
AW

n (ω) + AW
n (−ω)

]
, (34)

AD
a (ω) = − 1

2

[
AW

n (ω) − AW
n (−ω)

]
, (35)

with AW
n being the spectral function corresponding to GW

n .
We will often refer to the backwards transformations of the
normal spectral and anomalous function as symmetrization
and antisymmetrization, respectively.

III. � → ∞ CASE

To demonstrate and assess the concepts derived in Sec. II,
we turn first to the well-understood � → ∞ case of the
present model and compare it to the standard NRG approach
used to solve this limit in Refs. [34,37–39]. Here, one first
applies a T-like transformation to the dot electrons and a
combination of T-like and particle-hole transformations to
the remaining Wilson chain. As unnoticed by the authors of
Refs. [37–39], in the particle-hole symmetric case only the T
transformation to the dot electrons is essential and the rest is
just method specific. To show this, we briefly review the ap-
proach in Refs. [37–39]. Crucially, the � → ∞ Hamiltonian
simplifies down to

H�→∞ = Hd,0 + HU + HN + HT,N − �d (ϕ)(d†
↑d†

↓ + d↓d↑),

(36)

where �d (ϕ) ≡ �S cos(ϕ/2), HN , Hd,0, HT,N follow our pre-
vious notations and εd was considered originally as arbitrary.
H�→∞ has thus a one-channel-lead form. The BCS effects are
present via nonzero off-diagonal terms.

To treat those, the logarithmically discretized version of
� → ∞ model is mapped onto a semi-infinite Wilson hop-
ping chain with the first node populated by the local dσ

electrons (σ ∈ {↑,↓}) of the QD while remaining sites labeled
by i ∈ N are populated by fermions ciσ representing the bath
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degrees of freedom. In Refs. [37–39], each site of the Wilson
chain is rotated using unitary transformation O�

O� =
(

cos �
2 − sin �

2

sin �
2 cos �

2

)
, (37)

which acts on the Nambu spinors of the given site of the
Wilson chain, while

cos
�

2
=

√
1

2
+ ε̃d

2δ
, sin

�

2
=

√
1

2
− ε̃d

2δ
, (38)

with δ =
√

ε̃2
d + �2

d and ε̃d = εd + U/2. The first site of the
Wilson chain transforms for example as

O�D = O�

(
d↑

d†
↓

)
=

(
w↑
w

†
↓

)
≡ W, (39)

where D,W follow the notation of Sec. II. The sites rep-
resenting the lead electrons (index i) are also subjected to
particle-hole transformations. The coefficients of the result-
ing diagonal semi-infinite Wilson chain are then noticed to
be identical with those of the ordinary asymmetric SIAM
and because of the Hausholder transformation the equiva-
lence of the � → ∞ model to the asymmetric SIAM with
the particle-hole asymmetry factor δ from (38) and constant
TDOS is established [37–39]. We stress that the findings in
Refs. [37–39] hold at arbitrary filling.

Using the approach of Sec. II we may now prove that in the
half-filling, only the unitary transformation O� applied to the
space of local electrons is essential while all of the remaining
transformations are merely an NRG related technical tool.
First, in the half-filled case ε̃d = εd + U/2 = 0 corresponding
to � = π/2 for which the O� transformation becomes T+

2 of
Sec. II while the self-energy contribution of the leads is known
to be proportional to the 2 × 2 unit matrix in the d basis of
the local electrons. Thus, it is form invariant under any uni-
tary transformation with ΣD

N (ω) = ΣW
N (ω). The off-diagonal

parts of the Hamiltonian (36) turn out to be more delicate.
Performing then the same partitioning of (36) as in Eqs. (11)
and (13), we may apply the transformation Oπ/2 to obtain the
noninteracting part of the dot Hamiltonian in a diagonal form

Hd,0 = W †

(
δ − U

2 0

0 −δ + U
2

)
W. (40)

Applying then the transformation Oπ/2 to the interaction term
gives back (29) which finally proofs that the � → ∞ model
maps onto the asymmetric SIAM with constant TDOS with
the particle-hole asymmetry parameter δ = �S cos(ϕ/2). The
resulting Wilson chain is identical to that of Refs. [37–39].
The physical interpretations of the hybrid reservoir behav-
ior are then easily accessible via the well-known results on
asymmetric SIAM. Qualitatively, starting from the spectral
function AW

n (ω) of the asymmetric SIAM of given asymmetry
parameter δ = �S cos(ϕ/2) one applies the symmetrization
procedure (34) and obtains the normal spectral function
AD

n (ω) of the three-terminal � → ∞ model in the original
basis of the d fields. For the anomalous functions (subscript
a), analogically, the antisymmetrization (35) is performed as
shown Fig. 2.

In the top row of panels we show the spectral functions
of the asymmetric SIAM in descending order of δ [49].
The middle row of panels shows then the symmetrized
counterparts of the top row panels which actually repre-
sent the solution to the normal spectral functions of the
� → ∞ model at given ϕ. Analogically, the bottom row
shows the antisymmetrization of the top-row panels which
then represent the anomalous spectral functions of the � →
∞ model. Panels in the same columns thus correspond
to each other via the relation δ = �S cos(ϕ/2) and are or-
dered from left to right with the increasing phase difference
ϕ for the � → ∞ model and in decreasing order of the
asymmetry parameter δ of the underlying SIAM. The particle-
hole symmetric case of the effective SIAM is then realized
at ϕ = π .

Thus, in the w basis, the particle-hole symmetry at ϕ =
π leads to the appearance of an ordinary Kondo resonance
of AW

n (ω) at the Fermi energy. Additionally, two satellite
Hubbard peaks emerge at approximately ±U/2 (see the last
column of panels in Fig. 2). Symmetrization (34) does not
alter the shape of the normal spectral function which remains
the same in both bases.

Decreasing the phase difference ϕ and keeping parameters
U , �, �N , and �S constant drives the underlying asymmetric
SIAM away from its particle-hole symmetric point as shown
in the top row of panels of Fig. 2 (δ increases from right to
left). As δ increases, the central Kondo peak shifts gradually
away form the Fermi energy and becomes simultaneously
broader and slightly smaller [50]. When the particle-hole
asymmetry in the w basis is relatively small, i.e., δ = 2.5
in Fig. 2, the off-central movement does not overcome its
broadening. Consequently, performing symmetrization oper-
ation (34) to obtain AD

n (ω) makes the central peak broader
but still singly peaked. However, decreasing the angle ϕ

further eventually causes such a strong decentralization that
the broadening is insufficient. Symmetrization (34) then only
leads to a split central peak with the remnants of Kondo reso-
nances, as seen at larger ϕ corresponding to δ = 4.33 and δ =
5.0 cases in Fig. 2. At such a critical value, ϕ∗ ≈ π/3 in Fig. 2,
the splitting of AD

n (ω) is related to sufficient suppression of
the Kondo correlations in the w basis. However, keeping
the value of �S so small that for given interaction strength
U the asymmetry parameter δ is insufficient to destroy
Kondo correlations, splitting might be avoided in analogy to
SCIAM.

At ϕ = 0 (the first column of Fig. 4), the split-peak is
accompanied by a highly suppressed pair of peaks at ω ≈
±12�N which intensifies and shifts toward the Fermi en-
ergy as the angle ϕ is increased because the corresponding
charge excitations of the underlying asymmetric SIAM be-
come stronger (δ decreases). Therefore, at ϕ∗ ≈ π/3, when
the split-peak merges into a Kondo-like central peak, this pair
becomes well visible. Moreover, a second pair starts to emerge
from the Kondo-like peak (note the shoulders of the central
peak at ϕ = 2π/3 in Fig. 2). These two pairs move then to-
ward ±U/2 until they merge at ϕ = π where they correspond
to the ordinary Hubbard peaks of the symmetric SIAM. The
behavior of the off-center peaks thus highly resembles that of
the ABS states in the SCIAM (apart of the existence of two
pairs also for ϕ < ϕ∗).
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FIG. 2. The top row of panels shows the normal spectral functions for the asymmetric SIAM with U = 5�N in the direction of decreasing
asymmetry parameter δ. The top row spectral functions also correspond to the spectral functions AW

n (ω) of the � → ∞ model expressed in
the w basis when U and �N are the same and δ = �s cos(ϕ/2). The middle row of panels shows the normal spectral functions AD

n (ω) of the
� → ∞ model in the d basis obtained by symmetrization (34) of AW

n (ω) corresponding to the top row. The bottom row shows the anomalous
spectral function AD

a (ω) of the � → ∞ model in the d basis obtained by antisymmetrization (35) of the top row.

The normal lead of the � → ∞ model causes not only
a singlet ground state for all values of ϕ but also lifts the
strict selection rules present in SCIAM which explains
the additional pair of peaks for ϕ < ϕ∗. Thus, for ϕ < ϕ∗
the spectral function AD

n (ω) resembles somewhat broadened
spectral function of the 0 phase of SCIAM and is thus referred
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FIG. 3. Phase evolution of the TDOS �W (ω) (41) in the w basis
for �N = � and �S = 2�. At ϕ = 0, only the left BCS singularity
does appear and the resulting TDOS is highly asymmetric. Increasing
ϕ diminishes the asymmetry while BCS singularities develop at both
gap edges. The symmetry is fully restored only at ϕ = π .

to as 0-like phase in what follows. For ϕ > ϕ∗, AD
n (ω) obtains

a shape similar to that of broadened spectral function in the
π phase of SCIAM. However, due to the normal electrode a
Kondo resonance coexists with four broadened ABS states.
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FIG. 4. Low-energy eigenvalues of the logarithmically dis-
cretized Hamiltonian obtained using NRG Ljubljana for the half-
bandwidth B = 2000�, U = 3�, �S = �, and �N = �/100. Q is
defined as the total charge of the Wilson chain measured with re-
spect to the half-filling and Mz ≡ 1 + 2Sz with Sz being the overall
magnetization of the Wilson chain.

035419-7



ZALOM, POKORNÝ, AND NOVOTNÝ PHYSICAL REVIEW B 103, 035419 (2021)

IV. FINITE-GAP MODEL

A. NRG calculations

As shown in Sec. II C, the transformation T maps the
finite-gap three-terminal setup at the half-filling onto an
NRG-tractable one-channel problem. In the w basis, the
Hamiltonian describes an Anderson impurity coupled to a
continuum of bath states with modified TDOS �W (ω) corre-
sponding to �W (ω) which except of ϕ = π is particle-hole
asymmetric as shown in Appendix B. In the limit of infinitely
wide band it reads

�W (ω) = �N + �S|ω|�(ω2 − �2)√
ω2 − �2

(
1 − �

ω
cos

ϕ

2

)
, (41)

where � is the Heaviside step function. The phase evolu-
tion of hybridization function �W (ω) is shown in Fig. 3 for
selected parameters. Note, that �W (ω) is only particle-hole
symmetric at ϕ = π with asymmetry increasing toward ϕ =
0 in analogy to the � → ∞ case. Since �W (ω) is diago-
nal, in the w basis standard one-channel NRG method of
Refs. [40,43] can be applied. To this end, we have utilized
NRG Ljubljana code [45] with intertwined z discretization
according to the scheme of Žitko et al. [51], i.e., z =
n/10 where n ∈ {0, . . . , 10}. To achieve smoother spectral
functions with discontinuities at the BCS gap edges, the so-
called self-energy trick has been employed. We stress that
in the main body of the article we concentrate on the wide
band limit with bandwidth set to 2B = 4000�. The correc-
tions for the case of a narrow band are discussed in the
Appendix B.

The experimentally accessible spectral functions in the d
basis have been obtained by means of Eqs. (34) and (35) and
the results are discussed in Sec. IV B. On-dot induced pairing
ν = 〈d↓d↑〉 is trivially connected to the filling nw in the w

basis and can be measured directly as discussed in Sec. IV C.
The operator for the Josephson current depends explicitly
from the lead electrons and an integral formula of Ref. [52]
involving the anomalous component of Green function in the
d basis is required as discussed in Sec. IV C.

Most importantly, we note that the energy eigenvalues, as
obtained at each NRG iteration, are basis independent because
T is unitary. Corresponding effective models attributed to
certain RG fixed point can thus be directly read off. Here,
we concentrate exclusively at low temperature behavior which
is governed by the strongly coupled (SC) or frozen impurity
RG fixed point depending on the extent of phase-bias-induced
particle-hole asymmetry in the w basis as shown in Fig. 4.
Here, we selected parameters involving a sign reversal of the
local pairing at ϕ∗

pair ≈ 0.45π and Josephson current reversal
at ϕ∗

j ≈ 0.5π (see the discussion in Sec. IV C). At ϕ = π ,
the SC fixed point of ordinary symmetric SIAM is identified
since it contains a singlet ground state, followed by first a
quadruplet and then a sextet of next excited levels. Decreasing
ϕ, splits the quadruplet into two doublets while the sextet
splits into two singlets placed symmetrically around the re-
maining quadruplet corresponding to the behavior of ordinary
asymmetric SIAM at small particle-hole asymmetry. This, es-
tablishes then a correspondence of the present three-terminal
set-up to the particle-hole asymmetric SIAM at ϕ 	= π with
particle-hole symmetric case recovered at ϕ = π . The quali-

tative behavior of the spectral functions is therefore expected
to essentially follow the results of the � → ∞ case discussed
in Sec. III. The quantitative changes in on-dot induced pairing
and Josephson current are therefore only related to the fine
details of the corresponding spectral functions at higher fre-
quencies as discussed in Secs. IV B and IV C.

B. Spectral properties and the Kondo scale

The phase evolution of the normal spectral function in the
d basis shown in Fig. 5 for two values of U/� demonstrates
that qualitatively finite-gap case does not differ much from
the � → ∞ case. Selecting first the U = 3� case [Figs. 5(a)
and 5(b)], we notice two broadened ABS-like peaks placed
symmetrically around the Fermi energy at ϕ = 0. With in-
creasing ϕ, both peaks move toward the Fermi energy and
merge at a certain value ϕ∗ which depends nontrivially on U
and �. Subsequently, for all ϕ > ϕ∗ the central Kondo-like
peak is present. Moreover, four side-peaks (corresponding to
the two symmetrized effective Hubbard satellites in the w

basis) also emerge. Increasing ϕ further shifts the two peaks
on each side of the spectra together, until at ϕ = π they
coalesce. At this point, the TDOS is symmetric and the ϕ = π

spectrum resembles the typical three-peak structure of the
symmetric SIAM. The second case with U = 6� is shown in
Figs. 5(c) and 5(d). Here the ratio �S/� is insufficient to gen-
erate particle-hole asymmetry leading to the emergence of the
0-like phase. Such regimes are analogous to the observations
made for SCIAM at large ratios U/�.

To make the movement of the in-gap peaks explicitly man-
ifest, we visualized the phase-dependent positions of their
maxima via heatmaps in Figs. 5(b) and 5(d). We clearly ob-
serve in Fig. 5(b) their crossing at angle ϕ∗. When ϕ is further
increased, the in-gap peaks move apart again. However, for all
ϕ > ϕ∗ two additional in-gap states emerge. The two peaks
for ϕ < ϕ∗ can then be related to the two ABS states of
SCIAM in the 0 phase, while the four off-central peaks are in
one-to-one correspondence with the four ABS states observed
in the π phase of SCIAM. However, unlike in SCIAM the
nonzero TDOS around the Fermi energy gives rise also to the
central Kondo-like resonance for all ϕ > ϕ∗.

Thus, the obtained spectral functions qualitatively corre-
spond to the � → ∞ model and the physical interpretation in
terms of the particle-hole asymmetry of the underlying model
in the w basis holds analogously. Nevertheless, there are quan-
titative differences which appear once integral quantities, such
as the filling nw in the w basis, are considered. For the � →
∞ model, the filling nw monotonically decreases from the
nw = 1 value obtained at ϕ = π for all parameter regimes. In
the finite-gap three-terminal case, there are parameter regimes
where nw first increases to values larger than 1 (positive ef-
fective chemical potential) and then starts to monotonically
decrease to values smaller than 1 (negative effective chemical
potential). Such integral properties are shown in Sec. IV C to
be crucial for the system to exhibit effects such as pairing or
Josephson current reversal which are typical of 0-π transition
observed in SCIAM. This means that the precise shape of
spectral functions plays an important role when analyzing the
finite-gap case.

In Sec. IV A, we have already established the correspon-
dence of the low-energy many-body NRG spectra to that of
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FIG. 5. (a) Phase evolution of the spectral function AD
n (ω) in the subgap region of the finite-gap three-terminal setup for U = 3�, �N =

�/10, �S = � and half-bandwidth B = 2000�. For ϕ < ϕ∗ ≈ 0.55π one observes a pair of broadened ABS states while for ϕ > ϕ∗ an
additional pair of broadened ABS states and an additional central Kondo-like peak do appear. In analogy to the SCIAM, for ϕ < ϕ∗ the regime
is referred to as the 0-like phase while for ϕ > ϕ∗ as the π -like phase. (b) Heatmap corresponding to panel (a) highlights the phase-dependent
position of the maxima of the in-gap peaks (dashed lines). (c) The same as in panel (a) only U = 6�. The Kondo correlations dominate
the system which remains in the π -like phase for all values of ϕ. For sufficiently large U , such a scenario does occur also in the SCIAM.
(d) Heatmap corresponding to panel (c) shows the phase-dependent position of the maxima of the in-gap peaks (dashed lines).

the particle-hole asymmetric SIAM for ϕ 	= π with particle-
hole asymmetry monotonically decreasing toward ϕ = π

where it completely vanishes. In the w basis, one therefore
observes that starting at the particle-hole symmetric case for
ϕ = π and then decreasing ϕ, causes a gradual movement of
the original Kondo peak away from the Fermi energy which is
induced by the increasing particle-hole asymmetry. However,
as long as ϕ > ϕ∗ the increasingly large broadening does
overcome this shift and symmetrization (34) still leads to a
well-defined central peak in the spectral function AW

n (ω). Only
when ϕ is decreased further, does the broadening of the central
peak stop compensating for the rapid movement of the peak,
so that the symmetrization (34) results in a doubly peaked
spectral function AW

n (ω) in the w basis.
The lack or presence of a single central peak can thus be

understood as a sign of the Kondo-like interaction-screening
efficiency. To quantify such behavior, we have extracted the
phase-dependent Kondo temperature TK as the half-width at
half maximum (HWHM) value of the zero-energy peak of
the π -like phase. Unlike in Ref. [34], we first compare TK

to the Kondo temperature at ϕ = π , denoted as T π
K , which

as shown by the transformation T preserve particle-hole
symmetry in the w basis. Decreasing ϕ from its particle-
hole symmetric point at ϕ = π then introduces increasingly
larger particle hole asymmetry in the w basis and is also
accompanied by the enhancement of TK in the experimentally
relevant d basis. Such a phase-dependent enhancement of TK

is then conveniently measured via log(TK/T π
K ) as done in

Fig. 6.
The broadening of the central peak in the experimentally

observed d basis, as encoded by TK , is thus accomplished by
a delicate interplay between the shift and broadening of the
central peak in the w basis due to the increase of the particle-
hole asymmetry. Once the symmetrization (34) is applied, the
two effects combine to a wide and somewhat deformed central
peak in the d basis as compared to the particle-hole symmetric
case ϕ = π . The increasing TK therefore cannot be completely
attributed to the increase of Kondo correlations, as speculated
in Ref. [34], as charge fluctuations become more important
and may even lead to complete destruction of the central
Kondo peak once the crossover to the 0-like phase is entered.
Consequently, the enhancement of TK with decreasing ϕ is to
be attributed to the increase of the underlying particle-hole
asymmetry of the system as seen in the w basis introduced in
Sec. II.

Predictions on the phase-dependent enhancement ac-
cording to log TK ∝ cos2(ϕ/2) were performed already in
Ref. [34] but were based only on numerical indications from
the second order perturbation theory. To thoroughly assess this
conjecture we thus use the exact NRG data for �N = �/10 at
various U , see the upper panel of Fig. 6. The phase-dependent
spectral functions corresponding to U = 3� and U = 6�

cases have already been presented in Fig. 5 from which it
is evident that the region of π -like phase is considerably
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FIG. 6. (a) Phase dependence of the Kondo temperature TK of
the three-terminal set-up at �S = �, �N = �/10 at varying U with
half-bandwidth B = 2000�. TK is determined as HWHM of the
central Kondo-like peak observed in the π -like phase, T π

K denotes
TK at ϕ = π . Points represent NRG data while lines are fits in the
corresponding π -like phase regions. In all three cases, log TK ∝
cos2(ϕ/2) and follows the hypothesis of Ref. [34]. (b) The same as
in panel (a) at fixed U = 3� and varying �N . The solid lines now
represent tangents at cos(ϕ/2) = 0 (ϕ = π ). For higher values of �N

the 0 − π -like crossover region is only insignificantly shifted toward
lower values of ϕ [higher values of cos(ϕ/2)]. The range of the
horizontal axis is thus selected to be narrower compared to panel (a),
i.e., 0 � cos2(ϕ/2) � 1/4 (2π/3 � ϕ � π ). Exceeding �N = �/5
we observe clear deviations from the hypothesis of Ref. [34] which
are due to the BCS electrons directly entering the formation of the
Kondo resonance.

increasing with U at fixed �N . Since the HWHM as a measure
of TK becomes meaningless below a given ϕ∗, the correspond-
ing dependencies in the upper panel of Fig. 6 terminate at their
corresponding ϕ∗ and only the case U = 6� covers the whole
available ϕ range. Nevertheless, in all three cases we observe
that log TK is proportional to cos2(ϕ/2) with no significant
deviations appearing when approaching the crossover region
around ϕ∗. In these parameter regimes, the hypothesis of
Ref. [34] is thus very well satisfied.

However, when �N is increased up to the size comparable
with �, we expect the divergent portion of �W (ω) present at

the gap edges to become more involved in the formation of the
Kondo resonance. This in turn potentially deforms the central
peak and may cause deviations from the log TK ∝ cos2(ϕ/2)
law observed previously. To investigate such regime, we se-
lected the U = 3� case shown previously and increased �N ,
see Fig. 6(b). Since, the size of the π -like phase region is
almost independent of �N , we may focus onto the narrower
range of 2π/3 � ϕ < π [0 < cos2(ϕ/2) � 1/4]. For �N =
�/5 and �N = �/2 the phase dependencies obtained by NRG
(points in the graph) follow the tangents at ϕ = π [solid lines
in Fig. 6(b)] quite closely. However, they start to deviate
increasingly in the crossover region as ϕ is decreased toward
ϕ∗. The deviations from the hypothesized TK ∝ cos2(ϕ/2) law
are, however, unrelated to entering the crossover region of
the π -like to 0-like transition as follows from the �N = �/10
case [red points in Fig. 6(b)].

Let us now connect the findings to the expected ex-
perimental outcome. In the literature, there are numerous
statements referring the enhancement of the Kondo scale
upon switching on the superconductivity in the three-terminal
setup [34,53,54]. The issue is, however, which reference sys-
tem is used for the comparison (how the switch-on of the
superconductivity is achieved). One option is to add the su-
perconducting lead(s) to the conventional Anderson/Kondo
model of a QD with one normal lead as used, for example,
in Ref. [53] for the case of one added superconducting lead in
the � → ∞ model. The resulting enhancement of TK due to
the addition of the superconducting lead is indisputable, nev-
ertheless, in experiments, it would require the possibility of a
controlled tunnel coupling/decoupling of the superconducting
lead. While it is in principle possible by electrostatic gating of
the pinch-off of the tunneling connection, the conventional ex-
perimental practice works differently—the reference normal
system would not consist of the single normal lead but of all
involved leads, including the superconducting one(s), turned
into the normal state by a small magnetic field.

To quantify this matters, we first evaluate TK of the three-
terminal set-up with �S = 10, �N = � = B/2000 (2B being
the bandwidth) at various interaction strengths U and for all
phase differences compatible with π -like phase. The resulting
values of TK lie all in the blue shaded region of Fig. 7 with
ϕ = π cases being represented by the blue line in Fig. 7).
First, we consider referencing the outcome against the case of
both BCS electrodes completely decoupled from the present
three-terminal set-up. Since �S = 0, we note that the system is
just the ordinary particle-hole symmetric SIAM with constant
TDOS given by �N . We thus denote the corresponding Kondo
temperature as T N

K and vary the interaction strength U at
constant �N (black line in Fig. 7). Clearly, TK > T N

K for all
values of U in the plotted region and further by extrapolation.
Consequently, enhancement of the Kondo screening due to
the additional BCS correlations is verified in accord with
Refs. [34,53]. The second, experimentally more accessible
option is obtained by setting � = 0 (the phase dependence
vanishes). The corresponding Kondo temperature is denoted
then T �=0

K (red line in Fig. 7). Now TK < T �=0
K for all plotted

values of U and further by extrapolation. The introduction of
the superconducting correlations is thus clearly decreasing TK ,
which is also our prediction for the conventional experimental
setups.
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FIG. 7. Dependence of the Kondo temperature TK on U for the
three-terminal set-up (blue) and analogous systems with decoupled
BCS leads (black) and with a closed BCS gap (red). TK in all systems
is defined via HWHM as in Fig. 6. Points represent NRG data
while lines are just for visual guidance. We use �̃ = B/2000 as the
unit of energy. The full three-terminal set-up (blue) is calculated at
parameters � = �̃, �S = �̃, and �N = �̃/10. Blue points and the
blue solid line represent values at ϕ = π while the blue shaded region
covers all ϕ values in π -like phase. Values for the decoupled BCS
leads are obtained by setting �S = 0 and keeping �N = �̃/10 in the
full three-terminal set-up. The case of the closed gap is obtained
by setting � = 0 in the full three-terminal set-up and keeping the
remaining parameters the same. It corresponds to the ordinary SIAM
with the combined hybridization strength of all three metallic leads
�N + �S = 1.1�̃. Clearly, the Kondo temperature of the full three-
terminal set-up is bounded between the other two cases.

C. Pairing and Josephson current

We now briefly address the transport properties in the hy-
brid three-terminal structure. Because they have already been
obtained for finite temperatures in Ref. [34] using QMC, we
will mostly concentrate on the methodology in our present
approach and use the available results as a comparison to the
T = 0 results presented here.

Although, the transformation T allows simpler Hamilto-
nian formulation of the present problem in the w basis, all
transport properties are naturally measured in the original d
basis. Superconducting effects are then related to the off-
diagonal terms of the Hamiltonian, or equivalently to the
off-diagonal Nambu Green functions, expressed in the d basis.
Thus, for example, although the on-dot induced pairing in the
w basis is by definition zero as GW (ω) has no off-diagonal
entries, one may show by simple application of the transfor-
mation T to the definition of ν that

ν ≡ 〈d↓d↑〉 = 1

2
− nw

2
, (42)

where nw ≡ nw↑ + nw↓ is the sum of occupations of the spin-
up and spin-down levels in the w basis with nw = 1 in half-
filling. Interestingly, changing nw < 1 to nw > 1 in the above
equation induces then sign reversal of ν.

Consequently, for � → ∞ model the mapping onto the
ordinary asymmetric SIAM effectively prohibited any sign
reversal of ν as nw < 1 strictly. In the case of the finite-
gap three-terminal setup, such restrictions are lifted and the

observed dependencies resemble closely the behavior of
SCIAM (see Fig. 7). However, unlike in SCIAM no true phase
transition is present and ν is a continuous function of ϕ with
a crossover region of significant drop only visible for small
�N/�S . For �N = �S/100 and �N = �S/10, ν even reverses
sign at ϕ∗

pair. However, ϕ∗
pair 	= ϕ∗ as the two values coincide

only for �N → 0. The comparison of the present results to
QMC is shown in the the Appendix C, where also the effects
of the finite bandwidth are discussed. At this place, it is suffi-
cient to note that deep in the 0-like or π -like phase QMC and
NRG agree well within their numerical accuracy.

To obtain the Josephson current J we note that the corre-
sponding operator involves c electrons of the leads and we
therefore use its expression in terms of the anomalous Green
function GD

a (ω+) in the d basis [52]

J = 2 tan
ϕ

2

∫ +∞

−∞

dω

π
f (ω)Im

[
GD

a (ω+)�D
a (ω+)

]
, (43)

where f (ω) is the Fermi-Dirac distribution, while the anoma-
lous self-energy �D

a (ω+) reads in the limit of the infinite
bandwidth

�D
a (ω+) = �S� cos(ϕ/2)√

�2 − ω2
�(�2 − ω2)

+ i�S� cos(ϕ/2) sgn(ω)√
ω2 − �2

�(ω2 − �2). (44)

The integral (43) involving anomalous components of the
Green function requires high frequency resolution and reliable
broadening procedure when applying NRG.

The results of phase-dependent Josephson current are
shown in Fig. 8 for U = 3� at different ratios of �N/�S . The
sign reversal of the Josephson current occurs only for small
hybridization strengths �N which clearly shows that Kondo
correlations are important in the system and may overcome
the superconducting correlations. Once again, the ϕ∗

j at which
sign reversal occurs does not match ϕ∗ from crossing of the
ABS states nor ϕ∗

pair, but all three values tend to be the same
for �N → 0.

V. CONCLUSIONS

We have investigated a general finite-gap model of QD
with an arbitrary Coulomb repulsion attached to the hybrid
reservoir composed of one normal lead and two BCS leads
with an arbitrary phase difference. To obtain reliable and
method-unbiased results on phase-dependent spectral func-
tions, the standard NRG was employed. However, the full
problem with three types of leads requires in the standard
NRG approach the implementation of three-channel calcu-
lations which poses several nontrivial challenges [55]. To
circumvent the numerical limitations we have thus introduced
a unitary transformation T of the local dot electrons d , which
despite the general belief [44] allows us to reformulate the
present finite-gap three-terminal model as well as any general
model with phase-biased superconductors involved, including
SCIAM, as a one channel problem.

Since the present three-terminal reservoir has a nonzero
TDOS around the Fermi energy a standard logarithmic dis-
cretization in the transformed basis of the fields wσ with
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FIG. 8. (a) Phase evolution of the on-dot induced pairing ν ≡ 〈d↓d↑〉 of the finite-gap three-terminal setup at T = 0 obtained using NRG
Ljubljana in the w basis with subsequent use of Eq. (42) for the half-bandwidth B = 2000� (solid lines) and B = 100� (dashed lines).
Parameters of the model are U = 3� and �S = � while �N varies. (b) Phase evolution of the Josephson current J with J0 = 2e�/h̄ obtained
using NRG Ljubljana in the w basis with subsequent use of Eq. (43) for the same parameters as in panel (a).

σ ∈ {↑,↓} can be employed. Thus, the open-source NRG

Ljubljana code could be employed unaltered. The obtained
phase-dependent spectral functions showed behavior resem-
bling that of the SCIAM, see also Figs. 5 and 8. Thus, two
regimes, referred here as the 0-like and the π -like phase, have
been identified in analogy. They do not however constitute
separate phases since the nonzero TDOS around the Fermi
energy leads to the formation of a singlet many-body ground
state for any ϕ.

The width of the resulting crossover region, see Figs. 5
and 8, is roughly proportional to the hybridization �N . Here,
the off-center in-gap peaks of the corresponding spectral func-
tion do cross at ϕ∗, the on-dot induced pairing changes sign at
ϕ∗

pair and the Josephson current at ϕ∗
j . Generally the values of

ϕ∗, ϕ∗
pair and ϕ∗

j do not equal, but do so in the limit of �N → 0,
where the corresponding SCIAM limit is obtained. However,
in the limit of large �N pairing and Josephson current are
always positive and neither ϕ∗

pair nor ϕ∗
j are defined although

ϕ∗ still exists as the 0-like and the π -like distinct spectra are
present.

Thus, for ϕ > ϕ∗, the presence of two pairs of the in-gap
peaks which merge together at ϕ = π and the presence of
a central Kondo-like resonance defines the spectral property
of the π -like phase. The two pairs of the in-gap peaks show
an analogous phase-dependent behavior as the ABS states of
the SCIAM as shown in Fig. 5 and they can consequently
be understood as the broadened analogs of the ABS states of
the SCIAM. However, the nonzero TDOS around the Fermi
energy, as provided by the normal lead, allows screening of
the spin of the QD even at T = 0 and leads to the formation
of the Kondo peak in the spectral function of the π -like phase.
Thus, unlike in the SCIAM, in the finite-gap three-terminal
setup the broadened ABS states do coexist with the Kondo
resonance in the π -like phase as shown in Figs. 5(a) and 5(c).

Nevertheless, at ϕ∗ the central peak at the Fermi en-
ergy splits and can no longer be attributed to Kondo-like
correlations since charge excitations dominate the effective
underlying model which is strongly out of the half-filling.
Thus, for ϕ < ϕ∗ the 0-like region is entered with the spectral
weight at the Fermi energy moving toward zero with further

decreasing ϕ. The resulting split peak can then be interpreted
in terms of two broadened ABS states of phase-dependent
behavior resembling the SCIAM. However, such a 0-like
phase has an additional pair of low-intensity peaks at higher
frequencies, which (unlike in SCIAM) can be excited in the
one-particle manner due to admixtures of the doublet state
induced by the coupling to the normal lead.

Such a complex behavior is qualitatively explained via
the transformation T which is thus not merely a technical
tool for the NRG implementation. The TDOS in the w ba-
sis is highly particle-hole asymmetric at ϕ = 0. Then, with
increasing ϕ, its asymmetry is continuously diminished until
at ϕ = π it completely vanishes. As shown in Fig. 4, the
particle-hole asymmetry of the TDOS effectively acts as the
particle-hole asymmetry in an ordinary SIAM with the con-
comitant increase of the Kondo temperature upon increasing
the asymmetry followed by entering the mixed valence regime
and eventually complete destruction of the Kondo resonance.

The Kondo temperature TK can be quantitatively assessed
via the phase-dependent HWHM of the central Kondo-like
peak. The analysis in Sec. IV C (see also Fig. 6) showed
that for �N � �/10 almost up to ϕ∗, the log TK follows very
well the cos2(ϕ/2) trend hypothesized already in Ref. [34].
Thus, even though the hypothesis in Ref. [34] is based on
the infinite-gap limit of the present model and the second-
order perturbation theory, we have shown that it is robust and
holds for sufficiently weak �N . Significant deviations from the
cos2(ϕ/2) law start appearing roughly around �N ∼ �.

Moreover, using the transformation T we have also ob-
tained the phase-dependent on-dot induced pairing ν and
the phase-dependent Josephson current J in various paramet-
ric ranges. Results in the limit of the infinitely wide band
are presented in Fig. 8, where also effects of finite width
of the band are shown (with a detailed derivation given in
the Appendix B). Incorporating these corrections allowed
for comparison with another numerically exact method, the
continuous-time hybridization expansion (CT-HYB) QMC
with a good agreement in the regions outside of the crossover
while large temperature dependence smears the region it-
self, see Appendix C. The resulting pairing and supercurrent
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reversals do not occur exactly at ϕ∗ defined by the spectral
functions and appear only at sufficiently low ratios �N/�S .
Once a given threshold is exceeded and the Kondo screen-
ing dominates the system, superconducting correlations are
essentially suppressed and only modify the phase-dependent
transport. This behavior is enhanced by increasing the in-
teraction strength, reducing the gap size, or increasing the
hybridization of the normal lead. The observation of the 0-
π -like crossover is thus possible only in a fairly small portion
of the parameter space corresponding to the weak coupling of
the normal lead to the QD.

The mapping T not only significantly reduces the nu-
merical complexity of the hybrid normal-superconductor
reservoirs, but it also allows for conceptual understanding of
the competing Kondo and Josephson effects via the particle-
hole asymmetric SIAM. In this regard, it is worth mentioning
that the transformation T applies in the same form also to the
SCIAM, i.e., an interacting QD coupled to two superconduct-
ing leads with hard gap in the spectrum, leading to its mapping
onto the problem of normal Anderson impurity coupled to
an insulator-like electronic reservoir with a hard spectral gap
around the Fermi level. The original Nambu formulation be-
comes then a scalar one which may allow for new insights
and is thus worth further pursuits. Moreover, as shown in
Ref. [56, Fig. 3b], in the most interesting Kondo regime of the
SCIAM model the results are in fact independent of the value
of the particle-hole asymmetry for quite a wide range of its
value. Therefore, even though the mapping T is restricted to
the particle-hole symmetric model, the obtained results should
be applicable also rather far away from this regime which
makes the transformed scalar version of the SCIAM model
practically relevant.
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APPENDIX A: INTERACTION TERM IN THE w BASIS

The expression (29) is easily obtained by first applying the
transformation T−

1 to the following quantities

d†
↑d↑ = 1 + w

†
↑w↑ − w

†
↓w↓

2
− w

†
↑w

†
↓ + w↓w↑

2
, (A1)

d†
↓d↓ = 1 − w

†
↑w↑ + w

†
↓w↓

2
− w

†
↑w

†
↓ + w↓w↑

2
. (A2)

Since μ = w
†
↑w↑ − w

†
↓w↓ and ξ = w

†
↑w

†
↓ + w↓w↑ satisfy

1 − μ2 = ξ 2 = −w
†
↑w↑ + 2nw↑nw↓ + w↓w

†
↓, (A3)

μξ = ξμ = 0, (A4)

with nw↑ = w
†
↑w↑ and nw↓ = w

†
↓w↓, we obtain

d†
↑d↑d†

↓d↓ = 1 − μ2 − μξ + ξμ − 2ξ + ξ 2

4

= nw↑nw↓ − 1

2
W †(σx + σz )W . (A5)

Applying then T−
1 to the interaction term HU gives

HU = Ud†
↑d↑d†

↓d↓ − U

2
D†(σx + σz )D = Uw

†
↑w↑w

†
↓w↓,

(A6)

which in the w basis obtains the form of the ordinary Hubbard
term. Notice that the additional quadratic term in HU in the
d basis cancels exactly the quadratic term of Eq. (A5) when
correspondingly transformed.

APPENDIX B: CORRECTIONS DUE TO THE FINITE
BANDWIDTH

The self-energy contribution ΣD can be written a sum

ΣD(z) = ΣD
N (z) + ΣD

S (z), (B1)

where ΣD
N is the contribution of just the normal lead and ΣD

S is
the same due to the superconducting leads:

ΣD
N (z) =

∑
k

VNk(z · 1 − ENk )−1VNk,

ΣD
S (z) =

∑
α∈{L,R},k

Vαk(z · 1 − Eαk )−1Vαk, (B2)

with z being an arbitrary complex number. Later, only the
functional form infinitesimally close to the real axis needs to
be resolved. For that we set z = ω+ ≡ ω + iη with ω being
a real frequency and η being an infinitesimally small posi-
tive number, thus taking the cut slightly above the real axis.
The self-energy contribution ΣD

N (ω+) for the constant TDOS
within the band (4) simply reads

ΣD
N (ω+) = −i�N1, for |ω| < B. (B3)

The superconducting part is nontrivial and shall be treated
here in more detail. It is defined as

ΣD
S (ω+) =

∑
α∈{L,R}k

Vαk(ω+1 − Eαk )−1Vαk, (B4)

with notation following Sec. II B. The inverse matrix ap-
pearing in Eq. (B4) is evaluated using the identity (u1 + �v ·
�σ )−1 = (u1 − �v · �σ )/(u2 − �v · �v) as

(ω+1 − Eαk )−1 = ω1 − �Cασx + �Sασy + εkασz

(ω + iη)2 − �2 − ε2
kα

. (B5)

Furthermore, since σz(u1 + vxσx + vyσy + vzσz )σz = u1 −
vxσx − vyσy + vzσz, we get

Vαk(ω+1−Eαk )−1Vαk =V 2
αk

ω1+�Cασx − �Sασy + εkασz

ω2 − �2 − ε2
kα

+iη sgn(ω)
,

(B6)
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FIG. 9. Left column: Phase-dependent on-dot pairing ν ≡ 〈d↓d↑〉 (a) and the Josephson current J with J0 = 2e�/h̄ (b) calculated using
NRG at zero temperature in the w fields with subsequent use of Eqs. (42) and (43) for the parameters B = 100�, U = 3�, and �S = � and
various values of �N . Right column: Equivalent results calculated using CT-HYB QMC in the basis of the d fields for small finite temperature
kBT = �/40 (symbols with error bars): On-dot pairing ν (c) and Josephson current J (d). Lines are splines of QMC data and serve only as a
guide to the eye.

which, eventually, under the assumption (4) of constant TDOS
within the band leads to

ΣD
S (ω+) =

∑
α∈{L,R}

�α

π

∫ B

−B

ω1 + �Cασx − �Sασy

ω2 − �2 − ε2 + iη sgn(ω)
dε,

(B7)
where the term proportional to σz vanished due to the in-
tegrand being an odd function of ε. Using the symmetric
phase drop gauge choice (cf. the discussion in Sec. II A)
ϕL = −ϕR = ϕ/2, we sum over α ∈ {L, R} yielding

ΣD
S (ω+) = �S

[
ω1 + � cos

(ϕ

2

)
σx

]
F (ω+), (B8)

with

F (ω+) ≡ 1

π

∫ B

−B

dε

ω2 − �2 − ε2 + iη sgn(ω)

= 1

π
√

(ω + iη)2 − �2
ln

√
(ω + iη)2 − �2 + B√
(ω + iη)2 − �2 − B

.

(B9)

Taking the η → 0 limit, we arrive at

F (ω+) =

⎧⎪⎨
⎪⎩

− 2
π

√
�2−ω2 arctan

(
B√

�2−ω2

)
, for |ω| < �,

− i sgn(ω)√
ω2−�2 +

ln
(

B+
√

ω2−�2

B−
√

ω2−�2

)
π

√
ω2−�2 , for � < |ω| < B.

(B10)
The resulting ΣD

S (ω+) has thus a nonzero imaginary part only
outside of the gap region while all effects of the finite-sized
band appear in its real part which is nonzero in the whole
band. However, once the limit B → ∞ is taken the real part
out of the gap vanishes, too.

Altogether, the self-energy contribution ΣD(ω+) takes the
form of Eq. (27), where

�D
n (ω+) = −i�N + �SωF (ω+), (B11)

�D
a (ω+) = �S� cos

(ϕ

2

)
F (ω+). (B12)

APPENDIX C: COMPARISON OF THE NRG RESULTS
WITH QMC

In order to assess the ability of the presented NRG scheme
to provide reliable results on the integral quantities like the
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on-dot induced pairing and the Josephson current, we compare
the results with a numerically exact CT-HYB QMC, as this
method was already successfully used to study both the two-
terminal [56] and three-terminal [34] setups and agrees with
standard NRG results well within the QMC error bars.

The CT-HYB calculation is performed in the original d
basis by employing the off-diagonal elements of the hy-
bridization function using the TRIQS/CTHYB solver [57].
The total Hamiltonian of the system does not conserve particle
number, therefore the superconducting pairing is introduced to
the method using a canonical particle-hole transformation in
the spin-down sector, mapping the system to an impurity An-
derson model with attractive interaction [58,59]. As CT-HYB
is an inherently finite-temperature method, all calculations
were performed at kBT = �/40. All results are calculated for
half-bandwidth B = 100� and a cutoff in Matsubara frequen-
cies ωmax

n ≈ 314�.

The comparison of the NRG results with CT-HYB method
is plotted in Fig. 9. In panel a (top left), NRG results for
the induced pairing ν as a function of phase difference ϕ

for B = 100�, U = 3�, �S = � and various values of �N

at T = 0 are plotted. The importance of the finite-bandwidth
corrections were already discussed in Fig. 8. The equivalent
results of CT-HYB for small finite temperature are plotted
in Fig. 8(c). The curves match within QMC error bars for
small and large values of ϕ. In the crossover region, the results
slightly differ as the finite temperature is a source of additional
smearing, having a similar effect as �N [34]. In Fig. 8(b) we
plotted the NRG results for the Josephson current for the same
set of parameters as in Fig. 8(a). We added a �N = 0 result
from Ref. [34] to mark the position of the QPT in a case
of detached normal electrode. The relevant CT-HYB result
is again plotted in Fig. 8(d). Comparison again shows good
agreement up to the finite-temperature effects.
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